Introduction to Operating Systems Vorlesung 19525 / SS 2001

Dr. Richard S. Hall rickhall@inf.fu-berlin.de

Torsten Fink tnfink@inf.fu-berlin.de

Operating Systems - April 17, 2001

Important Times

- Vorlesung
 - Tuesday 12 14, SR 005 (Hall)
 - Tuesday 12 14, SR 005 (Hall)

• Übungen

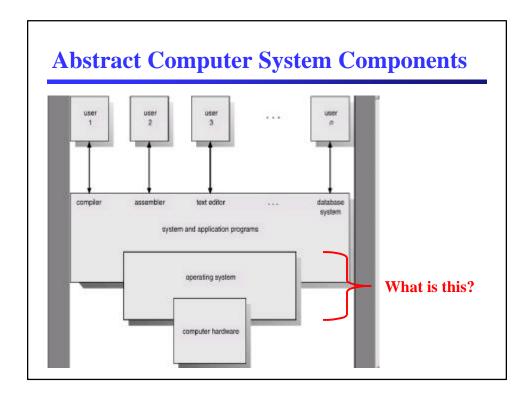
- Tuesday 10 12, SR 049 (Fink)
- Thursday 14 16, SR 049 (Fink)
- Sprechstunden
 - Wednesday 10 12, 106 (Hall)
 - Wednesday 14 16, 107 (Fink)

Purpose of This Course

- Discuss the underlying concepts and principles of modern operating systems
 - Abstract concepts and approaches that are relevant to all operating system implementations
 - Specific concepts and approaches taken by specific operating system, such as Linux
- Give students the opportunity to experiment with low-level system programming concepts by providing exercises that involve programming in C and modifying the Linux kernel

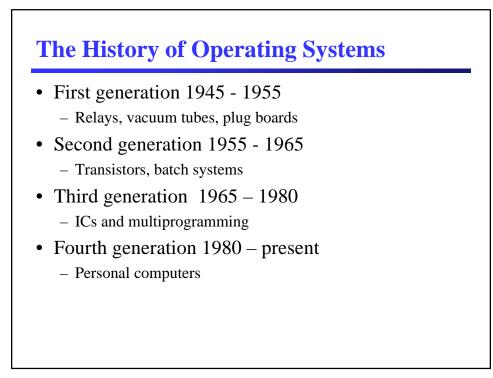
Schein
– Exercises (Übungen)
• Will be collected and graded
 One assignment may be dropped
 Presentations of exercises will be necessary
Small project
– Klausur (Final exam)
 Exercises and Klausur have equal weight
All students will be assigned an overall "Note"
based on the standard FUB grading system

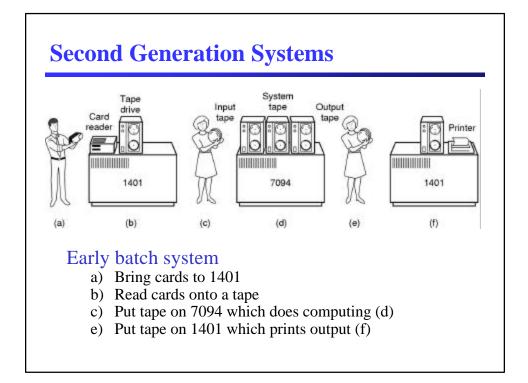
Übungen

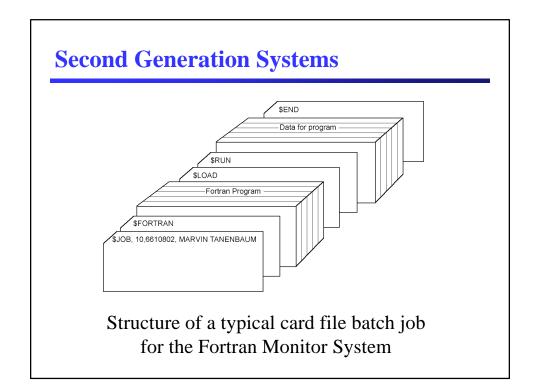

- Read the Web site for news
- There is an exercise for this lecture
 - It is an introduction to C
 - It is due April 26, 2001
- For smoother start-up, Lab A should join Lab B for the introduction this week because there will only be a partial introduction to C for Lab A next week

