
1

Lecture Overview

• Deadlocks
– More thorough introduction to deadlocks

– Deadlock modeling

– Dealing with deadlocks
• The ostrich approach

• Detection and recovery

• Avoidance

• Prevention

Operating Systems - May 22, 2001

Sharing Everywhere

• The OS is the maintainer of a numerous different
types of resources

• Numerous processes and threads can exist within
the OS that all want access to the same resources

• The OS is responsible for enabling sharing of
resources
– We saw some process coordination primitives that enabled

proper sharing among process

– The OS must use these primitives and other techniques to
ensure that access to its resources remain consistent

– The thread of deadlock in the OS is great

2

Sharable Resources

• Examples of sharable computer resources
– Printers

– Tape drives

– Tables

• Preemptable resources
– Can be taken away from a process with no ill effects

• Non-preemptable resources
– Will cause the process to fail if taken away

– We are concerned with this type of resource

Sharable Resources

• The OS must provide must provide exclusive
access to non-preemptable sharable resources

• Sequence of events required to use a resource
– Request the resource

– Use the resource

– Release the resource

• When a process wants to use a resource that is
already being used by another process
– Requesting process may be blocked

– May fail with error code

3

Deadlock

• Deadlocks occur when …
– Processes are granted exclusive access to resources

• Formal definition
A set of processes is deadlocked if each process in the set is
waiting for an event that only another process in the set can
cause

• Usually the event is the release of a held resource

• When deadlocked, none of the processes can
– Run

– Release resources

– Be awakened

Four Condition for Deadlock

l Mutual exclusion condition
– Each resource can only be assigned to at most one process at

a time

l Hold and wait condition
– Processes holding resources can request additional resources

l No preemption condition
– Previously granted resources cannot forcibly taken away

l Circular wait condition
– Must be a circular chain of 2 or more processes
– Each is waiting for resource held by next member of the

chain

4

Strategies for Dealing with Deadlock

• The OS should be written carefully so that it will
never deadlock, but processes can still deadlock

• Approaches for OS to deal with process deadlock
– Ignore the problem altogether

– Detection and recovery

– Dynamic avoidance
• Careful resource allocation

– Prevention
• Negating one of the four necessary conditions

Strategies for Dealing with Deadlock

• Ignore the problem altogether
– Pretend there is no problem

– Reasonable if
• Deadlocks occur very rarely

• Cost of prevention is high

– It is a trade off between
• Convenience

• Correctness

– UNIX and Windows takes this approach as do most OSs
• If no OSs deal with deadlock, why study it?

– We at least need to understand the issues

5

Strategies for Dealing with Deadlock

• Deadlock detection and recovery
– The system lets deadlocks occur

– The system tries to detect when a deadlock occurs

– When a deadlock is detected, some action is taken to try to
recover from it

– One technique for detecting deadlocks is to build a resource
graph

• A circle represents a process

• A square represents a resource

• A directed arc from a resource to a process denotes ownership
of a resource

• A directed arc from a process to a resource denotes a request
for a resource

Strategies for Dealing with Deadlock

• Deadlock detection and recovery

– Note the resource ownership and requests
– A cycle can be found within the graph, denoting deadlock
– This is for one resource of each type, but can be extended

6

Strategies for Dealing with Deadlock

• Deadlock detection and recovery
– A different approach to deal with multiple instances of

multiple resource types

Strategies for Dealing with Deadlock

• Deadlock detection and recovery
– Using the previous tables, deadlock detection is based on

comparing vectors
• The relation X ≤ Y on two vectors X and Y means that each

element of X is less than or equal to the corresponding element
in Y

• Each process is initially defined as unmarked

• The detection algorithm
– Looks for an unmarked process, Pi , for which the i-th row of the

R table is ≤ the A vector

– If such a process is found, add the i-th row of the C table to the
A vector, mark the process, and go back to first step

– If no such process exists, the algorithm terminates

– Any unmarked processes are known to be deadlocked

7

Strategies for Dealing with Deadlock

• Deadlock detection and recovery
– Example

Strategies for Dealing with Deadlock

• Deadlock detection and recovery
– Recovering from a detected deadlock

• Recovery through preemption
– Take a resource from some other process

– Depends on nature of the resource

• Recovery through rollback
– Checkpoint a process periodically

– Use this saved state

– Restart the process if it is found deadlocked

• Recovery through killing processes
– Crudest but simplest way to break a deadlock

– Kill one of the processes in the deadlock cycle

– Choose a process that can be rerun from the beginning

8

Strategies for Dealing with Deadlock

• Deadlock avoidance
– Make it impossible for deadlocks to occur at all

– Processes must announce maximum resource requirements
in advance

– Use the tables we already define in deadlock detection
• The current state of a system consists of the values of E, A, C,

and R

• A state is said to be safe if it is not deadlocked and there is
some scheduling order in which every process can run to
completion even if every process requests their maximum
amount of resources

• The system never allows itself to enter an unsafe state

Strategies for Dealing with Deadlock

• Deadlock avoidance
– Example of a safe state with multiple instances of a single

resource type
• Use same steps as deadlock detection

• Do not allow a request that would lead to unsafe state
– Always check next state using detection algorithm before

granting resources

(a) (b) (c) (d) (e)

9

Strategies for Dealing with Deadlock

• Deadlock avoidance
– Example of an unsafe state with multiple instances of a

single resource type; process A requests another resource

(a) (b) (c) (d)

Strategies for Dealing with Deadlock

• Deadlock avoidance
– The Banker’s Algorithm for multiple resource types

• Before granting request, perform same steps as deadlock
detection to check whether next state is safe

– Look for row R whose unmet resource needs are all smaller than
or equal to A

– If no row exists, the state is unsafe

– If a row exists, assume the process of row R requests and then
finishes, releasing all of its resources; mark the process as
finished and add its resources to vector A

– Repeat until all processes are marked as finished (state is safe)
or the state is determined to be unsafe

10

Strategies for Dealing with Deadlock

• Deadlock avoidance
– The Banker’s Algorithm for multiple resource types

Strategies for Dealing with Deadlock

• Deadlock prevention
– Try to eliminate one of the four conditions of deadlock

• Mutual exclusion
– Not really possible in many cases since some resources require

mutual exclusion (e.g., a printer)

• Hold and wait condition
– Only allocate all resources at once
– Only allocate resource when process has none
– This results in poor resource utilitization
– Starvation is possible

• No preemption
– Preempt resources from processes that block (e.g., the CPU)
– This is not possible for all types of resources

• Circular wait
– Impose total ordering on all resources

11

Deadlock Conclusions

• The potential for process deadlock is great in OS
• There are various approaches and mechanisms for

dealing with deadlock
• Most OSs only guarantee mutually exclusive

access to appropriate resources, but do not try to
prevent processes from deadlocking

