Freie Universitat

Course "Softwareprozesse™

Cleanroom Software Engineering

Lutz Prechelt
Freie Universitat Berlin, Institut fur Informatik

® Principles e Statistical testing

e Empirical results = Usage modeling

e Typical practices = Hints for practice
e Stepwise refinement ¢ Cleanroom and CMMI

e box structures, verification

Lutz Prechelt, prechelt@inf.fu-berlin.de 1 / 31

Freie Universitat E(L$)

Cleanroom classification and goals

® Proposed by Harlan D. Mills, IBM, since 1980

e 'Cleanroom' stands for defect prevention
instead of defect elimination

Goal:
e High, quantified reliability at low cost

Classification:
® Cleanroom is a development approach Harlan Mills
* and a management approach

Context:

* Whenever precise specifications can be written early
= For new development, maintenance, and reengineering
e Independent of language and technology

® Requires approximately CMMI Level 3

Lutz Prechelt, prechelt@inf.fu-berlin.de 2 / 31

Freie Universitat E(L$

Cleanroom principles

Cleanroom development principle:
® Development teams strive to produce
products without any defects
e by careful design and development
e Dby verification and review
 but not by testing

Cleanroom testing principle:

® The purpose of testing is measuring the reliability
of the product

e not improving the reliability

Cleanroom management principle:

* Team-based practices limit the scope of human fallability
and allow for continuous improvement

Lutz Prechelt, prechelt@inf.fu-berlin.de 3 / 31

Empirical results (1): IBM Cobol SF

Freie Universitat (|5

R.C. Linger, H.D. Mills: "A Case Study in Cleanroom Software
Engineering: The IBM COBOL Structuring Facility",

e 12th Intl. Computer Science and Applications Conf., Oct. 1988.

Project developing "Cobol Structuring Facility" COBOL/SF

e A program analyzer/translator (written in PL/1) for converting
Cobol code with GOTOs into structured Cobol code

e 52 KLOC modified/added to existing 40 KLOC base product

Overall productivity: +400%
Overall defect density: 3.4 defects/KLOC
Field-testing defects: 10 (only 1 of them major)

The defect reduction is the main reason for the huge
Improvement in productivity

e Testing such a system is very laborious

Lutz Prechelt, prechelt@inf.fu-berlin.de 4 / 31

http://trace.tennessee.edu/cgi/viewcontent.cgi?article=1033&context=utk_harlan

Empirical results (2):
Ellemtel/Ericsson OS32

Freie Universitit G

e | .G. Tann: "OS32 and Cleanroom"

e 1st Annual European Industrial Symposium on Cleanroom
Software Engineering, Copenhagen, Denmark, 1993, pp. 1-40.

® Project developing an operating system for
telephone switching systems

e 73 people staff, 33 months duration
e 350 KLOC resulting software size (14 LOC/PM)

* Development productivity: +70%
e Testing productivity: +100% (tests per hour)
e Testing defect density: 1 defect/KLOC

® These are very big improvements, considering this was a
mature development organization already.

Lutz Prechelt, prechelt@inf.fu-berlin.de 5 / 31

Empirical results (3):
Controlled experiment

Freie Universitit G |

® R. Selby, V. Basili, F. Baker: "Cleanroom Software
Development: An Empirical Evaluation”

e |IEEE Transactions on Software Engineering, 13(9), Sept. 1987
e A controlled experiment:

15 teams (10 Cleanroom, 5 conventional) of 3 student
developers (w. prof. experience). Each develops the same SW

e electronic messaging system: duration 6 weeks, 4 milestones,
e resulting size 800 to 2300 LOC of Simple-T code

® Results:
e The Cleanroom teams developed more functionality

e All Cleanroom teams kept all milestones,
only 2 of the 5 others did

e The Cleanroom programs were less complex (control flow)
and had better annotation

e The Cleanroom programs had significantly fewer test failures
e 86% of the developers missed testing (quality was not affected)

Lutz Prechelt, prechelt@inf.fu-berlin.de 6 / 31

http://doi.ieeecomputersociety.org/10.1109/TSE.1987.233525

Freie Universitat (.S)

Typical Cleanroom techniques

Small teams AYEC| ROl
e High motivation, close cooperation, efficiency .;:ujhu
O [N R o

e "Defects are not acceptable!"
e Parallel development

= Strict modularization has to be done 'r: - B o
at specification time g g -=.,‘~'f_1:,,fl_
e Exact specification pre— ity

= All partial specifications are precise Physical cleanroom
and self-contained

Strict separation of development and testing
® Development teams

e Development teams are strictly forbidden to perform any testing
® Test teams

e Test teams never modify programs

Lutz Prechelt, prechelt@inf.fu-berlin.de V4 / 31

Freie Universitat (.S

Typical Cleanroom techniques (2)

