
1 / 31Lutz Prechelt, prechelt@inf.fu-berlin.de

Cleanroom Software Engineering

• Principles
• Empirical results
• Typical practices
• Stepwise refinement

• box structures, verification

Course "Softwareprozesse"

• Statistical testing
• Usage modeling
• Hints for practice

• Cleanroom and CMMI

Lutz Prechelt
Freie Universität Berlin, Institut für Informatik

2 / 31Lutz Prechelt, prechelt@inf.fu-berlin.de

Cleanroom classification and goals

• Proposed by Harlan D. Mills, IBM, since 1980
• 'Cleanroom' stands for defect prevention

instead of defect elimination
Goal:
• High, quantified reliability at low cost

Classification:
• Cleanroom is a development approach
• and a management approach

Context:
• Whenever precise specifications can be written early

• For new development, maintenance, and reengineering
• Independent of language and technology

• Requires approximately CMMI Level 3

Harlan Mills

3 / 31Lutz Prechelt, prechelt@inf.fu-berlin.de

Cleanroom principles

Cleanroom development principle:
• Development teams strive to produce

products without any defects
• by careful design and development
• by verification and review
• but not by testing

Cleanroom testing principle:
• The purpose of testing is measuring the reliability

of the product
• not improving the reliability

Cleanroom management principle:
• Team-based practices limit the scope of human fallability

and allow for continuous improvement

4 / 31Lutz Prechelt, prechelt@inf.fu-berlin.de

Empirical results (1): IBM Cobol SF

• R.C. Linger, H.D. Mills: "A Case Study in Cleanroom Software
Engineering: The IBM COBOL Structuring Facility",
• 12th Intl. Computer Science and Applications Conf., Oct. 1988.

• Project developing "Cobol Structuring Facility" COBOL/SF
• A program analyzer/translator (written in PL/1) for converting

Cobol code with GOTOs into structured Cobol code
• 52 KLOC modified/added to existing 40 KLOC base product

• Overall productivity: +400%
• Overall defect density: 3.4 defects/KLOC
• Field-testing defects: 10 (only 1 of them major)

• The defect reduction is the main reason for the huge
improvement in productivity
• Testing such a system is very laborious

http://trace.tennessee.edu/cgi/viewcontent.cgi?article=1033&context=utk_harlan

5 / 31Lutz Prechelt, prechelt@inf.fu-berlin.de

Empirical results (2):
Ellemtel/Ericsson OS32

• L.G. Tann: "OS32 and Cleanroom"
• 1st Annual European Industrial Symposium on Cleanroom

Software Engineering, Copenhagen, Denmark, 1993, pp. 1-40.

• Project developing an operating system for
telephone switching systems
• 73 people staff, 33 months duration
• 350 KLOC resulting software size (14 LOC/PM)

• Development productivity: +70%
• Testing productivity: +100% (tests per hour)
• Testing defect density: 1 defect/KLOC

• These are very big improvements, considering this was a
mature development organization already.

6 / 31Lutz Prechelt, prechelt@inf.fu-berlin.de

Empirical results (3):
Controlled experiment

• R. Selby, V. Basili, F. Baker: "Cleanroom Software
Development: An Empirical Evaluation"
• IEEE Transactions on Software Engineering, 13(9), Sept. 1987

• A controlled experiment:
15 teams (10 Cleanroom, 5 conventional) of 3 student
developers (w. prof. experience). Each develops the same SW
• electronic messaging system: duration 6 weeks, 4 milestones,
• resulting size 800 to 2300 LOC of Simple-T code

• Results:
• The Cleanroom teams developed more functionality
• All Cleanroom teams kept all milestones,

only 2 of the 5 others did
• The Cleanroom programs were less complex (control flow)

and had better annotation
• The Cleanroom programs had significantly fewer test failures
• 86% of the developers missed testing (quality was not affected)

http://doi.ieeecomputersociety.org/10.1109/TSE.1987.233525

7 / 31Lutz Prechelt, prechelt@inf.fu-berlin.de

Typical Cleanroom techniques

Small teams
• High motivation, close cooperation, efficiency

• "Defects are not acceptable!"
• Parallel development

• Strict modularization has to be done
at specification time

• Exact specification
• All partial specifications are precise

and self-contained

Strict separation of development and testing
• Development teams

• Development teams are strictly forbidden to perform any testing
• Test teams

• Test teams never modify programs

Physical cleanroom

8 / 31Lutz Prechelt, prechelt@inf.fu-berlin.de

Typical Cleanroom techniques (2)

