I ntroduction to Operating Systems
Vorlesung 19525/ SS 2001

Dr. Richard S. Hall
rickhall @inf.fu-berlin.de

Torsten Fink
tnfink @inf.fu-berlin.de

Operating Systems - April 17, 2001

|mportant Times

» Vorlesung
— Tuesday 12 - 14, SR 005 (Hall)
— Tuesday 12 - 14, SR 005 (Hall)

« Ubungen
— Tuesday 10 - 12, SR 049 (Fink)
— Thursday 14 - 16, SR 049 (Fink)

» Sprechstunden
— Wednesday 10 - 12, 106 (Hall)
— Wednesday 14 - 16, 107 (Fink)

Purpose of ThisCourse

 Discuss the underlying concepts and principles of
modern operating systems

— Abstract concepts and approaches that are relevant to all
operating system implementations

— Specific concepts and approaches taken by specific
operating system, such as Linux
 Give students the opportunity to experiment with
low-level system programming concepts by
providing exercises that involve programming in C
and modifying the Linux kernel

Expectations

e Schein

— Exercises (Ubungen)

» Will be collected and graded
— One assignment may be dropped

* Presentations of exercises will be necessary
» Small project

— Klausur (Final exam)

— Exercises and Klausur have equal weight

» All students will be assigned an overall “Note”
based on the standard FUB grading system

Ubungen

* Read the Web site for news

» Thereisan exercise for this lecture
— Itisanintroductionto C
— Itisdue April 26, 2001

» For smoother start-up, Lab A should join Lab B for
the introduction this week because there will only
be a partial introduction to C for Lab A next week

Reading List

» Applied Operating System Concepts (First Edition)
— Abraham Silberschatz, Peter Galvin, Greg Gagne, 2000.
* Modern Operating Systems (Second Edition)

— Andrew Tanenbaum, 2001.

* Both books have dslides available on the Web

— Thelecture dides will be based on the book dides, but will
combine, edit, remove, and add slides as required

Why a Class on Operating Systems?

* Most likely, none of uswill ever implement an
operating system, so why study how they are
implemented?

— Operating systems contain examples of nearly all the issues
you might ever encounter in programming
 Concurrency, distribution, security, performance, efficiency

— Understanding how the OS is implemented gives us better
insight into how we should be solutions on top of it

Abstract Computer System Components

campior assorber et adior

syelns and applicaion preraTs

L What is this?

computer hardsan

What isan Operating System?

* Itisaprogram that is always running
— Responsible for actually executing other programs

* |t creates avirtual machine by
— “virtualizing” the processor
— “virtualizing” memory
— “virtualizing” input/output
* File systems, printers, etc.
* Why?
— To provide higher levels of abstraction
— To extend the functionality of the underlying hardware
— To manages resources efficiently

TheHistory of Operating Systems

» First generation 1945 - 1955
— Relays, vacuum tubes, plug boards

» Second generation 1955 - 1965
— Transistors, batch systems

» Third generation 1965 — 1980
— ICs and multiprogramming

» Fourth generation 1980 — present
— Personal computers

Second Generation Systems

TE_PE Inpul
e drive - 13?’9 .-
readar 13- :}j’i’g : : Printer
=L 1= by e
Nl ! 2 b :
g I (LTI [(IHTRIRT
||| | 1401 'Tllf 1401
RS A
ial (b) {c) id) ie) i)
Early batch system

a) Bring cardsto 1401

b) Read cards onto atape

c) Put tape on 7094 which does computing (d)
e) Put tape on 1401 which prints output (f)

Second Generation Systems

/$END

Data for program

|
/SRUN
/sL0AD

Fortran Program

|
/ SFORTRAN

$JOB, 10,6610802, MARVIN TANENBAUM

Structure of atypical card file batch job
for the Fortran Monitor System

Third Generation Systems

Job 3

Job 2
Job

Job 1
oS (ON)

» Second generation systems did not virtualize the
hardware, ajob was given the entire computer

* Third generation systems started to virtualize, allowing
jobs to share the hardware

Third Generation Systems

» Multiprogramming Job 3
—All jobs are kept in a pool
— OS chooses a subset of jobs to load into Job 2

memory (job scheduling)

— OS chooses ajob to run and if that job hasto

wait (for i/o, etc.) then the OS chooses another Job 1
job to run in the meantime (CPU scheduling)
—0S/360 (IBM) 0S

— Allowing multiple jobs in memory at the same
time requires specia hardware support (MMU
covered | ater)

Third Generation Systems

* Timesharing
— OS loads multiple programs into memory

(processes), processes that do not fit are
swapped out to disk

— OS executes one process for a short period of
time, then quickly switches to a different
process continuously

—Tothe useit appears as if they have complete
access to the computer

—~MULTICS (MIT, Bell Lab, GE 1965), UNIX
(Bell Lab 1970)

Process 3

Process 2

Process 1

(ON)

Fourth Generation Systems

* Personal computers

— Initialy these systems lacked hardware support for advanced
OS features; they were not multiuser or multitasking

— PC operating systems have advanced as hardware cost went

down and performance went up

—CP/IM, MS-DOS, Mac, Windows, Windows NT, Linux, etc.

—Weare till here...

— Where are we going?
* Network computers?
» PDAs?
» Embedded devices?

Current Domains of Operating Systems

» Mainframes (huge 1/O capacity)

Servers (shares resources over a network)
Multiprocessors (variant of server OS)

Personal computers (our computers)

Real-time systems (monitoring sensors, etc.)
Embedded systems (PDA, washing machines, etc.)
Smart cards (severely constrained)

