
1

Lecture Overview

• Introduction to processes and threads
– Process model

– Process representation in the operating system

– Thread overview

– Thread implementations

Operating Systems - April 26, 2001

What is a Process?

• A process is a unit of work in the operating system

• A process is an executing program, it has a
sequential execution flow

• A process has associated resources (e.g., stack,
registers, memory, open files, etc.)

• A process is conceptual, it does not exist at the
hardware level



2

Process Model

a) Multiprogramming of four programs
b) Conceptual model of 4 independent, sequential processes
c) Only one program active at any instant, but each make

progress

Process States & Transitions

• Process states
– new = the process is being created

– running = instructions are being executed

– waiting = the process is waiting for some event to occur

– ready = the process is waiting to be assigned to a process

– terminated = the process has finished execution



3

Process Creation & Termination

• Principal events that cause process creation
– System initialization

– Execution of a process creation system

– User request to create a new process

– Initiation of a batch job

• Conditions that terminate processes
– Normal exit (voluntary)

– Error exit (voluntary)

– Fatal error (involuntary)

– Killed by another process (involuntary)

Process Hierarchies

• UNIX
– All processes have a parent process that created it

• Initial processes are children of the OS init process

– A process may create its own child process and its children
may create their own children and so on

• This forms a process group

• Windows
– There is no notion of parent/child processes



4

Process Descriptors

• Each process is represented in the operating system with a data
structure called a process descriptor or process control block

• Generally, the OS stores all process descriptors in a data
structure, such as a process table

Examples of the type of information stored in a process descriptor

Process Switching

• When the OS switches to another process, it must
save the state of the old process and load the saved
state for the new process
– This is called a context switch

• Context switch time is overhead; the system does
no useful work while switching

• Context switching is time dependent on hardware
support



5

Process Switching

Threads

• We defined a process as having resources and a
sequential execution flow
– It is possible to separate these two notions

• A thread is a unit of sequential execution (another
for thread is a lightweight process)

• With the concept of a thread, a process is merely a
grouping mechanism or container for resources

• This distinction enables a process to have multiple
threads of control, i.e., to be multithreaded



6

Threads

a) Three processes each with one thread (original
process notion)

b) One process with three threads (multithreaded)

Threads

Unlike multiple process, multiple thread do not have
all of their own resources, instead they share the
resources of their parent process



7

Threads

Each thread does have its own stack, because each has
its own execution history

– As we saw in the x86 Assembler example, the stack is used
for local variable storage as well as procedure call chains

Why Do We Want Threads?

• Performance - multi-processor machines

• Responsiveness - user interfaces

• Efficiency - blocking calls

• Naturalness - related, but separate activity streams



8

Multithreaded Example

A Web server can service multiple requests at the same time with
multiple threads of control, instead of having to block requests
until the first one finishes (similar approaches are possible with
multiple processes)

Multithreaded Example

Using a single process, there are three ways to
construct the example Web server, the most
natural and effective is with multiple threads

A finite-state machine is actually a way to simulate multiple threads
as we know from concurrent programming, but it is no longer a
sequential process model and is more complicated to implement



9

Implementing Threads

Threads implemented in user space

Implementing Threads

• Advantages of user space threads
– Can be implemented on any [sufficient] operating system

– Thread switching is fast

– Thread scheduling is fast

– Enable custom scheduling algorithms

– Scale better

• Disadvantages of user space threads
– Use a cooperative approach to sharing the CPU

– Blocking system calls are problematic since one blocked
thread will block all threads; the most useful place for
threads is when using blocking systems calls



10

Implementing Threads

Threads implemented in kernel space

Implementing Threads

• Advantages of kernel space threads
– No runtime system in each process

– Kernel can easily reschedule threads when they block

• Disadvantages of kernel space threads
– Thread switching is slower than user space threads

– Thread scheduling is slower than user space threads



11

Difficulties with Multithreaded Programs

• Globally scoped data may cause conflicts if
accessed by multiple threads at the same time

• Any libraries used by multithreaded programs
must be reentrant, i.e., designed to allow multiple
threads of control

• Complicates signal handling


