
1

Lecture Overview

• Memory management (Part 2)
– Paging implementation

• Page table

• Translation look-aside buffers

• Multilevel page tables

• Inverted pages tables

– Segmentation

Operating Systems - June 5, 2001

Memory Management using Pages

• Pages solve external fragmentation problems
associated with contiguous memory allocation
schemes

• Pages allow the operating system to load programs
into non-contiguous memory blocks
– The physical and logical address spaces are divided into

small blocks, called frames and pages respectively

– Processes work with logical addresses which are
automatically mapped into physical addresses by the MMU



2

Paging Implementation

• Since address translation must occur for every
address reference, translation must be efficient

• A process’ logical address is divided into pages
and each page maps to a physical page frame, it is
necessary to keep a page table that maps pages to
frames
– Generally, the page table is per process and kept in the

process descriptor

– When a process is scheduled, just like its registers and
program counter, the OS must correctly set up the process’
page table (which may include setting special register
values)

Hardware Support for Paging

• The simplest case is to implement the page table as
a dedicated set of registers
– Very quick

– These register need to be saved and loaded each time we
switch between executing processes

– Only good for small page tables (< 256 entries), too
expensive for large page tables (typical page tables might
have up to 1 million entries)



3

Hardware Support for Paging

• Large page tables must be kept in main memory

• A page table base register (PTBR) points to page table
– Changing page tables only requires changing this register

• This approach increases translation time though, for
example, to access location i
– Must first index into page table using PTBR + page number from i

(this is one memory access)

– The resulting frame number is combined with the page offset from
i to produce the physical address, then we can access the memory
(this is another memory access)

– This means that it takes two memory accesses to access all
memory locations, slowing memory access by a factor of 2

Translation Look-Aside Buffers

• To decrease memory access times, a standard solution
is to use a set of small, fast-lookup, hardware registers
called a translation look-aside buffer (TLB)
– Also called associative registers

– Each register in the set contains a key and a value; the key is
the page number and the value is the frame number

– When a TLB is given a key, it searches all registers
(typically between 8 and 2048) in parallel and outputs the
value if the key is found

– When a frame number is found, the memory reference to the
page table is eliminated and a small percentage of TLB
overhead is added to the memory access (e.g., 10 percent)



4

Translation Look-Aside Buffers

• When a frame number is not found, it is then added
to the TLB register set so that it will be found the
next time
– If the TLB is full, the OS must remove an entry

• Every time a new page table is loaded (i.e., a
process switch), the TLB must be flushed

• The abstract view of a TLB is presented on the
next slide

Translation Look-Aside Buffers

Abstract view of a TLB



5

Translation Look-Aside Buffers

• The performance of a TLB depends on its hit ratio
– Hit ratio is the percentage of time that a frame number is

found in the TLB

– Associative lookup time is a time units

– Memory cycle time is m time units

– Hit ratio is r

– Effective Access Time (EAT) = (m + a) r + (2m + a)(1 – r)
Example

If a = 20 ns, m = 100 ns, and r = 80%, then

EAT = (100 + 20) 0.8 + (2(100) + 20)(1 - 0.8) = 140 ns

For r = 98%, then EAT = 122 ns

Multilevel Paging

• Modern computers support large logical address
spaces (232 to 264)
– With an address space of 232 and a page size of 4k (212), a page

table has one million entries

– Assuming that each entry is 4 bytes, the page table is 4MB

• We need an approach to reduce the memory
requirements of the page table

• One approach is to page the page table

(In truth, since we are currently assuming an entire process must be
in memory to execute, this doesn’t actually reduce memory usage, but
when we talk about virtual memory in the next lecture we will see how
this helps.)



