L ecture Overview

* Memory management
— Address binding
— Multiprogramming and CPU utilization
— Contiguous memory management
— Noncontiguous memory management
* Paging

Operating Systems- May 31, 2001

Memory

* |deally programmers want memory that is
— Large
— Fast
— Nonvolatile

* Memory hierarchy
— Small amount of fast, expensive cache
— Some medium-speed, medium price main memory
— Gigabytes of slow, cheap disk storage

* Memory manager handles the memory hierarchy

Process Memory Address Binding

* Program instructions and data must be bound to
memory addresses before it can be executed, this
can happen at three different stages

— Compile time: If memory location known a priori, absolute
code can be generated; must recompile code if starting
location changes

— Load time: Must generate relocatable code if memory
location is not known at compile time

— Execution time: Binding delayed until run timeif the
process can be moved during its execution from one memory
segment to another; need hardware support for address maps
(e.g., base and limit registers)

Memory Management

» The simplest approach for managing memory isto
execute a process and give it all the memory
— Every now and then the process can be saved to the disk and
another process can be loaded from the disk and be given all
the memory
» Just like we want to share the CPU to get better
utilization, we also want to share memory to get
better utilization

— A process might not need all the memory, so it would be a
waste to giveit all the memory

Multiprogramming and CPU Utilization

CPU utilization is afunction of number of processesin memory
— CPU dtilizetion=1-p"
where p is percentage of time a processiswaiting for /O and nis
the number of processesin memory (thisis asimplistic equation)

— Itiscommon for processes to exhibit 80% 1/0O wait time or more

200% 10 wait
£ 100 [-
g
B0 1D wall
E oan |-
E
L o B0 10 wait
3 w0
S
g 20
[
| [| 1 | | | 1 1 |
O 1 2 3 4 5 & 7 @8 8 1o

Degree of multiprogramming

Multiprogramming and CPU Utilization

CRL
At minebes ¥ Processs
ok Frrm Frisachacl 1 2 3 4
1 1960 4 CPUicle | &0 | .6a| 51| 41
2 1010 3 CPU Bugy a0 | 36 | 40| S0
] 10:18 2 CPUpooess | 20 | 18 | 18 | 45
4 1030 I
Al (]}
20 i a B 51 Job 1 tirdshas
1 . |
a Job 2 wtarty ! B B 31 a 1.0
- T + + |
1 B 31 a | I
3 | |
i 31 a (Rl i
4 i
i 1 1
o I 1 1 I
o 1o bl 2 =2 27,6 282 37
Tire (polathve fo ot 1's armvalp
(el

* Arrival and work requirements of 4 jobs

CPU tilization for 1 — 4 jobs with 80% I/O wait

Sequence of events as jobs arrive and finish
— Numbers show amount of CPU time jobs get in each interval

Swapping

* Inamultiprogrammed OS, not all processes can bein man
memory at the same time

» A process can be swapped temporarily out of memory to a
backing store and then brought back into memory for continued
execution

» Backing storeisafast disk large enough to accommodate
copies of all memory imagesfor all users; must provide direct
access to these memory images

» Major part of swap time istransfer time; total transfer timeis
directly proportional to the amount of memory swapped.

Contiguous Memory M anagement

» Another simple approach to multiprogramming is
to divide memory into afixed number of partitions
— Partitions may be of equal or different sizes

» Processeswait on an input queue for a particular
memory partition

» Processes execute for some period of time and then
are swapped out to give another process a chance
to run (if no more partitions are available)

Contiguous Memory M anagement

Multiple

input queues BEGK

CHO Partimon 4 Partiton 4
TOOH

Partifion 3 Single Partinon 2

Ifpul Gueus

400K

[Fartitian 2 Partition 2
200K

[HH}—| rartmon 1 Partition 1
100K

Oparating Cparating

mystam | o Bystam
lal [{=1}

Fixed memory partitions can be implemented with
— Separate input queues for each partition
— Singleinput queue

Contiguous Memory M anagement

» Given amemory partition scheme, it is clear that we
cannot be sure where program will be loaded in
memory

— Address locations of variables, code routines cannot be
absolute

— Must keep a program out of other processes partitions

e Must use base and limit values

— Address locations added to base value to map to physical
address

— Address locations larger than limit valueis an error

L ogical and Physical Addresses

» The concept of alogical address space that is
bound to a separate physical address spaceis
central to memory management

— Logical address are generated by the CPU; also referred to
asvirtual address

— Physical addressis generated by the memory unit

» Logical and physical addresses are the samein
compile-time and load-time address-binding
schemes

» Logical and physical addresses differ in execution-
time address-binding scheme

Memory M anagement Unit (MM U)