Exact specification
• Defect prevention

• Precise specifications help avoid ambiguity defects
• Verification

• During development, defects are continually searched for by
comparing with specification

• Specif. languages: Z, VDM, box method, special grammars

Stepwise refinement with the box method
1. Specification (black box)

• Describes WHAT without HOW
2. State description (state box)

• Specification as a state machine (not always useful)
3. Process description (clear box)

• Partial HOW: "Implementation", but may use further black boxes

9 / 31Lutz Prechelt, prechelt@inf.fu-berlin.de

Typical Cleanroom techniques (3)

Review/verification
• Performed for each refinement

• State box and clear box
• Grounded in mathematics, performed as team discussion

• Convincing argumentation, rarely formal mathematical proof
• Argument is formulated and verified during an inspection

Incremental development
• Initially, only basic functionality is developed

Statistical testing
• Usage modelling

• Test cases are a random sample according to usage model
• Quantitative statement on reliability (certification)

The key point!

10 / 31Lutz Prechelt, prechelt@inf.fu-berlin.de

Typical Cleanroom techniques: Note

• First and foremost, Cleanroom development is an attitude
• So none of the above techniques is absolutely mandatory:

They can be driven to extremes
• for instance developers may be prohibited to even

compile their code

They can be relaxed
• for instance by performing defect testing before

statistical testing

They can be exchanged for others
• for instance by driving development in some other way

than by box refinement

M. Deck: Cleanroom Software Engineering Myths and Realities, 1997

http://www.lyee-project.soft.iwate-pu.ac.jp/en/workplan/kb/Library/Cleanroom/Documents/Papers/D97.pdf

11 / 31Lutz Prechelt, prechelt@inf.fu-berlin.de

Design:
next

refinement

Cleanroom process flow overview

Requirements
analysis

Specification

Definition of
next increment

Verification,
correction

Development team

Reliability
certification

Statistical
testing

Usage modeling Test case
generation

Test team

12 / 31Lutz Prechelt, prechelt@inf.fu-berlin.de

Problems and Obstacles

Cleanroom is not suited if
• …formal specification is difficult

• which is commonly the case for interactive systems
• …determining the correctness of test outputs is costly

• but this is a problem for conventional development as well.
• One could still do Cleanroom without reliability certification

• by leaving out statistical testing

Necessary preconditions:
• Highly trained software engineers

• Others cannot create reliable verification arguments
• Defined software process (CMMI Level ~3)

• Immature processes will lack the necessary discipline and control

13 / 31Lutz Prechelt, prechelt@inf.fu-berlin.de

Specification and design
with box structure

• Define black box:
• define output based on input history

• Define state box [perhaps]:
• define states for the representation of input history
• reformulate black box (may introduce several new black boxes)
• verify reformulation: state box must be equivalent to black box

• Define clear box:
• define data abstraction for state data
• reformulate state box

(may introduce several new black boxes)
• verify reformulation:

clear box must be equivalent to state box
Continue with black boxes of the refinement

14 / 31Lutz Prechelt, prechelt@inf.fu-berlin.de

Trivial refinement example

• black box 1: triangleType(a, b, c)

precondition: a, b, c are positive, real numbers

postcondition:
return EQUILATERAL / ISOSCELES / OTHER / NO_TRIANGLE

the triple (a, b, c) is side lengths of an equilateral / non
equilateral isosceles / non isosceles triangle / cannot be side
lengths of a triangle

(only the lengths
of the sides are
relevant here!)

15 / 31Lutz Prechelt, prechelt@inf.fu-berlin.de

Refinement example (2)

• clear box 1: triangleType(a, b, c)
IF allSidesSatisfyTriangleInequation(a, b, c)
THEN return trueTriangleType(a, b, c)
ELSE return NO_TRIANGLE

• black box 2: allSidesSatisfyTriangleInequation(a, b, c)
precondition: a, b, c positive, real numbers
postcondition: True if each side is shorter than the sum of the

other two; else False

• black box 3: trueTriangleType(a, b, c)
precondition: (a, b, c) are the side lengths of a triangle
postcondition: …

16 / 31Lutz Prechelt, prechelt@inf.fu-berlin.de

Refinement example (3)

• verification clear box 1:
(a, b, c) can form triangle 
the two shorter sides x, y together are longer than the longest,

z.
Hence, z < x + y (i.e., "side z satisfies triangle inequation")

is sufficient for diagnosing a triangle.
"All sides satisfy triangle inequation" is a stronger condition,

hence also sufficient.
Is "All sides…" also necessary? Yes: If z < x + y holds,
x < z + y and y < x + z will hold even more strongly

Hence, clear box 1 is correct.

