
1 / 41Lutz Prechelt, prechelt@inf.fu-berlin.de

Agile Methods:
Crystal, Scrum, Lean SD, Kanban, …

• Crystal Clear /
The Crystal Light family

• Scrum
• The daily scrum

• Lean Software Development
(Lean SD)

• Kanban

Course "Softwareprozesse"

• Rational Unified Process (RUP)
• Agile Development in the Large
• Pragmatic Programmer

Lutz Prechelt
Freie Universität Berlin, Institut für Informatik

http://www.inf.fu-berlin.de/inst/ag-se/

2 / 41Lutz Prechelt, prechelt@inf.fu-berlin.de

Learning objectives

• Understand the basic ideas, strengths, and application scope
of several other agile approaches

• Thereby get an overview of the methods space of agile
methods overall

3 / 41Lutz Prechelt, prechelt@inf.fu-berlin.de

Chrystal Clear,
The Crystal Light family

• Alistair Cockburn: "Crystal Clear: A Human-Powered
Methodology for Small Teams", Addison-Wesley 2004

• Alistair Cockburn: "Surviving Object-Oriented Projects",
Addison-Wesley 1997
• Contains a sketch of Crystal Orange (in Ch.4)

• Crystal Light is meant to be a family of methods
for different project sizes and criticalities

• Clear, Yellow, Orange, Red, Blue, "and so on"
• Only Crystal Clear has been spelled out

• and can be taken seriously
• Other books may or may not be forthcoming

• probably not

4 / 41Lutz Prechelt, prechelt@inf.fu-berlin.de

Crystal Clear
Goals and Practices

http://alistair.cockburn.us/index.php/Crystal_Clear_distilled
• "Crystal Clear is a highly optimized way to use a small,

colocated team,
• prioritizing for safety in delivering a satisfactory outcome,
• efficiency in development, and
• habitability of the working conventions."

• Brief description of Crystal Clear:
• "The lead designer and two to seven other developers
• ... in a large room or adjacent rooms,
• ... using information radiators such as whiteboards or flip charts,
• ... having easy access to expert users,
• ... distractions kept away,
• ... deliver running, tested, usable code to the users
• ... every month or two (quarterly at worst),
• ... reflecting and adjusting their working conventions periodically"

5 / 41Lutz Prechelt, prechelt@inf.fu-berlin.de

Crystal Clear
Project Safety "Properties"

http://alistair.cockburn.us/index.php/Crystal_Clear_distilled
• The people set in place the safety properties below using the

techniques they feel appropriate.
• The first three properties are required in Crystal Clear;
• the next four get the team further into the safety zone.

1. Frequent Delivery
2. Reflective Improvement
3. Osmotic Communication
4. Personal Safety
5. Focus
6. Easy Access to Expert Users
7. A technical environment with Automated Tests,

Configuration Management, and Frequent Integration

sort of a bare-bones
summary of Agile

6 / 41Lutz Prechelt, prechelt@inf.fu-berlin.de

Crystal process improvement
technique: Reflection workshop

• Hang a flipchart
• Fill in the chart

• 30 minutes
• Hang the chart in a

public, visible,
frequently seen place !

• Try the ideas
• Repeat each month or

after each iteration

(Headings are part of the chart.
Entries are examples only.)

7 / 41Lutz Prechelt, prechelt@inf.fu-berlin.de

Crystal Clear vs. XP

http://alistair.cockburn.us/index.php/Crystal_light_methods

• Crystal is based on developers' maximum individual
preference

• XP is based on having everyone follow disciplined practices

• XP pursues greater productivity through increased discipline,
but is harder for a team to follow:
• Crystal Clear permits greater individuality within the team, and

more relaxed work habits, for some loss in productivity.
• Crystal Clear should be easier for a team to adopt,

but XP produces better results if the team can follow it.
• A team can start with Crystal Clear and move up to XP later.
• A team that falls off XP can back up to Crystal Clear.

8 / 41Lutz Prechelt, prechelt@inf.fu-berlin.de

Scrum

• Ken Schwaber, Jeff Sutherland:
"The Scrum Guide",
www.scrum.org, 1991-2011

• H. Takeuchi, I. Nunaka:
"The New Product Development Game",
Harvard Business Review, January 1986

• Ken Schwaber, Mike Beedle:
"Agile Software Development with Scrum",
Prentice Hall 2001

• Ken Schwaber, Jeff Sutherland:
"Software in 30 Days",
Wiley 2012
• targeted at managers

• http://www.controlchaos.com/

Ken Schwaber

Mike BeedleJeff Sutherland

9 / 41Lutz Prechelt, prechelt@inf.fu-berlin.de

Scrum? What a strange word!

