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Cleanroom Software Engineering

• Principles
• Empirical results
• Typical practices
• Stepwise refinement

• box structures, verification

Course "Softwareprozesse"

• Statistical testing
• Usage modeling
• Hints for practice

• Cleanroom and CMMI

Lutz Prechelt
Freie Universität Berlin, Institut für Informatik
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Cleanroom classification and goals

• Proposed by Harlan D. Mills, IBM, since 1980
• 'Cleanroom' stands for defect prevention 

instead of defect elimination
Goal: 
• High, quantified reliability at low cost

Classification: 
• Cleanroom is a development approach
• and a management approach

Context:
• Whenever precise specifications can be written early

• For new development, maintenance, and reengineering
• Independent of language and technology

• Requires approximately CMMI Level 3

Harlan Mills
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Cleanroom principles

Cleanroom development principle:
• Development teams strive to produce 

products without any defects
• by careful design and development
• by verification and review
• but not by testing

Cleanroom testing principle:
• The purpose of testing is measuring the reliability 

of the product
• not improving the reliability

Cleanroom management principle:
• Team-based practices limit the scope of human fallability 

and allow for continuous improvement
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Empirical results (1): IBM Cobol SF

• R.C. Linger, H.D. Mills: "A Case Study in Cleanroom Software 
Engineering: The IBM COBOL Structuring Facility",
• 12th Intl. Computer Science and Applications Conf., Oct. 1988. 

• Project developing "Cobol Structuring Facility" COBOL/SF
• A program analyzer/translator (written in PL/1) for converting 

Cobol code with GOTOs into structured Cobol code
• 52 KLOC modified/added to existing 40 KLOC base product

• Overall productivity: +400%
• Overall defect density: 3.4 defects/KLOC
• Field-testing defects: 10 (only 1 of them major)

• The defect reduction is the main reason for the huge 
improvement in productivity
• Testing such a system is very laborious

http://trace.tennessee.edu/cgi/viewcontent.cgi?article=1033&context=utk_harlan
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Empirical results (2): 
Ellemtel/Ericsson OS32

• L.G. Tann: "OS32 and Cleanroom"
• 1st Annual European Industrial Symposium on Cleanroom 

Software Engineering, Copenhagen, Denmark, 1993, pp. 1-40. 

• Project developing an operating system for 
telephone switching systems
• 73 people staff, 33 months duration
• 350 KLOC resulting software size (14 LOC/PM)

• Development productivity: +70%
• Testing productivity: +100% (tests per hour)
• Testing defect density: 1 defect/KLOC

• These are very big improvements, considering this was a 
mature development organization already.



6 / 31Lutz Prechelt, prechelt@inf.fu-berlin.de

Empirical results (3): 
Controlled experiment

• R. Selby, V. Basili, F. Baker: "Cleanroom Software 
Development: An Empirical Evaluation"
• IEEE Transactions on Software Engineering, 13(9), Sept. 1987

• A controlled experiment: 
15 teams (10 Cleanroom, 5 conventional) of 3 student 
developers (w. prof. experience). Each develops the same SW
• electronic messaging system: duration 6 weeks, 4 milestones, 
• resulting size 800 to 2300 LOC of Simple-T code

• Results:
• The Cleanroom teams developed more functionality
• All Cleanroom teams kept all milestones, 

only 2 of the 5 others did
• The Cleanroom programs were less complex (control flow)

and had better annotation
• The Cleanroom programs had significantly fewer test failures
• 86% of the developers missed testing (quality was not affected)

http://doi.ieeecomputersociety.org/10.1109/TSE.1987.233525


7 / 31Lutz Prechelt, prechelt@inf.fu-berlin.de

Typical Cleanroom techniques

Small teams
• High motivation, close cooperation, efficiency

• "Defects are not acceptable!"
• Parallel development

• Strict modularization has to be done 
at specification time

• Exact specification
• All partial specifications are precise 

and self-contained

Strict separation of development and testing
• Development teams

• Development teams are strictly forbidden to perform any testing
• Test teams

• Test teams never modify programs

Physical cleanroom
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Typical Cleanroom techniques (2)

Exact specification
• Defect prevention

• Precise specifications help avoid ambiguity defects
• Verification

• During development, defects are continually searched for by 
comparing with specification

• Specif. languages: Z, VDM, box method, special grammars

Stepwise refinement with the box method
1. Specification (black box)

• Describes WHAT without HOW
2. State description (state box)

• Specification as a state machine (not always useful)
3. Process description (clear box)

• Partial HOW: "Implementation", but may use further black boxes
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Typical Cleanroom techniques (3)

Review/verification
• Performed for each refinement

• State box and clear box
• Grounded in mathematics, performed as team discussion

• Convincing argumentation, rarely formal mathematical proof
• Argument is formulated and verified during an inspection