17 / 31Lutz Prechelt, prechelt@inf.fu-berlin.de

Refinement example (4)

• clear box 2: allSidesSatisfyTriangleInequation(a, b, c)
return (a < b + c AND b < a + c AND c < a + b)

• verification clear box 2:
3 different side lengths a, b, c are tested ( "triangle"),
tests are connected by 'AND' ( "all sides"),
each test compares one side to the sum of the two others,
each comparison is by 'less than' ( correct inequation).
Hence, the implementation appears to be correct

18 / 31Lutz Prechelt, prechelt@inf.fu-berlin.de

Refinement example (5)

• clear box 3: trueTriangleType(a, b, c)
IF a = b= c THEN return EQUILATERAL
ELSE IF a = b OR a = c OR b = c THEN return ISOSCELES

ELSE return OTHER

• verification clear box 3:
'Equilateral' is a special case of 'isoceles' and must therefore be

tested first, this is done here.
The test for 'equilateral' is correct.
The test for 'isosceles' must check 3 different pairs (correct),

only one needs to be equal (connection with 'OR', correct)
'Other' is the only remaining case, must be 'ELSE' part. Correct.
Therefore clear box 3 is correct.

19 / 31Lutz Prechelt, prechelt@inf.fu-berlin.de

Statistical Testing and Certification

• Most software processes use defect testing
• Goal: Find as many defects as possible,

with as few test cases as possible
• Testing concentrates on 'difficult' cases.

• Defect testing makes almost no statement about reliability.

• In contrast, Cleanroom uses statistical testing
• Goal: Quantify reliability; attitude like acceptance testing
• Does not specifically aim to find defects
• Testing reflects the frequency of 'typical' cases

• Basis: Usage modelling
• Based on description of the usage profile (from requirements)
• Mathematical description with Markov-chains (finite state space,

discrete events)

20 / 31Lutz Prechelt, prechelt@inf.fu-berlin.de

Example: Excerpt from the
usage model for a text editor

0.34

place block marker copy block

delete block

move cursorenter symbol

0.1 0.02 0.38

0.22

0.07

0.13

0.8

0.70.02

0.04

0.66

0.05

0.08

0.9

0.05

0.08
0.1

0.06

0.2

Probabilistic state machine: States are actions, stochastic sequencing

21 / 31Lutz Prechelt, prechelt@inf.fu-berlin.de

Testing process

• Any number of test inputs can be generated automatically
• based on the usage model

• Output correctness predicate?
• Depends on application
• Often only plausibility checking is possible

• Measure the intervals between failures
• Terminate when sufficient reliability can be certified
• Stop when insufficient reliability has been determined

22 / 31Lutz Prechelt, prechelt@inf.fu-berlin.de

Reliability certification

• The goal is a statement such as
"MTTF(program) ≥ m with confidence K"
• e.g. "With confidence 95% we can say that this program fails at

most once every 2 000 000 steps"
• MTTF: mean time-to-failure ("time" being the number of steps)

• Computed with statistical methods (binomial distribution)

• Problem:
When I find and correct a defect,
may I still use the data from the previous test runs?
• Defect models and reliability growth models may allow this,
• but then need to rely on assumptions (in particular the non-

introduction of new failures).
• This is beyond the scope of this lecture.

23 / 31Lutz Prechelt, prechelt@inf.fu-berlin.de

Certification testing: basic idea

number of test cases

number of failures

Schematic view! Details follow

Note that the up-steps are not vertical; they go 1 to the right as well.