'scrum' is a standard situation in Rugby

10 / 41Lutz Prechelt, prechelt@inf.fu-berlin.de

Scrum basics

• Scrum is an approach for managing a development process
• not only for software development

• It does not describe technical development activities

• Scrum's goal is facilitating the self-organization of the team
so that it can adapt to
• the specifics of the project and
• their changes over time

• Scrum is currently the most-used agile method

11 / 41Lutz Prechelt, prechelt@inf.fu-berlin.de

Scrum roles

• Product Owner
• Represents all customers, manages the Product Backlog
• Sets priorities, selects requirements for a Sprint

• Scrum Master
• Responsible for ensuring a smooth execution of the Scrum

process (as teacher and coach, not as a manager)
• This role targets both Team and Product Owner

• Responsible for removing organizational obstacles
• Master and Team together are responsible for product delivery

• Team
• The developers (typically 3-9), viewed as a self-organizing group

of technical and process experts
• Note the role is team, not developer!

• Larger projects can use multiple teams
• Sometimes, the Scrum Master will be Product Owner or Team

member, too. This produces conflict, but is possible.

12 / 41Lutz Prechelt, prechelt@inf.fu-berlin.de

Scrum process elements

• Product: Product Backlog List
• Collects all requirements that are currently known

• Including priorities and effort estimates
• Can be updated at any time (by any stakeholder)

• Activity: Sprint
• The unit of iterative development, addressing
• usually 2-5 customer-chosen requirements ( Product Backlog)
• and taking a fixed time (usually one month)
• for doing analysis, design, implementation, testing

• Product: Sprint Backlog List (fine-grained task list)
• ?: Current Approach

• Technology, Architecture, Conventions, Resources
• Can be modified at any time, typically before a Sprint

• Activity: Sprint retrospective
• A postmortem for process and approach adaptation

http://www.scrumalliance.org/articles/39-glossary-of-scrum-terms

13 / 41Lutz Prechelt, prechelt@inf.fu-berlin.de

Scrum process elements:
The Daily Scrum

A (perhaps the) key feature of the Scrum process:
• A Scrum Team holds a daily meeting to say and hear

• what has been done,
• what is to be done,
• what is problematic and who could help,
• what adjustments might be needed to succeed with the Sprint.

• The meeting is strictly limited to 15 minutes
• and is performed

standing up
rather than
sitting down

14 / 41Lutz Prechelt, prechelt@inf.fu-berlin.de

Scrum center of attention:
The Sprint

• During a Sprint, requirements are fixed, but the process it not
• Daily scrum may adapt anything as needed

15 / 41Lutz Prechelt, prechelt@inf.fu-berlin.de

Scrum engineering techniques

• Scrum itself is a management method,
not an engineering method

• However, it is compatible with any engineering approach that
can be applied in monthly iterations

• Scrum is often combined with (some) XP practices
• Scrum replaces/extends the planning game

16 / 41Lutz Prechelt, prechelt@inf.fu-berlin.de

Scaling Scrum

• Ken Schwaber claims he has coached a project using Scrum
that took 2,5 years and had 3500 participants overall

• The technique to do this is the "Scrum of Scrums":
• One participant of each daily Scrum is sent of the daily Scrum-of-

Scrums on a second project-level
• This scales Scrum from 10 up to 100 participants
• If necessary, a third level

could scale up to 1000. III.

II.

I.

17 / 41Lutz Prechelt, prechelt@inf.fu-berlin.de

Lean Software Development

• Mary and Tom Poppendieck:
"Lean Software Development: An Agile Toolkit",
Addison-Wesley 2003

• http://www.poppendieck.com

Mary Poppendieck Tom Poppendieck

18 / 41Lutz Prechelt, prechelt@inf.fu-berlin.de

Lean SD principles

• Based on Toyota's principles of Lean Production
• a holistic approach to optimizing cost and quality:

• a philosophy and set of principles
• a set of more-or-less concrete techniques
• but not a complete, prescriptive method

• Principles of Lean Software Development:
1. Eliminate waste
2. Build quality in
3. Create knowledge
4. Defer commitment
5. Deliver fast
6. Respect people
7. Optimize the whole

19 / 41Lutz Prechelt, prechelt@inf.fu-berlin.de

Lean SD:
Eliminate Waste, Build Quality In

• Eliminate Waste. The three biggest wastes in SW dev. are:
• Extra Features: We need a process which allows us to develop

just those 20% of the features that give 80% of the value.
• Churn: If you have requirements churn, you are specifying too

early. If you have test and fix cycles, you are testing too late.
• Crossing Boundaries: Organizational boundaries typically

increase cost by over 25%; they interfere with communication.

