L ecture Overview

» Overview of Linux processes
— Based on version 2.2 of the Linux kernel
— Introduce process properties
— Introduce kernel process structures
— Discuss process creation and destruction

» A closer examination of these topics should be

helpful as you start to delve deeper into the kernel
In your programming assignments

Operating Systems - May 3, 2001

L inux Processes

» Linux also refersto aprocess as a “task”

* Linux represents each process as a process
descriptor of typet ask_struct
— Contains al information related to a single process

— Not all information is contained directly in the
t ask_struct, instead it includes pointers to other data
structures, which may point to other data structures, and so
on

» Each process has its own process descriptor

— Because of this strict one-to-one relationship, process
descriptor addresses uniquely identify process (process
descriptor pointer)




Linux Process Descriptor

state
flags

need_resched
counter
priority

next_task
prev_task
next_run
prev_run

p_optr
P_pptr

tty

tty_struct
Ly fs_struct
===t
===t
B —r
ey :
Loy  files struct
-
mm_struct
signal_struct

tty associated with the process

current directory

pointers to file descriptors

pointers to memory area descriptors

signals received

L inux Process State

» The state field of the process descriptor

— Describes what is currently happening to the process

— Consists of an array of mutually exclusive flags

— Possible states include

* TASK_RUNNI NG - running to waiting to run

TASK | NTERRUPTI BLE - suspended
TASK_UNI NTERRUPTI BLE - suspended
TASK_STOPPED - execution has stopped

TASK_ZOMBI E - terminated




Linux Task Array

 All process descriptors are contained a global task
array in kernel address space, calledt ask

— The elements of thet ask array are pointers to process
descriptors; null indicates an unused entry

— Asaresult using an array of pointers, process descriptors are
stored in dynamic memory rather than permanent kernel
memory

e Eacht ask array entry actually contains two
different data structuresin asingle 8 KB block for
each process

— A process descriptor and the kernel mode stack
— These are cached after use to save allocation costs

Linux Task Array Entry

kernelmode Ox015fbfff

Y N | — | 0x015fa878

- 0x015fa3ch
current macro— 0x015fa000

uni on task_union {
struct task struct task;
unsi gned | ong stack[2048];




Linux Task Array Entry

» The pairing of the processor descriptor and the kernel
mode stack offers some benefits
— Thekernel can easily obtain the process descriptor pointer of
the currently executing process from the value of the %esp
register
» The memory block is 8 KB or 213 byteslong, so al the kernel has
to do is mask out the least significant 13 bits of %esp to get the

process descriptor pointer, this is done by the current macro

 You might see the macro used inline like, cur r ent - >pi d

— The pairing is aso beneficial when using multiple processors
since the current process for each is determined similarly

Linux Process Lists

* Linux maintains many different lists of processes for
many different purposes

* Processlist
— The process|list contains all existing process descriptors
— Itisacircular doubly linked list
— Thehead of thelististhei ni t _t ask descriptor, whichis
the first element of the last array (process 0 or swapper
process)
— Themacros SET_LI NKS/REMOVE_ LI NKS modify thelist

prev_task l next_task prev_task next_task prev_task next_task
I

init_task > ] LX X I |

<
]

I *




Linux Process Lists

* Running list
— The OS often looks for a new process to run on the CPU

— It ispossible to scan the entire process list for processesin
the TASK_RUNNI NG state, but thisisinefficient

— The OS maintains arunqueue of all TASK_RUNNI NG
processes

— Thislistisacircular doubly linked list like the process list
and hasthei ni t _t ask process descriptor asits head also

—add_to_runqueue()/del from runqueue()
modify the list

— wake_up_process() makesaprocess runnable

Linux Process Lists

* PID hash table

— Each process has an associated process identifier (PID),
which users use to identify a process
» Thereisapi d field in the process descriptor
* A PID isanumber from O to 32767
— For efficient look up of processes by PID, the OS maintains
aPID hash table
— The hash table using chaining to handle collisions, so each
entry in the hash table forms a doubly linked list
» Thefieldsare pi dhash_next and pi dhash_pr evi ous
in the process descriptor
— hash_pi d() /unhash_pi d() modify the hash table,
find_task_by_ pid() searchesthe hashtable




Linux Process Lists

o List of freetask entries
— Thet ask array entries are used and freed every time a
processis created or destroyed

— Alist of freet ask array entriesis maintained for efficiency
starting withthet array_freel i st variable

— Eachfreeentry inthet ask array pointsto another free
entry, while the last entry points to null

— Destroying a process putsits entry at the head of the list

— Each process descriptor also contains a pointer to itsentry in
thet ask array to make deletion more efficient

Linux Process Lists

e List of freetask entries

—get _free_taskslot()/add free_tasksl ot()
modify the list

task

tarray_freeliss ——




Linux Process Lists

» Parent/child relationships

— Each process descriptor maintains a pointer to its parent,
sibling, and child process descriptors

* p_opptr (original parent) points to the creating process or
theinit process (process 1) if the parent has terminated

* p_pptr (parent) coincides with p_opptr except in some
cases, such as when another process is monitoring the child
process

e p_cptr (child) pointsto the process youngest child

* p_ysptr (younger sibling) points to the process next
younger sibling

* p_osptr (older sibling) pointsto the process next older
sibling

Linux Process Lists

» Parent/child relationships

p_pptr ——»
p_cptr ——»




Linux Process Lists

» The rungqueue groups processes in state TASK _RUNNI NG

* Processesin state TASK_STOPPED or TASK_ZOMBI E
are not linked in specific lists since there is no need

