
1

Lecture Overview

• Memory management
– Address binding

– Multiprogramming and CPU utilization

– Contiguous memory management

– Noncontiguous memory management
• Paging

Operating Systems - May 31, 2001

Memory

• Ideally programmers want memory that is
– Large

– Fast

– Nonvolatile

• Memory hierarchy
– Small amount of fast, expensive cache

– Some medium-speed, medium price main memory

– Gigabytes of slow, cheap disk storage

• Memory manager handles the memory hierarchy



2

Process Memory Address Binding

• Program instructions and data must be bound to
memory addresses before it can be executed, this
can happen at three different stages
– Compile time:  If memory location known a priori, absolute

code can be generated; must recompile code if starting
location changes

– Load time:  Must generate relocatable code if memory
location is not known at compile time

– Execution time:  Binding delayed until run time if the
process can be moved during its execution from one memory
segment to another; need hardware support for address maps
(e.g., base and limit registers)

Memory Management

• The simplest approach for managing memory is to
execute a process and give it all the memory
– Every now and then the process can be saved to the disk and

another process can be loaded from the disk and be given all
the memory

• Just like we want to share the CPU to get better
utilization, we also want to share memory to get
better utilization
– A process might not need all the memory, so it would be a

waste to give it all the memory



3

Multiprogramming and CPU Utilization

CPU utilization is a function of number of processes in memory
– CPU utilization = 1 - p n

where p is percentage of time a process is waiting for I/O and n is
the number of processes in memory (this is a simplistic equation)

– It is common for processes to exhibit 80% I/O wait time or more

Degree of multiprogramming

Multiprogramming and CPU Utilization

• Arrival and work requirements of 4 jobs
• CPU utilization for 1 – 4 jobs with 80% I/O wait
• Sequence of events as jobs arrive and finish

– Numbers show amount of CPU time jobs get in each interval



4

Swapping

• In a multiprogrammed OS, not all processes can be in main
memory at the same time

• A process can be swapped temporarily out of memory to a
backing store and then brought back into memory for continued
execution

• Backing store is a fast disk large enough to accommodate
copies of all memory images for all users; must provide direct
access to these memory images

• Major part of swap time is transfer time; total transfer time is
directly proportional to the amount of memory swapped.

Contiguous Memory Management

• Another simple approach to multiprogramming is
to divide memory into a fixed number of partitions
– Partitions may be of equal or different sizes

• Processes wait on an input queue for a particular
memory partition

• Processes execute for some period of time and then
are swapped out to give another process a chance
to run (if no more partitions are available)



5

Contiguous Memory Management

Fixed memory partitions can be implemented with
– Separate input queues for each partition
– Single input queue

Contiguous Memory Management

• Given a memory partition scheme, it is clear that we
cannot be sure where program will be loaded in
memory
– Address locations of variables, code routines cannot be

absolute

– Must keep a program out of other processes’ partitions

• Must use base and limit values
– Address locations added to base value to map to physical

address

– Address locations larger than limit value is an error



6

Logical and Physical Addresses

• The concept of a logical address space that is
bound to a separate physical address space is
central to memory management
– Logical address are generated by the CPU; also referred to

as virtual address

– Physical address is generated by the memory unit

• Logical and physical addresses are the same in
compile-time and load-time address-binding
schemes

• Logical and physical addresses differ in execution-
time address-binding scheme

Memory Management Unit (MMU)

• Hardware device that maps virtual to physical
address

• In MMU scheme, every address generated by a
user process is manipulated by the MMU to
calculate the physical address at the time it is sent
to memory
– For example, add base register and check address against

limit register

• The user programs deal with virtual addresses
only; they never see the physical addresses



7

Contiguous Memory Management

• A more complex memory management approach is
a variable partitioned approach
– A hole is a block of available memory; holes of various size

are scattered throughout memory

– When a process arrives, it is allocated memory from a hole
large enough to accommodate it

– Operating system maintains information about
• Allocated partitions

• Free partitions (i.e., holes)

Contiguous Memory Management

• As processes arrive, they are loaded into a hole
that is big enough to accommodate them and the
excess space is cut off to create the remaining hole