• Build Quality In. If you routinely find defects during
verification, your development process is defective.
• Mistake-Proof Code with Test-Driven Development: Write

executable specifications instead of requirements.
• Stop Building Legacy Code: Legacy code is code that lacks

automated unit and acceptance tests.
• The Big Bang is Obsolete: Use continuous integration and

nested synchronization.

20 / 41Lutz Prechelt, prechelt@inf.fu-berlin.de

Lean SD:
Create Knowledge, Defer Committment

• Create Knowledge.
Planning is useful. Learning is essential.
• Use the Scientific Method:

Teach teams to establish hypotheses, conduct many rapid
experiments, create concise documentation, and implement the
best alternative.

• Standards Exist to be Challenged and Improved:
Embody the current best known practice in standards that
everyone follows.
Encourage everyone to challenge the standards.

• Predictable Performance is Driven by Feedback:
A predictable organization does not guess about the future and
call it a plan; it develops the capacity to rapidly respond to the
future as it unfolds.

21 / 41Lutz Prechelt, prechelt@inf.fu-berlin.de

Lean SD:
Defer Commitment

• Defer Commitment:
Abolish the idea that it is a good idea to start development
with a complete specification.
• Break Dependencies:

System architecture should support the addition of any feature at
any time.

• Maintain Options:
Think of code as an experiment – make it change-tolerant.

• Schedule Irreversible Decisions at the Last Responsible
Moment:
Learn as much as possible before making irreversible decisions.

22 / 41Lutz Prechelt, prechelt@inf.fu-berlin.de

Lean SD:
Deliver Fast

• Deliver Fast.
Lists and queues are buffers between organizations that
simply slow things down.
• Rapid Delivery, High Quality, and Low Cost are Fully

Compatible:
Companies that compete on the basis of speed have a big cost
advantage, are more attuned to their customers' needs, and
deliver superior quality.

• Queuing Theory Applies to Development, not Just Servers:
Focusing on utilization creates a traffic jam that actually reduces
utilization.
Drive down cycle time with small batches and fewer things-in-
process.

• Limit Work to Capacity:
Establish a reliable, repeatable velocity with iterative
development.
Aggressively limit the size of lists and queues to your capacity to
deliver.

23 / 41Lutz Prechelt, prechelt@inf.fu-berlin.de

Lean SD:
Respect People

• Respect People.
Engaged, thinking people provide the most sustainable
competitive advantage.
• Teams Thrive on Pride, Commitment, Trust, and Applause:

What makes a team?
Members mutually committed to achieve a common goal.

• Provide Effective Leadership:
Effective teams have effective leaders who bring out the best in
the team.

• Respect Partners:
Allegiance to the joint venture must never create a conflict of
interest.

24 / 41Lutz Prechelt, prechelt@inf.fu-berlin.de

Lean SD:
Optimize the Whole

• Optimize the Whole.
Brilliant products emerge from a unique combination of
opportunity and technology.
• Focus on the Entire Value Stream:

from concept to cash,
from customer request to deployed software.

• Deliver a Complete Product:
Develop a complete product, not just software.
Complete products are built by complete teams.

• Measure Up:
Measure process capability with cycle time.
Measure team performance with delivered business value.
Measure customer satisfaction with a net promoter score.