* Processesin TASK | NTERRUPTI BLE and
TASK _UNI NTERRUPTI BLE are divided into many
classes of ligt, these lists are wait queues

Linux Process Lists

» Wait queues have several usesin the kernel where
processes must wait for some event to occur
— Interrupt handling, process synchronization, timing

» Wait queuesimplement conditional waits on events
— A specific queue isfor a specific type of event

* A wait queue a structure and wait queues are identified
by await queue pointers

struct wait_queue {
struct task struct *task;
struct wait_queue *next;




Linux Process Lists

» Wait queues are somewhat complex, because they use
adummy pointer for efficiency

oo 1 h wait queue pointer
dummy pointer
+ ___________ t ask field
L 'j—i - next field
Pl
I TG
P, P

Linux Process Lists

* init_waitqueue() initializesawait queue pointer,
modifying the pointer to point to the dummy address

e add wait_queue()/renove wait_queue()
modify the wait queue

» Towait on aspecific wait queue, call sl eep_on()

voi d sl eep_on(struct wait_queue **p) {
struct wait_queue wait;
current->state = TASK UN NTERRUPTI BLE
wai t.task = current;
add_wai t _queue(p, &wait);
schedul e();
renove_wait _queue(p, &wait);

}

— Similarly fori nterrupti bl e_sl eep_on(),sl eep_on_ti meout (),
andi nterruptible_sleep_on_timeout()




Linux Process Usage L imits

» All processes have an associated set of usage limits

* Linux recognizes the following limits
— RLIMT_CPU,RLIM T_FSI ZE, RLI M T_DATA,
RLIM T_STACK,RLI M T_CORE, RLI M T_RSS (page
frames), RLI M T_NPROC, RLI M T_NOFI LE,
RLIM T_MEMLOCK, and RLI M T_AS (address space)

» Processlimitsare stored inther | i mfield of the process
descriptor; rl i misanarray of rl i m t
struct rlimt {
long rlimcur;
[ ong rlim max;
i
— Tocheck alimit,current->rlinfRLIMT_CPU] . rli mcur
— MostlimitsaresettoRLI M T_I NFI NI TY

L inux Process Creation

* When creating a process, most Unix-based
operating systems create the child process as a
copy of the parent process

— Thisisinefficient

» Linux makes process creating more efficient using

three different mechanisms
— Copy-on-write

— Lightweight processes

— vfork() systemcal

an



Linux Process Creation

» Linux creates lightweight processes using the
__cl one() function
— Isactually awrapper for ahidden cl one() function

— It takes four parameters, afunction to execute, an argument
pointer, sharing flags, and the child stack

— Both fork() and vfork() are implemented in Linux using
clong() using different parameters

L inux Process Creation

o Kernel threads

— Traditional Unix systems delegate some tasksto
intermittently running processes

* Flushing disk caches, swapping out unused page frames,
servicing network connections, etc.

— It is more efficient to service these tasks asynchronously
— Since many of these tasks can only run in kernel mode,
Linux introduces the notion of kernel threads
 Each kernel thread executes a single specific kernel function
 Each kernel thread only executesin kernel mode
» Each kerndl thread has alimited address space

1



Linux Process Creation

» Kernel threads
— kernel _thread() isused to create akernel thread

int kernel _thread(int (*fn)(void *), void *arg,
unsi gned | ong fl ags)

{
pid_t p;
p = clone(0, flags | CLONE_VM;
if (p)
return p;
el se {
fn(arg);
exit();

L inux Process Creation

» Process 0 (swapper process)
— Isakernel thread that is the ancestor of all processes

— Itiscreated from scratch during the initialization phase of
Linux by thest art _ker nel () function

— start_kernel() initializes all data structures needed by the
kernel, enables interrupts, and creates an additional kernel
thread, process 1 (init process)

— After creating the init process, the swapper process executes
cpu_i dl e(), which essentially executeshl t assembly
instructions repeatedly

» The swapper processis only selected when there are no other
processes in TASK_RUNNI NG state

an



Linux Process Creation

» Process 1 (init process)

— Theinit processinitialy shares al per-process data
structures with the swapper process

— Theinit process, once scheduled, starts executing the
i nit() function

— i nit() process createsfour more kernel threads to flush
dirty disk buffers, swap out pages, and reclaim memory

— Theni ni t () invokesexecve() toload the executable
init program; at this point the init process becomes aregular
process

— Theinit process never terminates

L inux Process Destruction

» Processes die when the explicitly call exi t (),
when they complete mai n() , or when asignal is
not or cannot be handled

» do_exi t () handles processtermination by
removing most references in the kernel to the

process

— Updates process status flag, removes process from any
gueues, releases data structures, set the exit code, updates
parent/child relationships, invokes the scheduler to select
another process for execution

 Child processes become children of init process

an



Linux Process Switching

» Hardware context
— Linux must save/reload CPU registers when switching processes

— Some information is stored in the kernel mode stack, other
information is stored in the Task State Segment (TSS)

» Hardware support

— TheIntel 80x86 architecture includes the TSS used specifically to
store the hardware context

* Linux code
— The switch_to macro actually performs the process switch
» Saving floating point registers

— Thereis hardware support to lazily save floating point registers,
i.e., they are only saved when necessary

Changesin Linux 2.4

* Thereisno longer at asks array; thisraisesthe
previously hard-coded limit on the number of
processes

» Wait queues are enhanced and now use a more
genericl i st _head datatypeto createlists

* cl one() now alowsyou to clone the parent PID

» Process switching datais now stored more fully in
the process descriptor data structure