OS

process 5

process 8

process 2

OS

process 5

process 2

OS

process 5

process 2

OS

process 5

process 9

process 2

process 9

process 10



8

Memory Partition Allocation Algorithm

• How to satisfy request of size n from a list of holes?
– First-fit

• Allocate the first hole that is big enough

– Best-fit
• Allocate the smallest hole that is big enough

• Must search entire list, unless ordered by size

• Produces the smallest leftover hole

– Worst-fit
• Allocate the largest hole

• Must also search entire list, unless ordered by size

• Produces the largest leftover hole

First-fit and best-fit better than worst-fit in terms storage utilization

Memory Fragmentation

• External fragmentation
– When allocating a hole, the remaining free space is cut off

creating a small/smaller hole

– Over time there will be many non-contiguous holes all over the
memory space

– It may not be possible to satisfy a request for memory even if the
memory is available because it is not contiguous

• Internal fragmentation
– Creating arbitrarily small holes in memory (i.e., a couple bytes) is

inefficient, so we might choose a minimum partition size

– In such a scenario, allocated memory may be slightly larger than
requested memory

– This internal size difference is then wasted memory



9

Memory Fragmentation

• Reduce external fragmentation by compaction
– Shuffle memory contents to place all free memory together

in one large block

– Compaction is possible only if relocation is dynamic, and is
done at execution time

– I/O problem
• Latch job in memory while it is involved in I/O

• Do I/O only into OS buffers

Noncontiguous Memory Management

• For N memory blocks, the loss of 0.5N blocks is
possible due to external fragmentation
– 50-percent rule

– This means that one-third of memory is not usable

• Compaction is too costly to perform regularly

• External fragmentation arises because we are
trying to allocate memory contiguously

• We can deal with external fragmentation if we can
allow process memory to be noncontiguous



10

Paging

• Paging permits physical address space of a process to be
noncontiguous

• Divide physical memory into fixed-sized blocks
– Called frames (size is power of 2, between 512 bytes and 8192 bytes)

• Divide logical memory into fixed-sized blocks
– Called pages (same size as frames)

• Keep track of all free frames

• To run a program of size n pages, need to find n free
frames and load program

• Use a page table per process for translating logical to
physical addresses

• Use a frame table to keep track of physical memory usage

Paging Address Translation Scheme

• Address generated by CPU is divided into
– Page number (p) is an index into page table which contains

base address of each frame in physical memory

– Page offset (d) is combined with base address to define the
physical memory address that is sent to the memory

• By using a page size that is a power of two, translating
a logical address to a page number and offset is easy
– Assume size of logical address space is 2m and page size is 2n

– Then the low n bits of a logical address are the page offset and the
high m - n bits are the page number

p d

page number (m - n bits) page offset (n bits)



11

Paging Address Translation Scheme

CPU p d

f

physical
memory

f d

page table

logical
address

physical
address

Paging Example
Example for 32-byte memory with 4-byte pages:

32 bytes = 25, m = 5, therefore we have a 5 bit logical address
4 bytes = 22, n = 2, the lower 2 bits are the offset

i
j
k
l
m
n
o
p

a
b
c
d
e
f
g
h

0

4

8

12

16

20

24

28

physical memory

i
j
k
l
m
n
o
p

a
b
c
d
e
f
g
h

8

12

0

4

logical memory

address / value

5
6
1
2

0
1
2
3

page table

page / frame

Translate logical address 13
• 13 = 01101 in binary
• d = 01 in binary; 1 in decimal
• p = 011 in binary; 3 in decimal

(to get p simply right-shift
logical address n times)

• physical address equals =
page frame * page size + offset
2 * 4 + 1 = 9



12

Internal Fragmentation in Pages

• Memory cannot be allocated in blocks smaller than the
page size
– This leads to internal fragmentation since the last page frame

for a process may not be completely full

– On average fragmentation is one-half page per process

• This might suggest to use small page sizes
– However, there is overhead involved in managing the page

table and smaller pages means a bigger page table

– When writing pages to disk, bigger is better too

– Typical page size is between 2k to 8k


