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|mportant Times

» Vorlesung
— Tuesday 12 - 14, SR 005 (Hall)
— Tuesday 12 - 14, SR 005 (Hall)

« Ubungen
— Tuesday 10 - 12, SR 049 (Fink)
— Thursday 14 - 16, SR 049 (Fink)

» Sprechstunden
— Wednesday 10 - 12, 106 (Hall)
— Wednesday 14 - 16, 107 (Fink)




Purpose of ThisCourse

 Discuss the underlying concepts and principles of
modern operating systems

— Abstract concepts and approaches that are relevant to all
operating system implementations

— Specific concepts and approaches taken by specific
operating system, such as Linux
 Give students the opportunity to experiment with
low-level system programming concepts by
providing exercises that involve programming in C
and modifying the Linux kernel

Expectations

e Schein

— Exercises (Ubungen)

» Will be collected and graded
— One assignment may be dropped

* Presentations of exercises will be necessary
» Small project

— Klausur (Final exam)

— Exercises and Klausur have equal weight

» All students will be assigned an overall “Note”
based on the standard FUB grading system




Ubungen

* Read the Web site for news

» Thereisan exercise for this lecture
— Itisanintroductionto C
— Itisdue April 26, 2001

» For smoother start-up, Lab A should join Lab B for
the introduction this week because there will only
be a partial introduction to C for Lab A next week

Reading List

» Applied Operating System Concepts (First Edition)
— Abraham Silberschatz, Peter Galvin, Greg Gagne, 2000.
* Modern Operating Systems (Second Edition)

— Andrew Tanenbaum, 2001.

* Both books have dslides available on the Web

— Thelecture dides will be based on the book dides, but will
combine, edit, remove, and add slides as required




Why a Class on Operating Systems?

* Most likely, none of uswill ever implement an
operating system, so why study how they are
implemented?

— Operating systems contain examples of nearly all the issues
you might ever encounter in programming
 Concurrency, distribution, security, performance, efficiency

— Understanding how the OS is implemented gives us better
insight into how we should be solutions on top of it
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What isan Operating System?

* Itisaprogram that is always running
— Responsible for actually executing other programs

* |t creates avirtual machine by
— “virtualizing” the processor
— “virtualizing” memory
— “virtualizing” input/output
* File systems, printers, etc.
* Why?
— To provide higher levels of abstraction
— To extend the functionality of the underlying hardware
— To manages resources efficiently

TheHistory of Operating Systems

» First generation 1945 - 1955
— Relays, vacuum tubes, plug boards

» Second generation 1955 - 1965
— Transistors, batch systems

» Third generation 1965 — 1980
— ICs and multiprogramming

» Fourth generation 1980 — present
— Personal computers




Second Generation Systems
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a) Bring cardsto 1401

b) Read cards onto atape

c) Put tape on 7094 which does computing (d)
e) Put tape on 1401 which prints output (f)

Second Generation Systems
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Third Generation Systems

Job 3

Job 2
Job

Job 1
oS (ON)

» Second generation systems did not virtualize the
hardware, ajob was given the entire computer

* Third generation systems started to virtualize, allowing
jobs to share the hardware

Third Generation Systems

» Multiprogramming Job 3
—All jobs are kept in a pool
— OS chooses a subset of jobs to load into Job 2

memory (job scheduling)

— OS chooses ajob to run and if that job hasto

wait (for i/o, etc.) then the OS chooses another Job 1
job to run in the meantime (CPU scheduling)
—0S/360 (IBM) 0S

— Allowing multiple jobs in memory at the same
time requires specia hardware support (MMU
covered | ater)




Third Generation Systems

* Timesharing
— OS loads multiple programs into memory

(processes), processes that do not fit are
swapped out to disk

— OS executes one process for a short period of
time, then quickly switches to a different
process continuously

—Tothe useit appears as if they have complete
access to the computer

—~MULTICS (MIT, Bell Lab, GE 1965), UNIX
(Bell Lab 1970)

Process 3

Process 2

Process 1

(ON)

Fourth Generation Systems

* Personal computers

— Initialy these systems lacked hardware support for advanced
OS features; they were not multiuser or multitasking

— PC operating systems have advanced as hardware cost went

down and performance went up

—CP/IM, MS-DOS, Mac, Windows, Windows NT, Linux, etc.

—Weare till here...

— Where are we going?
* Network computers?
» PDAs?
» Embedded devices?




Current Domains of Operating Systems

» Mainframes (huge 1/O capacity)

Servers (shares resources over a network)
Multiprocessors (variant of server OS)

Personal computers (our computers)

Real-time systems (monitoring sensors, etc.)
Embedded systems (PDA, washing machines, etc.)
Smart cards (severely constrained)




