
1

Lecture Overview

• Introduction to process scheduling
– Process scheduling and schedulers

– Process scheduling criteria

– Process scheduling algorithms
• First-come, first-serve

• Shortest-job-first

• Priority

• Round-robin

• Multilevel queue

• Multilevel feedback queue

Operating Systems - May 10/15, 2001

Process Scheduling

• Scheduling is a fundamental operating system
function
– Almost all computer system resources are schedule before

being used

– The CPU is the fundament resource that needs to be shared

• Process scheduling deals with selecting the next
process to execute on the CPU

• The goal is to obtain maximum CPU utilization
using multiprogramming

• Even though we say “process scheduling” most of
the discussion is equally relevant to threads

2

Process Schedulers

• Long-term scheduler (or job scheduler) selects which
processes should be brought into the ready queue
– Determines degree of multiprogramming
– Not invoked very often
– Does not exist in most timesharing systems

• Medium-term scheduler
– Swaps processes out to secondary storage
– We will cover this in a later lecture

• Short-term scheduler (or CPU scheduler) selects which
process should be executed next and allocates CPU
– Invoked frequently so it must be fast
– This lecture focuses on the short-term scheduler

Process Scheduling

• Processes fall into two categories
– I/O-bound processes spend more time doing I/O than

computations, short CPU bursts

– CPU-bound processes spends more time doing
computations, long CPU bursts

– The type and mixture of types of processes has an impact on
determining the best approach to process scheduling

• Process exhibit CPU–I/O burst cycle pattern
– Process execution consists of a cycle of CPU execution and

I/O waiting
• CPU burst is longer for CPU-bound processes

3

Process Scheduling

• As we already learned, the OS keeps track of processes
to be scheduled by maintaining various queues
– Ready queue is the set of all processes residing in main

memory, ready and waiting to execute

– Device queues are sets of processes waiting for a specific
I/O device

– Wait queues are sets of processes waiting for a specific event

• Processes migrate between the various queues as they
execute

• The process scheduler in interested in process on the
ready queue

Process Scheduling

• Selects from among the processes in memory that
are ready to execute, and allocates the CPU to one
of them

• CPU scheduling decisions take place when a
process
1. Switches from running to waiting state

2. Switches from running to ready state

3. Switches from waiting to ready

4. Terminates

• Scheduling under 1 and 4 is non-preemptive

• Scheduling under 2 and 3 is preemptive

4

Process Dispatching

• Dispatcher module gives control of the CPU to the
process selected by the short-term scheduler; this
involves
– Switching the context

– Switching to user mode

– Jumping to the proper location in the user program to restart
that program

• Dispatch latency is the time it takes for the
dispatcher to stop one process and start another
running

Process Scheduling Criteria

• CPU utilization – keep the CPU as busy as possible

• Throughput – number of processes that complete their
execution per time unit

• Turnaround time – amount of time to execute a
particular process

• Wait time – amount of time a process has been waiting
in the ready queue

• Response time – amount of time it takes from when a
request was submitted until the first response is
produced, not output (for timesharing environment)

5

Optimizing Process Scheduling Criteria

• Maximum CPU utilization

• Maximum throughput

• Minimum turnaround time

• Minimum waiting time

• Minimum response time

Process Scheduling Algorithms

• There are many process scheduling algorithms for
many different types of systems, we will examine
some of the most common
– First-come, first-serve

– Shortest-job-first

– Priority

– Round-robin

– Multilevel queue

– Multilevel feedback-queue

6

Process Scheduling Algorithms

• First-come, first-serve
– The simplest to understand and the simplest to implement

– The CPU is allocated to processes as they arrive

– Processes keep the CPU until they are done with it
• This is a non-preemptive algorithm

– This is essentially a FIFO queue (i.e., first-in, first-out)

– Because of its simplicity, FCFS is not very efficient

Process Scheduling Algorithms

• First-come, first-serve (con’t)
Example: Process Burst Time

P1 24

P2 3

P3 3

Suppose that the processes arrive in the order: P1 , P2 , P3

The Gantt chart for the schedule is:

