
1

Introduction to Operating Systems
Vorlesung 19525 / SS 2001

Dr. Richard S. Hall

rickhall@inf.fu-berlin.de

Torsten Fink

tnfink@inf.fu-berlin.de

Operating Systems - April 17, 2001

Important Times

• Vorlesung
– Tuesday 12 - 14, SR 005 (Hall)

– Tuesday 12 - 14, SR 005 (Hall)

• Übungen
– Tuesday 10 - 12, SR 049 (Fink)

– Thursday 14 - 16, SR 049 (Fink)

• Sprechstunden
– Wednesday 10 - 12, 106 (Hall)

– Wednesday 14 - 16, 107 (Fink)

2

Purpose of This Course

• Discuss the underlying concepts and principles of
modern operating systems
– Abstract concepts and approaches that are relevant to all

operating system implementations

– Specific concepts and approaches taken by specific
operating system, such as Linux

• Give students the opportunity to experiment with
low-level system programming concepts by
providing exercises that involve programming in C
and modifying the Linux kernel

Expectations

• Schein
– Exercises (Übungen)

• Will be collected and graded
– One assignment may be dropped

• Presentations of exercises will be necessary

• Small project

– Klausur (Final exam)

– Exercises and Klausur have equal weight

• All students will be assigned an overall “Note”
based on the standard FUB grading system

3

Übungen

• Read the Web site for news

• There is an exercise for this lecture
– It is an introduction to C

– It is due April 26, 2001

• For smoother start-up, Lab A should join Lab B for
the introduction this week because there will only
be a partial introduction to C for Lab A next week

Reading List

• Applied Operating System Concepts (First Edition)
– Abraham Silberschatz, Peter Galvin, Greg Gagne, 2000.

• Modern Operating Systems (Second Edition)
– Andrew Tanenbaum, 2001.

• Both books have slides available on the Web
– The lecture slides will be based on the book slides, but will

combine, edit, remove, and add slides as required

4

Why a Class on Operating Systems?

• Most likely, none of us will ever implement an
operating system, so why study how they are
implemented?
– Operating systems contain examples of nearly all the issues

you might ever encounter in programming
• Concurrency, distribution, security, performance, efficiency

– Understanding how the OS is implemented gives us better
insight into how we should be solutions on top of it

Abstract Computer System Components

 What is this?

5

What is an Operating System?

• It is a program that is always running
– Responsible for actually executing other programs

• It creates a virtual machine by
– “virtualizing” the processor

– “virtualizing” memory

– “virtualizing” input/output
• File systems, printers, etc.

• Why?
– To provide higher levels of abstraction

– To extend the functionality of the underlying hardware

– To manages resources efficiently

The History of Operating Systems

• First generation 1945 - 1955
– Relays, vacuum tubes, plug boards

• Second generation 1955 - 1965
– Transistors, batch systems

• Third generation 1965 – 1980
– ICs and multiprogramming

• Fourth generation 1980 – present
– Personal computers

6

Second Generation Systems

Early batch system
a) Bring cards to 1401
b) Read cards onto a tape
c) Put tape on 7094 which does computing (d)
e) Put tape on 1401 which prints output (f)

Second Generation Systems

Structure of a typical card file batch job
for the Fortran Monitor System

7

Third Generation Systems

OS

Job

OS

Job 1

Job 2

Job 3

• Second generation systems did not virtualize the
hardware, a job was given the entire computer

• Third generation systems started to virtualize, allowing
jobs to share the hardware

Third Generation Systems

OS

Job 1

Job 2

Job 3• Multiprogramming
– All jobs are kept in a pool

– OS chooses a subset of jobs to load into
memory (job scheduling)

– OS chooses a job to run and if that job has to
wait (for i/o, etc.) then the OS chooses another
job to run in the meantime (CPU scheduling)

– OS/360 (IBM)

– Allowing multiple jobs in memory at the same
time requires special hardware support (MMU
covered later)

8

Third Generation Systems

OS

Process 1

Process 2

Process 3• Timesharing
– OS loads multiple programs into memory

(processes), processes that do not fit are
swapped out to disk

– OS executes one process for a short period of
time, then quickly switches to a different
process continuously

– To the use it appears as if they have complete
access to the computer

– MULTICS (MIT, Bell Lab, GE 1965), UNIX
(Bell Lab 1970)

Fourth Generation Systems

• Personal computers
– Initially these systems lacked hardware support for advanced

OS features; they were not multiuser or multitasking

– PC operating systems have advanced as hardware cost went
down and performance went up

– CP/M, MS-DOS, Mac, Windows, Windows NT, Linux, etc.

– We are still here…

– Where are we going?
• Network computers?

• PDAs?

• Embedded devices?

9

Current Domains of Operating Systems

• Mainframes (huge I/O capacity)

• Servers (shares resources over a network)

• Multiprocessors (variant of server OS)

• Personal computers (our computers)

• Real-time systems (monitoring sensors, etc.)

• Embedded systems (PDA, washing machines, etc.)

• Smart cards (severely constrained)