» Hardware device that maps virtual to physical
address

* In MMU scheme, every address generated by a
user process is manipulated by the MMU to
calculate the physical address at thetimeit is sent
to memory

— For example, add base register and check address against
[imit register

» The user programs deal with virtual addresses

only; they never see the physical addresses

Contiguous Memory M anagement

* A more complex memory management approach is
avariable partitioned approach

— A holeisablock of available memory; holes of various size
are scattered throughout memory
— When aprocess arrives, it is allocated memory from a hole
large enough to accommodate it
— Operating system maintains information about
* Allocated partitions
* Free partitions (i.e., holes)

Contiguous Memory M anagement

» Asprocesses arrive, they are loaded into a hole
that is big enough to accommodate them and the
excess space is cut off to create the remaining hole

os os os os

process 5 process 5 process 5 process 5

process 9 process 9

process 8 :> :> :> process 10

process 2 process 2 process 2 process 2

Memory Partition Allocation Algorithm

* How to satisfy request of size n from alist of holes?
— First-fit
* Allocate the first hole that is big enough
— Best-fit
* Allocate the smallest hole that is big enough
* Must search entire list, unless ordered by size
* Produces the smallest Ieftover hole
— Worst-fit
* Allocate the largest hole
* Must also search entire list, unless ordered by size
* Produces the largest |eftover hole
First-fit and best-fit better than worst-fit in terms storage utilization

Memory Fragmentation

» External fragmentation

— When allocating a hole, the remaining free space is cut off
creating a small/smaller hole

— Over time there will be many non-contiguous holes al over the
memory space

— It may not be possible to satisfy arequest for memory evenif the
memory is available because it is not contiguous
 Internal fragmentation

— Creating arbitrarily small holesin memory (i.e., a couple bytes) is
inefficient, so we might choose a minimum partition size

— Insuch ascenario, allocated memory may be sightly larger than
requested memory

— Thisinterna size difference isthen wasted memory

Memory Fragmentation

* Reduce external fragmentation by compaction
— Shuffle memory contents to place all free memory together
in one large block
— Compaction is possible only if relocation is dynamic, and is
done at execution time
— 1/O problem
* Latch job in memory whileit isinvolved in I/O
* Do /O only into OS buffers

Noncontiguous Memory M anagement

» For N memory blocks, the loss of 0.5N blocksis
possible due to external fragmentation
— 50-percent rule
— This means that one-third of memory is not usable

» Compaction istoo costly to perform regularly

» External fragmentation arises because we are
trying to allocate memory contiguously

» We can deal with external fragmentation if we can
allow process memory to be noncontiguous

Paging

» Paging permits physical address space of a process to be
noncontiguous
» Divide physical memory into fixed-sized blocks
— Called frames (size is power of 2, between 512 bytes and 8192 bytes)

* Divide logical memory into fixed-sized blocks
— Called pages (same size as frames)

» Keep track of all free frames

» Torunaprogram of size n pages, need to find n free
frames and load program

» Use apage table per process for translating logical to
physical addresses
» Useaframe tableto keep track of physical memory usage

Paging Address Tranglation Scheme

» Address generated by CPU isdivided into
— Page number (p) isan index into page table which contains
base address of each frame in physical memory
— Page offset (d) is combined with base address to define the
physical memory address that is sent to the memory
* By using apage size that is a power of two, transating
alogical addressto a page number and offset is easy
— Assume size of logical address spaceis 2™ and page sizeis 2"

— Then the low n bits of alogical address are the page offset and the
high m - n bits are the page number

p d
page number (m - n bits) page offset (n bits)

an

Paging Address Tranglation Scheme

logical physical
address address

v
—

pagetable

CPU —>| d [f [d]

physica
memory

Paging Example

Example for 32-byte memory with 4-byte pages:

32 bytes= 25, m =5, therefore we have a5 bit logical address 0

4 bytes= 22, n = 2, the lower 2 hits are the offset

address/ value page/ frame
0 i o_5
b
8 16
2l 1
4 f 3 2
(o]
h pagetable
8
K Translate logical address 13
ST « 13=01101 in binary
n e d=01inbinary; 1in decimal
p e p=011linbinary; 3in decimal

logical memory (to get p simply right-shift
logical address n times)
 physical address equals =
page frame * page size + offset
2*4+1=9

OB~

12

16

20

24

o]y 0] ol ol eyl]

28
physical memory

1

Inter nal Fragmentation in Pages

* Memory cannot be allocated in blocks smaller than the
page size

— Thisleadsto internal fragmentation since the last page frame
for a process may not be completely full

— On average fragmentation is one-half page per process

» This might suggest to use small page sizes

— However, there is overhead involved in managing the page
table and smaller pages means a bigger page table

— When writing pages to disk, bigger is better too
— Typical page size is between 2k to 8k

an