Waiting time for P1 = 0, P2 = 24, P3 = 27

Average waiting time is (0 + 24 + 27)/3 = 17

P1 P2 P3

24 27 300

7

Process Scheduling Algorithms

• First-come, first-serve (con’t)
Suppose that the processes arrive in the order

 P2 , P3 , P1

The Gantt chart for the schedule is:

Waiting time for P1 = 6, P2 = 0, P3 = 3

Average waiting time is (6 + 0 + 3)/3 = 3

Convoy effect short processes behind long process

P1P3P2

63 300

Process Scheduling Algorithms

• Shortest-job-first
– The next job to receive the CPU is chosen based which one

needs the CPU for the shortest period of time
• More appropriately, we can associate with each process the

length of its next CPU burst

• Use these lengths to schedule the process with the shortest
“next burst” time

– SJF is provably optimal for average waiting time for a given
set of processes

– A potential starvation problem exists if there are a lot of
short jobs, in this case long jobs will never get the CPU

8

Process Scheduling Algorithms

• Shortest-job-first (con’t)
Example: Process Burst Time

P1 24

P2 3

P3 3

Suppose that the processes arrive in the order: P1 , P2 , P3

SJF

Waiting time for P1 = 6, P2 = 0, P3 = 3

Average waiting time is (6 + 0 + 3)/3 = 3

3 6 300

P1P2 P3

Process Scheduling Algorithms

• Shortest-job-first
– Two potential schemes for SJF

• Non-preemptive – once CPU given to the process it cannot be
preempted until completes its CPU burst

• Preemptive – if a new process arrives with CPU burst length
less than remaining time of current executing process,
preempt; this scheme is also known as the
Shortest-Remaining-Time-First (SRTF)

9

Process Scheduling Algorithms

• Shortest-job-first (con’t)
Example: Process Arrival Time Burst Time

P1 0.0 7

P2 2.0 4

P3 4.0 1

P4 5.0 4

SJF (non-preemptive with arrival times)

Average waiting time is (0 + 6 + 3 + 7)/4 = 4

P1 P3 P2

73 160

P4

8 12

Process Scheduling Algorithms

• Shortest-job-first (con’t)
Example: Process Arrival Time Burst Time

P1 0.0 7

P2 2.0 4

P3 4.0 1

P4 5.0 4

SJF (preemptive with arrival times)

Average waiting time is (9 + 1 + 0 + 2)/4 = 3

P1 P3P2

42 110

P4

5 7

P2 P1

16

10

Process Scheduling Algorithms

• Shortest-job-first (con’t)
– What is the real difficulty of SJF?

• Knowing the length of the next CPU request
– This is possible for long-term scheduling, but not so easy for

short-term scheduling

– CPU burst length approximation
• Try to predict the burst length

• Expect that the next burst will be similar to previous bursts

• CPU bursts can be predicted as an exponential average of the
lengths of previous CPU bursts

Process Scheduling Algorithms

• Shortest-job-first (con’t)
– Exponential average

τn+1 = αtn + (1 - α) τn

tn = length of the nth CPU burst

τn = predicted value historical average

τn+1 = next predicted average value

α = weight of recent history (0 <= α <= 1)

11

Process Scheduling Algorithms

• Priority
– A priority number (integer) is associated with each process

– The CPU is allocated to the process with the highest priority
(smallest integer ≡ highest priority)

• Preemptive

• Non-preemptive

– SJF is a priority scheduling where priority is the predicted
next CPU burst time

– Potential starvation problem
• Low priority processes may never get to execute

• One solution is process aging – as time progresses increase the
priority of the process that have not executed

Process Scheduling Algorithms

• Round-robin
– Each process gets a small unit of CPU time (time quantum),

usually 10-100 milliseconds

– After this quantum has elapsed, the process is preempted and
added to the end of the ready queue

– If there are n processes in the ready queue and the time
quantum is q, then each process gets 1/n of the CPU time in
chunks of at most q time units at once

– No process waits more than (n-1)q time units.