6

Multilevel Paging

• A logical address (on 32-bit machine with 4K page
size) is divided into two parts
– 20-bit page number
– 12-bit frame offset

• Paging the page table further divides the page number
– 10-bit page number
– 10-bit page offset

• Thus, a logical address is

where p1 is an index into the outer page table, and p2 is the
displacement within the page of the outer page table

page number page offset

p1 p2 d

10 10 12

Multilevel Paging

Abstract view of a two-level page table



7

Multilevel Paging

Address-translation scheme for a two-level 32-bit
paging architecture

Multilevel Paging

• Consider a computer with an address space of 264

– With a 4k page and for convenience we make the inner page table
fit in one page (i.e., 210 * 4 bytes), we have

– Even if we page again, we have

– We would still need at least four-level paging if we wanted to
make the table manageable

page number page offset

p1 p2 d

42 10 12

page number page offset

p1 p2 d

32 10 12

p3

10



8

Multilevel Paging

• Since each level is stored as a separate table in
memory, converting a logical address to a physical one
may take four memory accesses for a four-level table

• This would effectively quintupled the memory access
time if it were not for caching

• Four a 4-level page table with a cache hit rate of 98
percent

EAT = (0.98) 120 + (0.02) 520

= 128 nanoseconds.
which is only a 28 percent slowdown in memory
access time

Inverted Page Table

• As we can see, dealing with growing addresses spaces
is problematic when using standard page tables

• Another approach to dealing with the resource
requirements of page tables, is inverted page tables
– One entry for each real page of memory
– Entry consists of the virtual address of the page stored in that

real memory location, with information about the process
that owns that page

– Decreases memory needed to store each page table, but
increases time needed to search the table when a page
reference occurs

– Use hash table to limit the search to one or at most a few
page table entries



9

Inverted Page Tables

Paging and Memory Protection

• Memory protection is implemented by associating
protection bit(s) in page table with each frame
– Can also use bits to specify read/write/execute access
– Illegal accesses are trapped by the OS

• Valid/invalid bit also attached to page table entries
– Valid indicates that the associated page is in the process’

logical address space, and is thus a legal page
– Invalid indicates that the page is not in the process’ logical

address space

• Since a process does not usually use its entire page
table, it is not necessary to have entries for all possible
pages in the page table
– Can have a page table length register to indicate size of table



10

Paging and Memory Protection

Bit flags are added to page table entries to signify various
protection schemes

Shared Pages

• Shared code
– One copy of read-only (reentrant) code shared among

processes (i.e., text editors, compilers, window systems)

– Shared code must appear in same location in the logical
address space of all processes

• Private code and data
– Each process keeps a separate copy of the code and data

– The pages for the private code and data can appear anywhere
in the logical address space



11

Shared Pages Example

Processes share pages for editor code, but have their own pages
for data

Segmentation

• Memory-management scheme that supports user view
of memory

• A program is a collection of segments; a segment is a
logical unit such as:

main program,

procedure,

function,

local variables, global variables,

common block,

stack,

symbol table, arrays



12

Logical View of Segmentation

1

3

2

4

1

4

2

3

user space physical memory space

Segmentation Architecture

• Logical address consists of <segment-number, offset>

• Segment table maps two-dimensional physical
addresses; each table entry has
– base – contains the starting physical address where the

segments reside in memory.

– limit – specifies the length of the segment.

• Segment-table base register (STBR) points to the
segment table’s location in memory

• Segment-table length register (STLR) indicates number
of segments used by a program
– Segment number s is legal if s < STLR.



13

Segmentation Architecture

Logical address translation

Segmentation Architecture



14

Segmentation Architecture

• Sharing
– Allows sharing of segments

– Shared segments must have same segment number

• Allocation
– First fit/best fit

– External fragmentation problems

• Protection
– With each entry in segment table associate

• Validation bit = 0 ⇒ illegal segment

• Read/write/execute privileges

Segmentation with Paging

• It is possible to combine segmentation with paging
– Just like before, paging allows segments to be non-

contiguous and alleviates external fragmentation

• In general, paging is sufficient and segmentation is not
necessary or relevant on newer computing systems
other than the Intel x86 architecture
– Everything that segmentation offers, paging offers too



15

Comparing Memory Management Strategies

• Hardware support

• Performance

• Fragmentation

• Relocation

• Swapping

• Sharing

• Protection