Exact specification
e Defect prevention

 Precise specifications help avoid ambiguity defects
e Verification

e During development, defects are continually searched for by
comparing with specification

e Specif. languages: Z, VDM, box method, special grammars

Stepwise refinement with the box method
1. Specification (black box)
e Describes WHAT without HOW
2. State description (state box)
= Specification as a state machine (not always useful)
3. Process description (clear box)
e Partial HOW: "Implementation”, but may use further black boxes

Lutz Prechelt, prechelt@inf.fu-berlin.de 8 / 31

Freie Universitat

Typical Cleanroom techniques (3)

Review/verification < The key point!
e Performed for each refinement

e State box and clear box
® Grounded in mathematics, performed as team discussion
e Convincing argumentation, rarely formal mathematical proof
e Argument is formulated and verified during an inspection

Incremental development
e |Initially, only basic functionality is developed

Statistical testing
* Usage modelling

e Test cases are a random sample according to usage model
* Quantitative statement on reliability (certification)

Lutz Prechelt, prechelt@inf.fu-berlin.de 9 / 31

Freie Universitit G |

Typical Cleanroom techniques: Note

* First and foremost, Cleanroom development is an attitude
= S0 none of the above techniques is absolutely mandatory:

They can be driven to extremes

= for instance developers may be prohibited to even
compile their code

They can be relaxed

e for instance by performing defect testing before
statistical testing

They can be exchanged for others

e for instance by driving development in some other way
than by box refinement

M. Deck: Cleanroom Software Engineering Myths and Realities, 1997

Lutz Prechelt, prechelt@inf.fu-berlin.de 10 / 31

http://www.lyee-project.soft.iwate-pu.ac.jp/en/workplan/kb/Library/Cleanroom/Documents/Papers/D97.pdf

=
=

Freie Universitat gl

Cleanroom process flow overview

Requirements Development team
analysis \

\ [

v

Specification \ D?]selgp : Verification,

/\//revfinement correction
' \

Definition of

next increment \ et temrm
S \ \ - -
\ Statistical — Reliability
\ testing certification
A/
Usage modeling— Test case
generation

Lutz Prechelt, prechelt@inf.fu-berlin.de 11 / 31

Problems and Obstacles

Cleanroom is not suited if
e .formal specification is difficult
e which is commonly the case for interactive systems
e _.determining the correctness of test outputs is costly

e Dbut this is a problem for conventional development as well.

e One could still do Cleanroom without reliability certification
by leaving out statistical testing

Necessary preconditions:
e Highly trained software engineers
= Others cannot create reliable verification arguments

e Defined software process (CMMI Level —3)
e Immature processes will lack the necessary discipline and control

Lutz Prechelt, prechelt@inf.fu-berlin.de 12 / 31

., T
W

Iy

Specification and design o Univerivs el
with box structure R

2| Berlin

* Define black box:
e define output based on input history

* Define state box [perhaps]-:
» define states for the representation of input history
 reformulate black box (may introduce several new black boxes)
e verify reformulation: state box must be equivalent to black box

e Define clear box:
e define data abstraction for state data

 reformulate state box
(may introduce several new black boxes)

= verify reformulation:
clear box must be equivalent to state box

Continue with black boxes of the refinement

Lutz Prechelt, prechelt@inf.fu-berlin.de

Trivial refinement example

* black box 1: triangleType(a, b, c) fol_t;//.l/l}y/e
/ustfaZZmp /e
precondition: a, b, c are positive, real numbers non/y

postcondition:
return EQUILATERAL / ISOSCELES / OTHER 7/ NO_TRIANGLE
e
the triple (a, b, c) is side lengths of an equilateral / non
equilateral isosceles / non isosceles triangle / cannot be side
lengths of a triangle

(only the lengths
of the sides are
relevant here!l)
/\)

Lutz Prechelt, prechelt@inf.fu-berlin.de 14 / 31

Freie Universitat (|5

Refinement example (2)

- . triangleType(a, b, ¢)

IF allSidesSatisfyTrianglelnequation(a, b, c)
THEN return trueTriangleType(a, b, ¢)

ELSE return NO_TRIANGLE

e black box 2: allSidesSatisfyTrianglelnequation(a, b, c)
precondition: a, b, c positive, real numbers

postcondition: True if each side is shorter than the sum of the
other two; else False

e black box 3: trueTriangleType(a, b, ¢)
precondition: (a, b, c) are the side lengths of a triangle
postcondition: ...

Lutz Prechelt, prechelt@inf.fu-berlin.de 15 / 31

Freie Universitit E(L.®

Refinement example (3)

e verification clear box 1:
(a, b, ¢) can form triangle <

the two shorter sides X, y together are longer than the longest,
Z.

Hence, z < x + y (i.e., "side z satisfies triangle inequation™)
IS sufficient for diagnosing a triangle.

