L ecture Overview

* Introduction to processes and threads
— Process model
— Process representation in the operating system
— Thread overview
— Thread implementations

Operating Systems - April 26, 2001

What is a Process?

» A processisaunit of work in the operating system

* A processisan executing program, it has a
sequential execution flow

» A process has associated resources (e.g., stack,
registers, memory, open files, etc.)

» A processis conceptual, it does not exist at the
hardware level

Process M odel

Cne Program counter

b Four program countsrs
Procass T
& A | ewitch s / “x\ s O —_ —_
_H.f B .-'"'./ f A H\Hx‘h g
N P & §c — —
o
| A BY [o = =
B Al — _
]
-H“ o Tirme —=
(a) (b} (e}

a) Multiprogramming of four programs
b) Conceptual model of 4 independent, sequential processes

¢) Only one program active at any instant, but each make
progress

Process States & Transitions

ackmithen Inbanupt terminated

10 ar avert comalehon 5 100 o aremnk wall
* Process states

— new = the processis being created

— running = instructions are being executed

— waiting = the process is waiting for some event to occur
— ready = the process is waiting to be assigned to a process
— terminated = the process has finished execution

Process Creation & Termination

* Principal events that cause process creation
— System initialization
— Execution of a process creation system
— User request to create a new process
— Initiation of abatch job

» Conditions that terminate processes
— Normal exit (voluntary)
— Error exit (voluntary)
— Fata error (involuntary)
— Killed by another process (involuntary)

Process Hierarchies

* UNIX
— All processes have a parent process that created it
* Initial processes are children of the OS init process

— A process may create its own child process and its children
may create their own children and so on

» Thisformsaprocess group

e Windows
— Thereis no notion of parent/child processes

Process Descriptors

 Each processis represented in the operating system with a data
structure called a process descriptor or process control block

» Generaly, the OS stores all process descriptorsin adata
structure, such as a processtable

Process managemeant Memary managemenl File managemeant
Registers Painter to text segmant Root directory
Program counter Polnter 1o date segment | Working directory
Pragram status ward Painker o Stack segmant | Fila descipiors
Stack paintar Uzar iD
Process state Group 1D
| P-iu;lrity
Scheduling parameters
Process 1D
Parant process
Process group
Signals
Time when process stared
CPL tirme used
Children’s CPU time
Time of next aiam

Examples of the type of information stored in a process descriptor

Process Switching

* When the OS switches to another process, it must
save the state of the old process and load the saved
state for the new process

— Thisiscaled acontext switch

» Context switch time is overhead; the system does

no useful work while switching

» Context switching is time dependent on hardware
support

Process Switching

process F, operabng systam process £,

Inbarmupt ar eystem cak

pxeculing pr
k.
A save stata into PCE,
: dia
refoad slate from PCE, 1
inbermupt or Syslem cal

¥

x e
) reinad siate from PCE,

eaecullng;

b e EpCLling

Threads

» We defined a process as having resources and a
sequential execution flow
— Itispossible to separate these two notions
» A thread isaunit of sequential execution (another
for thread is alightweight process)

» With the concept of athread, a processis merely a
grouping mechanism or container for resources

» Thisdistinction enables a process to have multiple
threads of control, i.e., to be multithreaded

Threads

Process 1 Process 1 Process 1

-

Usar \JI
space

-
Karnal ‘::
space |

Process

Rod

J

W

Thread

Karmael

Karmal

ia)

=)

a) Three processes each with one thread (original
process notion)

b) One process with three threads (multithreaded)

Threads

Unlike multiple process, multiple thread do not have
all of their own resources, instead they share the

resources of their parent process

Per process items
Address space

Global variables

Open files

Child processes

Pending alarms

Signals and signal handlers
Accounting information

Per thread items
Program counter
Registers

Stack

State

Threads

Each thread does have its own stack, because each has
its own execution history
— Aswe saw in the x86 Assembler example, the stack is used
for local variable storage as well as procedure call chains

Thraad 2

Thiasd 1 \ Thraad 3
N -lr

St
il

|~ Frocess

Thesad 1's — e THERE 3’5 SlECK

stack

Harnal

Why Do We Want Threads?

 Performance - multi-processor machines

* Responsiveness - user interfaces

 Efficiency - blocking calls

» Naturalness - related, but separate activity streams

Multithreaded Example

A Web server can service multiple requests at the same time with
multiple threads of control, instead of having to block requests
until the first one finishes (similar approaches are possible with
multiple processes)

Wab servar process

i -

Dispatcher thread

Worker thread Usei

space

‘Web page cache

L HKarmal
Harnal f space

Metwork
connachon

Multithreaded Example

Using asingle process, there are three ways to
construct the example Web server, the most
natural and effective is with multiple threads

Model Characteristics
Threads Parallelism, blocking system calls
Single-threaded process | No parallelism, blocking system calls
 Finite-state machine Parallelism, nonblocking system calls, interrupts |

A finite-state machine is actually away to simulate multiple threads
as we know from concurrent programming, but it is no longer a
sequential process model and is more complicated to implement

| mplementing Threads

Threads implemented in user space

Process Thread

./
\

200388 (8888

[B
Kermnal [
space <|._ / Kernal E\
/ el
Run-time Thread Procass
system table table

| mplementing Threads

» Advantages of user space threads
— Can be implemented on any [sufficient] operating system
— Thread switching is fast
— Thread scheduling is fast
— Enable custom scheduling algorithms
— Scale better

» Disadvantages of user space threads
— Use a cooperative approach to sharing the CPU

— Blocking system calls are problematic since one blocked
thread will block all threads; the most useful place for
threads is when using blocking systems calls

| mplementing Threads

Threads implemented in kernel space

Process Threaad

__/

\

Kearnal E E
—

Procass Thread
table table

| mplementing Threads

» Advantages of kernel space threads

— No runtime system in each process

— Kernel can easily reschedule threads when they block
» Disadvantages of kernel space threads

— Thread switching is slower than user space threads

— Thread scheduling is slower than user space threads

an

Difficulties with Multithreaded Programs

» Globally scoped data may cause conflictsif
accessed by multiple threads at the same time

» Any libraries used by multithreaded programs
must be reentrant, i.e., designed to allow multiple
threads of control

» Complicates signal handling

