
1

Lecture Overview

• Quick review of topics covered so far
– Computer hardware

• CPU, instructions, registers

• Memory

• I/O devices

– Operating systems
• Processes

• Concurrency

• Threads and lightweight processes

Operating Systems - May 22, 2001

Review of Lectures So Far

• Computer hardware
– In general, we can think of the CPU as a small, self-

contained computer
• It has instructions for performing mathematical operations

• It has a small amount of storage space (its registers)

• We can feed instructions to the CPU one at a time and use it to
perform complex calculations

– This is the ultimate in “interactive” operation; the user does
everything

– It would be better if there was some way to give the CPU a lot
of instructions all at once, rather than one at a time

2

Review of Lectures So Far

• Computer hardware (con’t)
– We need to combine the CPU with RAM and a memory bus

• The bus connects the CPU to the RAM and allows the CPU to
access address location contents

• Since we are going to load many instructions (i.e., a program)
into memory, the CPU must have a special register to keep
track of the current instruction, the program counter

– The program counter is incremented after each instruction

– Some instructions directly set the value of the program counter,
like JUMP or GOTO instruction

Review of Lectures So Far

• Computer hardware (con’t)
– We need to combine the CPU with RAM and a memory bus

(con’t)
• By adding memory we must extend the operations that the

CPU needs to perform, it needs instructions to read/write
to/from memory

• We can use memory for two purposes now
– Storing instructions (the program code)

– Storing data

• This doesn’t allow us to interact with the program and
memory is still pretty expensive for its size

3

Review of Lectures So Far

• Computer hardware (con’t)
– Now we add I/O devices to the communication bus

• The CPU communicates with I/O devices via the bus

• This allows user interaction with the program (e.g., via a
terminal)

• This also allows more data and bigger programs (e.g., stored
on a disk)

Review of Lectures So Far

• Computer hardware (con’t)
– Up until this point we have described what amounts to a

simple, but reasonable computer system
• This system stores programs and data on disks

• It executes a one program at a time by loading a program’s
instructions into memory and sets the program counter to the
first instruction of the program

• A program runs until completion and has complete access to
the hardware and I/O devices

• There really isn’t much of an operating system and no such
thing as a process

– This is good, but a lot of the time the CPU is just sitting
around with nothing to do because the program is waiting
for I/O

4

Review of Lectures So Far

• Computer hardware (con’t)
– Since the CPU is much faster than the I/O devices it has

three options when performing I/O
• It can simply wait (not very efficient)

• It can poll the device and try to do other work at the same time
(complicated to implement and not necessarily timely)

• It can allow the I/O devices to notify it when they are done via
interrupts (still a bit complicated, but efficient and timely)

• The last two options require a sophisticated OS, we will focus
on the last option

Review of Lectures So Far

• Providing an Operating System
– An OS could better utilize our CPU if we could run more

than one program at once
• Multiprogramming - executing another program when the

current program blocks

• Time-sharing/multitasking - executing one program for a short
period of time and then switching quickly to another and so on

– This introduces the notion of a process (i.e., an executing
program)

5

Review of Lectures So Far

• Providing an Operating System
– An OS must define some way to stop running the current

process and start running another, there are two options
• Implement all I/O calls to give up CPU when they might block

and provide functions to yield the CPU voluntarily; this is
cooperative multitasking

• Add a hardware timer interrupt to our CPU so that we can
automatically interrupt processes after some amount of time;
this is called preemptive multitasking

– Now that we have multiple processes running, we need some
way to protect the OS from them and them from each other

• Hardware support in the form of dual-mode CPU operation
– This means that some instructions can only be executed by the

OS and not by processes

Review of Lectures So Far

• Providing an Operating System (con’t)
– On a uniprocessor computer, a process can only make

progress when it has the CPU and only one process can have
the CPU at a time

• This means that only one process is actually executing at a
time on a uniprocessor computer

– The OS must share the CPU among all processes so that all
process can get a chance to execute

– How does the OS share the CPU among multiple processes?
• It preempts the current process (or the current process

cooperatively blocks) and the OS chooses another process for
the CPU

6

Review of Lectures So Far

• Providing an Operating System (con’t)
– What does the OS do when it preempts a process?

• Saves the CPU registers for the current process since they
contain unfinished work; the CPU registers are saved in the
process descriptor in OS’s process table

– The process descriptor keeps track of all process information for
a specific process

• Saves the program counter in the process descriptor so it
knows where to resume the current process later

– What does the OS do when it gives the CPU to a process?
• Restores the process’ CPU registers from the saved values in

the process descriptor for that process

• Restores the program counter to the next instruction for the
new process

Review of Lectures So Far

• Providing an Operating System (con’t)
– The OS must also share other resources, such as

• Memory
– Make sure that each process has its own address space

» This is not a physical address space, but a logical one

– Uses the process descriptor to keep track of the memory that a
process is using

• I/O devices
– Uses wait queues to allow access to devices

– Uses the process descriptor to keep track of various I/O
resources, like file descriptors

7

Review of Lectures So Far

• Providing an Operating System (con’t)
– We now have created a multitasking OS

– Is it a concurrent system? Yes, in computer science terms.
• English definition of “concurrent”

– Happening at the same time as something else

• Computer science definition of “concurrent”
– Non-sequential execution (non-deterministic)

• Definition of “parallel”
– Happening at the same time as something else

– This is the same as the English meaning of “concurrent”

• In computer science something that is parallel is also
concurrent (i.e., non-sequential), but something that is
concurrent is not necessarily parallel

Review of Lectures So Far

• Defining a process
– An executing program

– This means that the process must contain
• A program counter value

– This keeps track of the next instruction to execute and must be
saved in the process descriptor when the process loses the CPU

• All CPU register contents

• Call stack

• Open files

• Memory (including actual program text/code)

• Any other resources owned by the process

– All of this stuff is in the process descriptor

8

Review of Lectures So Far

• Defining a process
– A process is a resource

container with a single execution
flow

program counter value

CPU register values

memory (data and text)

open files

call stack

...

Review of Lectures So Far

• Defining a thread
– It is possible to conceptually break a process into two

distinct, but separate notions
• A resource container

• An execution flow

– After making this conceptual division, we call the resource
container a process and the execution flow a thread

– A thread cannot exist without a process, thus processes are
then a “container” for threads

– It is possible for multiple threads to exist in the same process

– A process with a single thread is the equivalent of our
original definition of a process

9

Review of Lectures So Far

• Defining a thread
– Since multiple threads can exist in the same

process, this means that they can share lots
of stuff, but not everything

program counter value

CPU register values

memory (data and text)

open files

call stack

...

program counter value

CPU register values

call stack

memory (data and text)

open files

...

Original process

New process Thread

Review of Lectures So Far

• Defining a thread

memory (data and text)

open files

...

program counter value

CPU register values

call stack

program counter value

CPU register values

call stack

program counter value

CPU register values

call stack

program counter value

CPU register values

call stack

program counter value

CPU register values

call stack

Process

Threads

10

Review of Lectures So Far

• Defining a lightweight process
– Sometimes the dividing line between a process and a thread

is very thin

– A lightweight process is pretty much the same as a normal
process except that it may share some resources with other
lightweight processes

• In this regard a lightweight process is very much like a thread
and can be used to implement threads

– Linux uses lightweight processes to implement threads,
which is why you can see the threads as processes when you
list process with the ps command

– Not every lightweight process is a thread