"All sides satisfy triangle inequation" is a stronger condition,
hence also sufficient.

Is "All sides..." also necessary? Yes: If z < x + y holds,
X<z+y and y < x + z will hold even more strongly

Hence, clear box 1 is correct.

Lutz Prechelt, prechelt@inf.fu-berlin.de 16 / 31

Freie Universitit G

Refinement example (4)

o - allSidesSatisfyTrianglelnequation(a, b, ¢)
return(a<b+c¢c AND b<a+c AND c<a+Db)

e verification clear box 2:

3 different side lengths a, b, c are tested (- "triangle"),
tests are connected by 'AND' (- "all sides"),

each test compares one side to the sum of the two others,
each comparison is by 'less than' (- correct inequation).
Hence, the implementation appears to be correct

Lutz Prechelt, prechelt@inf.fu-berlin.de 17 / 31

Freie Universitat (|

Refinement example (5)

- . trueTriangleType(a, b, ¢)

IFa=b=c THEN return EQUILATERAL

ELSEIFa=DbORa=cORb=c THEN return ISOSCELES
ELSE return OTHER

e verification clear box 3:

'Equilateral’ is a special case of 'isoceles’ and must therefore be
tested first, this is done here.

The test for 'equilateral’ is correct.

The test for 'isosceles' must check 3 different pairs (correct),
only one needs to be equal (connection with 'OR', correct)

'Other’ is the only remaining case, must be 'ELSE' part. Correct.
Therefore clear box 3 is correct.

Lutz Prechelt, prechelt@inf.fu-berlin.de 18 / 31

Freie Universitat (.S

Statistical Testing and Certification

* Most software processes use defect testing

e Goal: Find as many defects as possible,
with as few test cases as possible

e Testing concentrates on 'difficult' cases.
e Defect testing makes almost no statement about reliability.

* |In contrast, Cleanroom uses statistical testing
 Goal: Quantify reliability; attitude like acceptance testing
e Does not specifically aim to find defects
e Testing reflects the frequency of 'typical’ cases

e Basis: Usage modelling
e Based on description of the usage profile (from requirements)

e Mathematical description with Markov-chains (finite state space,
discrete events)

Lutz Prechelt, prechelt@inf.fu-berlin.de 19 / 31

Example: Excerpt from the
usage model for a text editor

Freie Universitat E(L$

Probabilistic state machine: States are actions, stochastic sequencing

O.l 0.02 O._38
Gace block marker copy block 020 >
0.2
0.05 delete block
| T \\
| 1
0.08 o N O 07
o 06 '
\ ~
@ter symbol O 04 move cursor Yo ~~.0.13
O 34/ /, II \\\ ~a i
- - /// // 08
«--770.66 “~-76.02 0.7 mp\e'

\
Lutz Prechelt, prechelt@inf.fu-berlin.de fO\’ \\\US‘L 20 / 31

Freie Universitit |

Testing process

e Any number of test inputs can be generated automatically
e based on the usage model

e Qutput correctness predicate?
e Depends on application
= Often only plausibility checking is possible

® Measure the intervals between failures
e Terminate when sufficient reliability can be certified
= Stop when insufficient reliability has been determined

Lutz Prechelt, prechelt@inf.fu-berlin.de 21 / 31

Freie Universitit G |

Reliability certification

® The goal is a statement such as
"MTTF(program) = m with confidence K"

e e.g. "With confidence 95% we can say that this program fails at
most once every 2 000 000 steps”

e MTTF: mean time-to-failure (""time" being the number of steps)

e Computed with statistical methods (binomial distribution)

® Problem:
When | find and correct a defect,
may | still use the data from the previous test runs?

e Defect models and reliability growth models may allow this,

e but then need to rely on assumptions (in particular the non-
introduction of new failures).

e This is beyond the scope of this lecture.

Lutz Prechelt, prechelt@inf.fu-berlin.de 22 / 31

Certification testing: basic idea

=
i

Freie Universitat i

)

Schematic view!

shumber of failures

Details follow

-’
o 00
e _ ‘6 ,/
\)“ -7 (\\)e -
e‘ P 0(\"\ Phd
(-’ C ,//
-’ -,
-’ -,
/’, /’,
-, -’
i Phd
/’, /’/
// l7/
1—’_'J /’,
-,
>

number of test cases

Note that the up-steps are not vertical; they go 1 to the right as well.