Incremental development
• Initially, only basic functionality is developed

Statistical testing
• Usage modelling

• Test cases are a random sample according to usage model
• Quantitative statement on reliability (certification)

The key point!
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Typical Cleanroom techniques: Note

• First and foremost, Cleanroom development is an attitude
• So none of the above techniques is absolutely mandatory:

They can be driven to extremes
• for instance developers may be prohibited to even 

compile their code

They can be relaxed
• for instance by performing defect testing before 

statistical testing

They can be exchanged for others
• for instance by driving development in some other way 

than by box refinement

M. Deck: Cleanroom Software Engineering Myths and Realities, 1997

http://www.lyee-project.soft.iwate-pu.ac.jp/en/workplan/kb/Library/Cleanroom/Documents/Papers/D97.pdf
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Design:
next 

refinement

Cleanroom process flow overview

Requirements 
analysis

Specification

Definition of 
next increment

Verification, 
correction

Development team

Reliability 
certification

Statistical 
testing

Usage modeling Test case 
generation

Test team
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Problems and Obstacles

Cleanroom is not suited if
• …formal specification is difficult

• which is commonly the case for interactive systems
• …determining the correctness of test outputs is costly

• but this is a problem for conventional development as well.
• One could still do Cleanroom without reliability certification 

• by leaving out statistical testing

Necessary preconditions:
• Highly trained software engineers

• Others cannot create reliable verification arguments
• Defined software process (CMMI Level ~3)

• Immature processes will lack the necessary discipline and control
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Specification and design
with box structure

• Define black box:
• define output based on input history

• Define state box [perhaps]:
• define states for the representation of input history
• reformulate black box (may introduce several new black boxes)
• verify reformulation: state box must be equivalent to black box

• Define clear box:
• define data abstraction for state data
• reformulate state box 

(may introduce several new black boxes)
• verify reformulation: 

clear box must be equivalent to state box
Continue with black boxes of the refinement
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Trivial refinement example

• black box 1: triangleType(a, b, c)

precondition: a, b, c are positive, real numbers

postcondition:
return EQUILATERAL / ISOSCELES / OTHER / NO_TRIANGLE 

the triple (a, b, c) is side lengths of an equilateral / non 
equilateral isosceles / non isosceles triangle / cannot be side 
lengths of a triangle

(only the lengths
of the sides are
relevant here!)
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Refinement example (2)

• clear box 1: triangleType(a, b, c)
IF allSidesSatisfyTriangleInequation(a, b, c)
THEN return trueTriangleType(a, b, c)
ELSE return NO_TRIANGLE

• black box 2: allSidesSatisfyTriangleInequation(a, b, c)
precondition: a, b, c positive, real numbers
postcondition: True if each side is shorter than the sum of the 

other two; else False

• black box 3: trueTriangleType(a, b, c)
precondition: (a, b, c) are the side lengths of a triangle
postcondition: …
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Refinement example (3)

• verification clear box 1:
(a, b, c) can form triangle 
the two shorter sides x, y together are longer than the longest, 

z.
Hence, z < x + y (i.e., "side z satisfies triangle inequation") 

is sufficient for diagnosing a triangle. 
"All sides satisfy triangle inequation" is a stronger condition, 

hence also sufficient.
Is "All sides…" also necessary? Yes: If  z < x + y  holds, 
x < z + y  and  y < x + z  will hold even more strongly

Hence, clear box 1 is correct.
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Refinement example (4)

• clear box 2: allSidesSatisfyTriangleInequation(a, b, c)
return (a < b + c  AND  b < a + c  AND  c < a + b)

• verification clear box 2:
3 different side lengths a, b, c are tested ( "triangle"),
tests are connected by 'AND' ( "all sides"),
each test compares one side to the sum of the two others,
each comparison is by 'less than' ( correct inequation).
Hence, the implementation appears to be correct
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Refinement example (5)

• clear box 3: trueTriangleType(a, b, c)
IF a = b= c THEN return EQUILATERAL
ELSE IF a = b OR a = c OR b = c THEN return ISOSCELES

ELSE  return OTHER

• verification clear box 3:
'Equilateral' is a special case of 'isoceles' and must therefore be 

tested first, this is done here.
The test for 'equilateral' is correct.
The test for 'isosceles' must check 3 different pairs (correct), 

only one needs to be equal (connection with 'OR', correct)
'Other' is the only remaining case, must be 'ELSE' part. Correct. 
Therefore clear box 3 is correct.
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Statistical Testing and Certification

• Most software processes use defect testing
• Goal: Find as many defects as possible, 

with as few test cases as possible
• Testing concentrates on 'difficult' cases.

• Defect testing makes almost no statement about reliability.

