
1

Lecture Overview

• Overview of Linux processes
– Based on version 2.2 of the Linux kernel

– Introduce process properties

– Introduce kernel process structures

– Discuss process creation and destruction

• A closer examination of these topics should be
helpful as you start to delve deeper into the kernel
in your programming assignments

Operating Systems - May 3, 2001

Linux Processes

• Linux also refers to a process as a “task”

• Linux represents each process as a process
descriptor of type task_struct
– Contains all information related to a single process

– Not all information is contained directly in the
task_struct, instead it includes pointers to other data
structures, which may point to other data structures, and so
on

• Each process has its own process descriptor
– Because of this strict one-to-one relationship, process

descriptor addresses uniquely identify process (process
descriptor pointer)

2

Linux Process Descriptor
state
flags

need_resched
counter
priority

next_task
prev_task
next_run
prev_run

p_optr
p_pptr

...

tty

tss

fs

files

mm

signal_lock

...
sig

tty_struct

fs_struct

files_struct

mm_struct

signal_struct

tty associated with the process

current directory

pointers to file descriptors

pointers to memory area descriptors

signals received

Linux Process State

• The state field of the process descriptor
– Describes what is currently happening to the process

– Consists of an array of mutually exclusive flags

– Possible states include
• TASK_RUNNING - running to waiting to run

• TASK_INTERRUPTIBLE - suspended

• TASK_UNINTERRUPTIBLE - suspended

• TASK_STOPPED - execution has stopped

• TASK_ZOMBIE - terminated

3

Linux Task Array

• All process descriptors are contained a global task
array in kernel address space, called task
– The elements of the task array are pointers to process

descriptors; null indicates an unused entry

– As a result using an array of pointers, process descriptors are
stored in dynamic memory rather than permanent kernel
memory

• Each task array entry actually contains two
different data structures in a single 8 KB block for
each process
– A process descriptor and the kernel mode stack

– These are cached after use to save allocation costs

Linux Task Array Entry

kernel mode
stack

process descriptor

%esp

current macro 0x015fa000

0x015fa3cb

0x015fa878

0x015fbfff

union task_union {
 struct task_struct task;
 unsigned long stack[2048];
};

4

Linux Task Array Entry

• The pairing of the processor descriptor and the kernel
mode stack offers some benefits
– The kernel can easily obtain the process descriptor pointer of

the currently executing process from the value of the %esp
register

• The memory block is 8 KB or 213 bytes long, so all the kernel has
to do is mask out the least significant 13 bits of %esp to get the
process descriptor pointer, this is done by the current macro

• You might see the macro used inline like, current->pid

– The pairing is also beneficial when using multiple processors
since the current process for each is determined similarly

Linux Process Lists

• Linux maintains many different lists of processes for
many different purposes

• Process list
– The process list contains all existing process descriptors

– It is a circular doubly linked list
– The head of the list is the init_task descriptor, which is

the first element of the last array (process 0 or swapper
process)

– The macros SET_LINKS/REMOVE_LINKS modify the list

init_task

prev_task next_task prev_task next_task prev_task next_task

5

Linux Process Lists

• Running list
– The OS often looks for a new process to run on the CPU

– It is possible to scan the entire process list for processes in
the TASK_RUNNING state, but this is inefficient

– The OS maintains a runqueue of all TASK_RUNNING
processes

– This list is a circular doubly linked list like the process list
and has the init_task process descriptor as its head also

– add_to_runqueue()/del_from_runqueue()
modify the list

– wake_up_process() makes a process runnable

Linux Process Lists

• PID hash table
– Each process has an associated process identifier (PID),

which users use to identify a process
• There is a pid field in the process descriptor

• A PID is a number from 0 to 32767

– For efficient look up of processes by PID, the OS maintains
a PID hash table

– The hash table using chaining to handle collisions, so each
entry in the hash table forms a doubly linked list

• The fields are pidhash_next and pidhash_previous
in the process descriptor

– hash_pid()/unhash_pid() modify the hash table,
find_task_by_pid() searches the hash table

6

Linux Process Lists

• List of free task entries
– The task array entries are used and freed every time a

process is created or destroyed
– A list of free task array entries is maintained for efficiency

starting with the tarray_freelist variable

– Each free entry in the task array points to another free
entry, while the last entry points to null

– Destroying a process puts its entry at the head of the list

– Each process descriptor also contains a pointer to its entry in
the task array to make deletion more efficient

Linux Process Lists

• List of free task entries
– get_free_taskslot()/add_free_taskslot()

modify the list

task

descriptor

descriptortarray_freelist

7

Linux Process Lists

• Parent/child relationships
– Each process descriptor maintains a pointer to its parent,

sibling, and child process descriptors
• p_opptr (original parent) points to the creating process or

the init process (process 1) if the parent has terminated
• p_pptr (parent) coincides with p_opptr except in some

cases, such as when another process is monitoring the child
process

• p_cptr (child) points to the process’ youngest child

• p_ysptr (younger sibling) points to the process’ next
younger sibling

• p_osptr (older sibling) points to the process’ next older
sibling

Linux Process Lists

• Parent/child relationships

P0

P0 P0 P0

P0

p_pptr
p_cptr

p_ysptr
p_osptr

8

Linux Process Lists

• The runqueue groups processes in state TASK_RUNNING

• Processes in state TASK_STOPPED or TASK_ZOMBIE
are not linked in specific lists since there is no need