24 / 31Lutz Prechelt, prechelt@inf.fu-berlin.de

Details: Binomial distribution

• Given an event (here: failure) with probability p (here: 0.001)
• i.e. we want to certify 99.9% reliability (= 1-p)

• A binomial distribution describes the number F of failures
to be expected during N runs (here: N=3000)

for 95% confidence: acceptance region rejection region

http://mathworld.wolfram.com/BinomialDistribution.html

http://mathworld.wolfram.com/BinomialDistribution.html

25 / 31Lutz Prechelt, prechelt@inf.fu-berlin.de

Certification testing

• Limit lines for binomial distribution (N trials, p=0.001)

PN,p(F < y) ≥ 0.95

continue testing

PN,p(F < y) ≤ 0.05

y

26 / 31

Cleanroom testing in practice

M. Deck, J.A. Whittaker:
"Lessons Learned from Fifteen
Years of Cleanroom Testing",
1997

• One should integrate
development and testing
• Split has too much negative

side-effects
• adversarial thinking is bad,

because collaboration helps
• Cooperation adds value

• e.g. operational profile
helps SW design wrt real-
time behavior

• There will be some defects
to be found and removed

• Statistical testing is
very difficult
• huge input spaces, so

non-trivial usage models
become very complicated

• One should adapt the
techniques to the context
• e.g. prototyping may be

useful
• e.g. coverage testing may

be useful/required
• regression testing is useful

Lutz Prechelt, prechelt@inf.fu-berlin.de

http://www.lyee-project.soft.iwate-pu.ac.jp/en/workplan/KB/Library/Cleanroom/Documents/Papers/DW.pdf

27 / 31Lutz Prechelt, prechelt@inf.fu-berlin.de

Cleanroom and CMMI

• CMMI process areas covered by
typical Cleanroom practices

• Level 2: Managed
• Measurement and Analysis MA

• with respect to reliability only
• Process and Product Quality

Assurance PPQA
• verification discipline

• Level 3: Defined
• Technical Solution TS

• SP 2.3 Design Interfaces Using
Criteria: formal specification

• Verification VER
• The heart of Cleanroom!

• Level 4: Quantitatively Manag'd
• Quantitative Project Mgmt QPM

• Statistical testing

• Level 5: Optimizing
• Causal Analysis and Resolution

CAR
• Continuous team improvement

(defect-based)

28 / 31Lutz Prechelt, prechelt@inf.fu-berlin.de

Cleanroom and CMMI (2)

• Cleanroom alone does not get you anywhere wrt. CMMI
• not even to Level 2

• But the quality culture inspired by Cleanroom is
a useful driver for many improvements up to Level 5:
• Level 2: PPQA (developers become aware of process quality);
• Level 3: VER (reviews become standard practice)
• Level 4: OPP (defect densities become a natural process

benchmark)
• Level 4: QPM (quantitative quality management is established)
• Level 5: OPM (developers start continuous improvements wrt.

defect avoidance, thus opening the organization for process
improvement)

29 / 31

Literature

• Richard Linger, Carmen Trammell:
"Cleanroom Software Engineering Reference Model",
Software Engineering Institute,
Technical Report CMU/SEI-96-TR-022
• detailled definition of the Cleanroom process

Lutz Prechelt, prechelt@inf.fu-berlin.de

http://www.sei.cmu.edu/reports/96tr022.pdf

30 / 31Lutz Prechelt, prechelt@inf.fu-berlin.de

Summary:
Cleanroom Software Engineering

• We studied Cleanroom for its ideas and basic attitude:
"Do not accept defects,
favor defect prevention over defect detection"
• not as a software process to be used exactly as a whole;
• useful where reliability matters a lot and specs are available

Key properties:
• Exact specification (important)
• Stepwise refinement with box-specification (replacable)
• Verification during inspection (important, done by a team)
• Statistical testing based on usage model (ideally…)
• Reliability certification (ideally…)

• Result: very low defect rate, high productivity

31 / 31Lutz Prechelt, prechelt@inf.fu-berlin.de

Thank you!

	Cleanroom Software Engineering
	Cleanroom classification and goals
	Cleanroom principles
	Empirical results (1): IBM Cobol SF
	Empirical results (2): �Ellemtel/Ericsson OS32
	Empirical results (3): �Controlled experiment
	Typical Cleanroom techniques
	Typical Cleanroom techniques (2)
	Typical Cleanroom techniques (3)
	Typical Cleanroom techniques: Note
	Cleanroom process flow overview
	Problems and Obstacles
	Specification and design�with box structure
	Trivial refinement example
	Refinement example (2)
	Refinement example (3)
	Refinement example (4)
	Refinement example (5)
	Statistical Testing and Certification
	Example: Excerpt from the �usage model for a text editor
	Testing process
	Reliability certification
	Certification testing: basic idea
	Details: Binomial distribution
	Certification testing
	Cleanroom testing in practice
	Cleanroom and CMMI
	Cleanroom and CMMI (2)
	Literature
	Summary: �Cleanroom Software Engineering
	Thank you!