– Performance
• q large ⇒ FIFO

• q small ⇒ q must be large with respect to context switch,
otherwise overhead is too high

12

Process Scheduling Algorithms

• Round-robin (con’t)
Example: Process Burst Time

P1 53

P2 17

P3 68

P4 24

The Gantt chart for these process where the quantum = 20 is:

Typically, higher average turnaround than SJF, but better response

P1 P2 P3 P4 P1 P3 P4 P1 P3 P3

0 20 37 57 77 97 117 121 134 154 162

Process Scheduling Algorithms

• Round-robin (con’t)
– Length of time quantum affects context switching

– The time to perform a context switch is pure overhead (more
context switches ==> more overhead)

13

Process Scheduling Algorithms

• Multilevel queue
– Ready queue is partitioned into separate queues, for

example: foreground (interactive) and background (batch)

– Each queue can have its own scheduling algorithm, such as
round-robin for foreground and FCFS for background

– Scheduling must be done between the queues
• Fixed or absolute priority scheduling (i.e., serve all from

foreground before any from background)
– Possibility of starvation

• Time slicing between queues (i.e., each queue gets a certain
amount of CPU time which it can schedule amongst its
processes)

– For example, 80% to foreground and 20% to background

Process Scheduling Algorithms

• Multilevel queue (con’t)
– There may be many queues and associated scheduling

policies for each queue

14

Process Scheduling Algorithms

• Multilevel feedback-queue
– A process can move between the various queues; aging can

be implemented this way

– Multilevel feedback-queue scheduler defined by the
following parameters:

• Number of queues

• Scheduling algorithms for each queue

• Method used to determine when to upgrade a process

• Method used to determine when to demote a process

• Method used to determine which queue a process will enter
when that process needs service

– This is the most general, but most complex algorithm

Process Scheduling Algorithms

• Multilevel feedback-queue (con’t)
– Consider a three level ready queue like this

Q0

Q1

Q2

15

Process Scheduling Algorithms

• Multilevel feedback-queue (con’t)
– Three queues

• Q0 – time quantum 8 milliseconds round-robin
• Q1 – time quantum 16 milliseconds round-robin
• Q2 – FCFS

– Scheduling
• A new job enters queue Q0 which is served FCFS
• When it gains CPU, it receives 8 milliseconds
• If it does not finish in 8 milliseconds, it is moved to queue Q1

• At Q1 it is again served FCFS and receives 16 additional
milliseconds

• If it still does not complete, it is moved to queue Q2 where it is
run FCFS only if other queues are empty and is preempted by
the higher level queues

Process Scheduling Algorithms

• Multilevel feedback-queue (con’t)
– The previous example was just one particular hypothetical

implementation of a multilevel feedback-queue

– The number of queues, the quanta, the scheduling policies,
preemption, etc. can vary from one multilevel feedback-
queue implementation to the next

16

Process Scheduling Algorithms

• Scheduling on multiprocessor machines
– CPU scheduling more complex when multiple CPUs are

available

– Assume homogeneous processors within a multiprocessor

– Load sharing - providing a separate ready queue for each
processor

• Some processors could sit idle

– Symmetric multiprocessing (SMP) – each processor makes
its own scheduling decisions

– Asymmetric multiprocessing – only one processor accesses
the system data structures, alleviating the need for data
sharing

Process Scheduling Algorithms

• Algorithm evaluation
– Deterministic modeling – take a particular predetermined

workload and defines the performance of each algorithm for that
workload; like we did with the lecture examples

– Queuing models - since queues play an important role in
scheduling, if we estimate arrival rates and service rates, it is
possible to compute utilization, average queue length, average
wait time, etc.

– Simulations - create a model of a computer system and scheduling
algorithm(s); data to drive the simulation is created randomly,
from mathematical models, or from real system traces

– Implementation - actually implement it and try it in the OS