• Processes in TASK_INTERRUPTIBLE and
TASK_UNINTERRUPTIBLE are divided into many
classes of list, these lists are wait queues

Linux Process Lists

• Wait queues have several uses in the kernel where
processes must wait for some event to occur
– Interrupt handling, process synchronization, timing

• Wait queues implement conditional waits on events
– A specific queue is for a specific type of event

• A wait queue a structure and wait queues are identified
by a wait queue pointers

struct wait_queue {
 struct task_struct *task;
 struct wait_queue *next;
};

9

Linux Process Lists

• Wait queues are somewhat complex, because they use
a dummy pointer for efficiency

P1

P1 P1

wait queue pointer

dummy pointer

task field

next field

Linux Process Lists

• init_waitqueue() initializes a wait queue pointer,
modifying the pointer to point to the dummy address

• add_wait_queue()/remove_wait_queue()
modify the wait queue

• To wait on a specific wait queue, call sleep_on()

– Similarly for interruptible_sleep_on(), sleep_on_timeout(),
and interruptible_sleep_on_timeout()

void sleep_on(struct wait_queue **p) {
 struct wait_queue wait;
 current->state = TASK_UNINTERRUPTIBLE;
 wait.task = current;
 add_wait_queue(p, &wait);
 schedule();
 remove_wait_queue(p, &wait);
}

10

Linux Process Usage Limits

• All processes have an associated set of usage limits

• Linux recognizes the following limits
– RLIMIT_CPU, RLIMIT_FSIZE, RLIMIT_DATA,
RLIMIT_STACK, RLIMIT_CORE, RLIMIT_RSS (page
frames), RLIMIT_NPROC, RLIMIT_NOFILE,
RLIMIT_MEMLOCK, and RLIMIT_AS (address space)

• Process limits are stored in the rlim field of the process
descriptor; rlim is an array of rlimit

– To check a limit, current->rlim[RLIMIT_CPU].rlim_cur

– Most limits are set to RLIMIT_INFINITY

struct rlimit {
 long rlim_cur;
 long rlim_max;
};

Linux Process Creation

• When creating a process, most Unix-based
operating systems create the child process as a
copy of the parent process
– This is inefficient

• Linux makes process creating more efficient using
three different mechanisms
– Copy-on-write

– Lightweight processes
– vfork() system call

11

Linux Process Creation

• Linux creates lightweight processes using the
__clone() function
– Is actually a wrapper for a hidden clone() function

– It takes four parameters, a function to execute, an argument
pointer, sharing flags, and the child stack

– Both fork() and vfork() are implemented in Linux using
clone() using different parameters

Linux Process Creation

• Kernel threads
– Traditional Unix systems delegate some tasks to

intermittently running processes
• Flushing disk caches, swapping out unused page frames,

servicing network connections, etc.

– It is more efficient to service these tasks asynchronously

– Since many of these tasks can only run in kernel mode,
Linux introduces the notion of kernel threads

• Each kernel thread executes a single specific kernel function

• Each kernel thread only executes in kernel mode

• Each kernel thread has a limited address space

12

Linux Process Creation

• Kernel threads
– kernel_thread() is used to create a kernel thread

int kernel_thread(int (*fn)(void *), void *arg,
 unsigned long flags)
{
 pid_t p;
 p = clone(0, flags | CLONE_VM);
 if (p)
 return p;
 else {
 fn(arg);
 exit();
 }
}

Linux Process Creation

• Process 0 (swapper process)
– Is a kernel thread that is the ancestor of all processes

– It is created from scratch during the initialization phase of
Linux by the start_kernel() function

– start_kernel() initializes all data structures needed by the
kernel, enables interrupts, and creates an additional kernel
thread, process 1 (init process)

– After creating the init process, the swapper process executes
cpu_idle(), which essentially executes hlt assembly
instructions repeatedly

• The swapper process is only selected when there are no other
processes in TASK_RUNNING state

13

Linux Process Creation

• Process 1 (init process)
– The init process initially shares all per-process data

structures with the swapper process

– The init process, once scheduled, starts executing the
init() function

– init() process creates four more kernel threads to flush
dirty disk buffers, swap out pages, and reclaim memory

– Then init() invokes execve() to load the executable
init program; at this point the init process becomes a regular
process

– The init process never terminates

Linux Process Destruction

• Processes die when the explicitly call exit(),
when they complete main(), or when a signal is
not or cannot be handled

• do_exit() handles process termination by
removing most references in the kernel to the
process
– Updates process status flag, removes process from any

queues, releases data structures, set the exit code, updates
parent/child relationships, invokes the scheduler to select
another process for execution

• Child processes become children of init process

14

Linux Process Switching

• Hardware context
– Linux must save/reload CPU registers when switching processes

– Some information is stored in the kernel mode stack, other
information is stored in the Task State Segment (TSS)

• Hardware support
– The Intel 80x86 architecture includes the TSS used specifically to

store the hardware context

• Linux code
– The switch_to macro actually performs the process switch

• Saving floating point registers
– There is hardware support to lazily save floating point registers,

i.e., they are only saved when necessary

Changes in Linux 2.4

• There is no longer a tasks array; this raises the
previously hard-coded limit on the number of
processes

• Wait queues are enhanced and now use a more
generic list_head data type to create lists

• clone() now allows you to clone the parent PID

• Process switching data is now stored more fully in
the process descriptor data structure