Lutz Prechelt, prechelt@inf.fu-berlin.de

23/ 31

Freie Universitat (| S\

Detalils: Binomial distribution

e Given an event (here: failure) with probability p (here: 0.001)
e i.e. we want to certify 99.9% reliability (= 1-p)

e A binomial distribution describes the number F of failures
to be expected during N runs (here: N=3000)

- O
o 4
[L
- —]
CI_ —
1
s 2|
L O
£ E
O e BT T
L=
A3
8 g N
o | | | | |
0 2z 4 6 B\ 10 12
for 95% confidence: acceptance region F rejection region

http://mathworld.wolfram.com/BinomialDistribution.html 24 / 31

http://mathworld.wolfram.com/BinomialDistribution.html

Certificatio

g ////// ///// a

5000 10000 15000 20000
number of tests N

Freie Universitit |

Cleanroom testing in practice

M. Deck, J.A. Whittaker: e Statistical testing is
"Lessons Learned from Fifteen very difficult

Years of Cleanroom Testinq", o huge input spaces, so
1997 non-trivial usage models

become very complicated
® One should integrate

development and testing ® One should adapt the
e Split has too much negative techniques to the context
side-effects e e.g. prototyping may be
adversarial thinking is bad, useful

because collaboration helps - e.g. coverage testing may

= Cooperation adds value be useful/required

e.g. operational profile e regression testing is useful
helps SW design wrt real-

time behavior

e There will be some defects
to be found and removed

Lutz Prechelt, prechelt@inf.fu-berlin.de 26 / 31

http://www.lyee-project.soft.iwate-pu.ac.jp/en/workplan/KB/Library/Cleanroom/Documents/Papers/DW.pdf

Freie Universitit G

Cleanroom and CMMI

® CMMI process areas covered by
typical Cleanroom practices

® Level 2: Managed ® Level 4: Quantitatively Manag'd
e Measurement and Analysis MA e Quantitative Project Mgmt QPM
with respect to reliability only Statistical testing
e Process and Product Quality
Assurance PPQA e Level 5: Optimizing
verification discipline - Causal Analysis and Resolution
CAR
e |evel 3: Defined Continuous team improvement
= Technical Solution TS (defect-based)

SP 2.3 Design Interfaces Using
Criteria: formal specification

e Verification VER
The heart of Cleanroom!

Lutz Prechelt, prechelt@inf.fu-berlin.de 27 / 31

Freie Universitat (.S

Cleanroom and CMMI (2)

e Cleanroom alone does not get you anywhere wrt. CMMI
e not even to Level 2

e But the quality culture inspired by Cleanroom is
a useful driver for many improvements up to Level 5:
e Level 2: PPQA (developers become aware of process quality);
e Level 3: VER (reviews become standard practice)

e Level 4: OPP (defect densities become a natural process
benchmark)

e Level 4: QPM (quantitative quality management is established)

e Level 5: OPM (developers start continuous improvements wrt.
defect avoidance, thus opening the organization for process
iImprovement)

Lutz Prechelt, prechelt@inf.fu-berlin.de 28 / 31

Freie Universitét /(| Se ¢

Literature

* Richard Linger, Carmen Trammell:
"Cleanroom Software Engineering Reference Model",
Software Engineering Institute,
Technical Report CMU/SEI-96-TR-022

e detailled definition of the Cleanroom process

Lutz Prechelt, prechelt@inf.fu-berlin.de 29 / 31

http://www.sei.cmu.edu/reports/96tr022.pdf

Summary:
Cleanroom Software Engineering

Freie Universitit G

* \We studied Cleanroom for its ideas and basic attitude:
"Do not accept defects,
favor defect prevention over defect detection™

e not as a software process to be used exactly as a whole;
« useful where reliability matters a lot and specs are available

Key properties:

® Exact specification (important)

e Stepwise refinement with box-specification (replacable)

e Verification during inspection (important, done by a team)
e Statistical testing based on usage model (ideally...)

e Reliability certification (ideally...)

e Result: very low defect rate, high productivity

Lutz Prechelt, prechelt@inf.fu-berlin.de 30 / 31

Freie Universitat (L™

Thank youl!

Lutz Prechelt, prechelt@inf.fu-berlin.de 31 / 31

	Cleanroom Software Engineering
	Cleanroom classification and goals
	Cleanroom principles
	Empirical results (1): IBM Cobol SF
	Empirical results (2): �Ellemtel/Ericsson OS32
	Empirical results (3): �Controlled experiment
	Typical Cleanroom techniques
	Typical Cleanroom techniques (2)
	Typical Cleanroom techniques (3)
	Typical Cleanroom techniques: Note
	Cleanroom process flow overview
	Problems and Obstacles
	Specification and design�with box structure
	Trivial refinement example
	Refinement example (2)
	Refinement example (3)
	Refinement example (4)
	Refinement example (5)
	Statistical Testing and Certification
	Example: Excerpt from the �usage model for a text editor
	Testing process
	Reliability certification
	Certification testing: basic idea
	Details: Binomial distribution
	Certification testing
	Cleanroom testing in practice
	Cleanroom and CMMI
	Cleanroom and CMMI (2)
	Literature
	Summary: �Cleanroom Software Engineering
	Thank you!