• In contrast, Cleanroom uses statistical testing 
• Goal: Quantify reliability; attitude like acceptance testing
• Does not specifically aim to find defects
• Testing reflects the frequency of 'typical' cases

• Basis: Usage modelling
• Based on description of the usage profile (from requirements)
• Mathematical description with Markov-chains (finite state space, 

discrete events)
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Example: Excerpt from the 
usage model for a text editor
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Probabilistic state machine: States are actions, stochastic sequencing
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Testing process

• Any number of test inputs can be generated automatically
• based on the usage model

• Output correctness predicate?
• Depends on application
• Often only plausibility checking is possible

• Measure the intervals between failures
• Terminate when sufficient reliability can be certified
• Stop when insufficient reliability has been determined
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Reliability certification

• The goal is a statement such as
"MTTF(program) ≥ m with confidence K"
• e.g. "With confidence 95% we can say that this program fails at 

most once every 2 000 000 steps"
• MTTF: mean time-to-failure ("time" being the number of steps)

• Computed with statistical methods (binomial distribution)

• Problem: 
When I find and correct a defect, 
may I still use the data from the previous test runs?
• Defect models and reliability growth models may allow this,
• but then need to rely on assumptions (in particular the non-

introduction of new failures).
• This is beyond the scope of this lecture.
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Certification testing: basic idea

number of test cases

number of failures

Schematic view! Details follow

Note that the up-steps are not vertical; they go 1 to the right as well.
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Details: Binomial distribution

• Given an event (here: failure) with probability p (here: 0.001)
• i.e. we want to certify 99.9% reliability (= 1-p)

• A binomial distribution describes the number F of failures 
to be expected during N runs (here: N=3000)

for 95% confidence: acceptance region rejection region

http://mathworld.wolfram.com/BinomialDistribution.html

http://mathworld.wolfram.com/BinomialDistribution.html
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Certification testing

• Limit lines for binomial distribution (N trials, p=0.001)

PN,p(F < y) ≥ 0.95

continue testing

PN,p(F < y) ≤ 0.05

y
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Cleanroom testing in practice

M. Deck, J.A. Whittaker: 
"Lessons Learned from Fifteen 
Years of Cleanroom Testing", 
1997

• One should integrate
development and testing
• Split has too much negative 

side-effects
• adversarial thinking is bad, 

because collaboration helps
• Cooperation adds value

• e.g. operational profile
helps SW design wrt real-
time behavior

• There will be some defects
to be found and removed

• Statistical testing is 
very difficult
• huge input spaces, so

non-trivial usage models 
become very complicated

• One should adapt the 
techniques to the context
• e.g. prototyping may be 

useful
• e.g. coverage testing may 

be useful/required
• regression testing is useful

Lutz Prechelt, prechelt@inf.fu-berlin.de

http://www.lyee-project.soft.iwate-pu.ac.jp/en/workplan/KB/Library/Cleanroom/Documents/Papers/DW.pdf
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Cleanroom and CMMI

• CMMI process areas covered by 
typical Cleanroom practices

• Level 2: Managed
• Measurement and Analysis MA

• with respect to reliability only
• Process and Product Quality 

Assurance PPQA
• verification discipline

• Level 3: Defined
• Technical Solution TS

• SP 2.3 Design Interfaces Using 
Criteria: formal specification

• Verification VER
• The heart of Cleanroom!

• Level 4: Quantitatively Manag'd
• Quantitative Project Mgmt QPM

• Statistical testing

• Level 5: Optimizing
• Causal Analysis and Resolution 

CAR
• Continuous team improvement 

(defect-based)
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Cleanroom and CMMI (2)

• Cleanroom alone does not get you anywhere wrt. CMMI
• not even to Level 2

• But the quality culture inspired by Cleanroom is 
a useful driver for many improvements up to Level 5:
• Level 2: PPQA (developers become aware of process quality); 
• Level 3: VER (reviews become standard practice)
• Level 4: OPP (defect densities become a natural process 

benchmark)
• Level 4: QPM (quantitative quality management is established)
• Level 5: OPM (developers start continuous improvements wrt. 

defect avoidance, thus opening the organization for process 
improvement)
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Literature

• Richard Linger, Carmen Trammell:
"Cleanroom Software Engineering Reference Model",
Software Engineering Institute, 
Technical Report CMU/SEI-96-TR-022
• detailled definition of the Cleanroom process

Lutz Prechelt, prechelt@inf.fu-berlin.de

http://www.sei.cmu.edu/reports/96tr022.pdf
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Summary: 
Cleanroom Software Engineering

• We studied Cleanroom for its ideas and basic attitude:
"Do not accept defects, 
favor defect prevention over defect detection"
• not as a software process to be used exactly as a whole;
• useful where reliability matters a lot and specs are available

Key properties:
• Exact specification (important)
• Stepwise refinement with box-specification  (replacable)
• Verification during inspection (important, done by a team)
• Statistical testing based on usage model  (ideally…)
• Reliability certification (ideally…)

• Result: very low defect rate, high productivity
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Thank you!
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