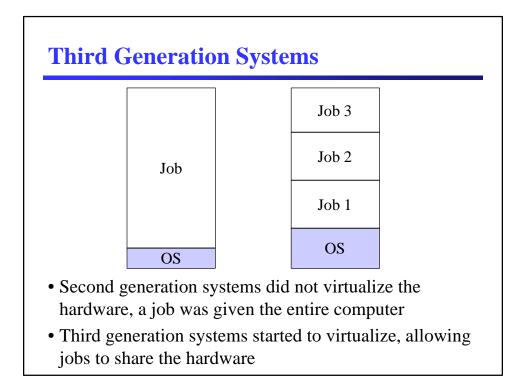
Reading List

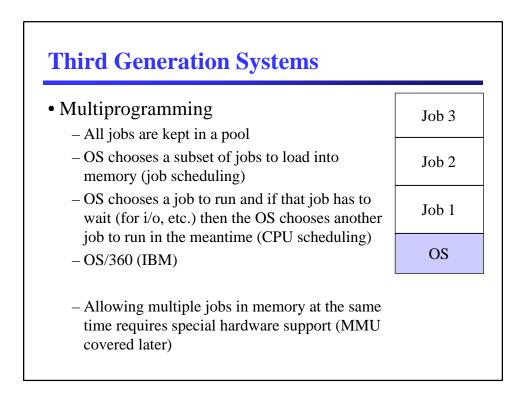
- Applied Operating System Concepts (First Edition)
 Abraham Silberschatz, Peter Galvin, Greg Gagne, 2000.
- Modern Operating Systems (Second Edition) – Andrew Tanenbaum, 2001.
- Both books have slides available on the Web
 - The lecture slides will be based on the book slides, but will combine, edit, remove, and add slides as required

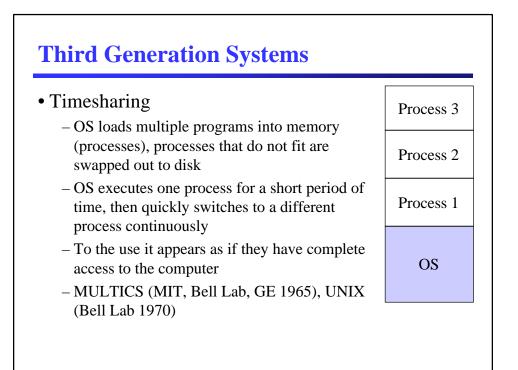



- Most likely, none of us will ever implement an operating system, so why study how they are implemented?
 - Operating systems contain examples of nearly all the issues you might ever encounter in programming
 - Concurrency, distribution, security, performance, efficiency
 - Understanding how the OS is implemented gives us better insight into how we should be solutions on top of it




What is an Operating System?


- It is a program that is always running
 - Responsible for actually executing other programs
- It creates a virtual machine by
 - "virtualizing" the processor
 - "virtualizing" memory
 - "virtualizing" input/output
 - File systems, printers, etc.
- Why?
 - To provide higher levels of abstraction
 - To extend the functionality of the underlying hardware
 - To manages resources efficiently



- Personal computers
 - Initially these systems lacked hardware support for advanced OS features; they were not multiuser or multitasking
 - PC operating systems have advanced as hardware cost went down and performance went up
 - CP/M, MS-DOS, Mac, Windows, Windows NT, Linux, etc.
 - We are still here...
 - Where are we going?
 - Network computers?
 - PDAs?
 - Embedded devices?

Current Domains of Operating Systems

- Mainframes (huge I/O capacity)
- Servers (shares resources over a network)
- Multiprocessors (variant of server OS)
- Personal computers (our computers)
- Real-time systems (monitoring sensors, etc.)
- Embedded systems (PDA, washing machines, etc.)
- Smart cards (severely constrained)