25 / 41

Kanban

• Kanban: Japanese for "signboard" (i.e. a kanban is a card)
• Originates from Toyota Production System ca. 1950

• is an application of Lean principles

• The core principle is evolutionary improvement in small steps
• valid for both process and product

• The core metaphor is the work-flow
• from upstream to downstream

• War cry:
• Waterfall: "Never change a running system"
• Kanban: "Always run a changing system"

• http://www.infoq.com/articles/hiranabe-lean-agile-kanban

Lutz Prechelt, prechelt@inf.fu-berlin.de

26 / 41

Kanban principles

1. Visualize the workflow
• because good overview is needed for efficient improvements

2. Limit work-in-progress
• to limit complexity, minimize waste, reduce cycle time, and

establish a predictable development speed (velocity)
• buzzword: "pull, not push" (the crucial point is a limited buffer)

3. Manage flow: monitor, measure, report
• to evaluate process improvements

and also:
• Spell out process rules

• a corollary of "visualize the workflow":
agreeing on changes requires a common process view

• Improve the process by using the scientific method
• theorize, predict, experiment, validate

Lutz Prechelt, prechelt@inf.fu-berlin.de

27 / 41

Visualize the workflow

Lutz Prechelt, prechelt@inf.fu-berlin.de

ht
tp

:/
/w

w
w

.in
fo

q.
co

m
/a

rt
ic

le
s/

ag
ile

-k
an

ba
n-

bo
ar

ds

28 / 41

Visualize the workflow:
A real Kanban board

Lutz Prechelt, prechelt@inf.fu-berlin.de

29 / 41

Limit work-in-progress

Lutz Prechelt, prechelt@inf.fu-berlin.de

30 / 41Lutz Prechelt, prechelt@inf.fu-berlin.de

Rational Unified Process (RUP)

• Philippe Kruchten, Ivar Jacobson, et al.
• http://en.wikipedia.org/wiki/RUP
• There is a substantial number of books about RUP
• A number of RUP variants exist

Philippe Kruchten Ivar Jacobson

31 / 41Lutz Prechelt, prechelt@inf.fu-berlin.de

Rational Unified Process (RUP)

• RUP is a huge process
• targeted mainly at large projects

• It is built around modeling (using UML) and tool-centric,
object-oriented, component-based software construction
• and other "best practices"

• It is normally considered a rather heavyweight process,
but can be instantiated as an agile one
• (appropriate when substantial upfront design is needed)
• RUP is inherently iterative in any case
• Full RUP has more than 100 different product types
• Tailoring is left to the user (but supported by tools)

32 / 41Lutz Prechelt, prechelt@inf.fu-berlin.de

Rational Unified Process:
Dimensions

3. A number of
process areas
(called 'disciplines')
and corresponding
workflows

1. A set of best practices
2. 4 lifecycle phasesRUP has three dimensions:

33 / 41Lutz Prechelt, prechelt@inf.fu-berlin.de

Rational Unified Process:
Agile variants

Agile variants of RUP:
• Project-specific variants

• formed by leaving out many RUP process elements and
executing the rest with an agile mindset

• dX
• RUP in XP mode : A minimal version of RUP resembling XP

• Grady Booch, Robert Martin, James Newkirk: "Object Oriented
Analysis and Design with Applications",
2nd ed., Addison-Wesley 1998, chapter 4

• http://www.objectmentor.com/resources/articles/RUPvsXP.pdf

• Agile modeling
• Not a full process, just an approach to modeling
• Based on 11 practices in four categories:

Iterative and Incremental Modeling, Teamwork, Simplicity,
Validation

• …

worth reading!

34 / 41Lutz Prechelt, prechelt@inf.fu-berlin.de

Agile development in the large

• Jutta Eckstein: "Agile Softwareentwicklung im Großen: Ein
Eintauchen in die Untiefen erfolgreicher Projekte",
dpunkt Verlag 2004
• "Agile Software Development in the Large:

Diving into the Deep", Dorset House B&T 2004
• http://www.jeckstein.de/
• http://www.agilebuch.de/

Jutta Eckstein

35 / 41Lutz Prechelt, prechelt@inf.fu-berlin.de

Agile development in the large (2)

• The book does not claim to present a 'method'
• This is a German author after all…

• Has a discussion of scaling agile development
to large projects (30-200 people)

• Discusses a number of aspects or techniques ignored by many
of the other publications, such as:
• Using explicit "communication teams"
• Coping with virtual and distributed teams
• Handling the surrounding organization (see next slide)

36 / 41Lutz Prechelt, prechelt@inf.fu-berlin.de

Agile development in the large (3)

• Handling the surrounding organization:
• Talk early to people unfamilar with Agile Development, such as

• project planning and control departments,
• the Method Police (process quality assurance group),
• the Tool Support group
• if relevant: Human Resources, Legal, Marketing

• Integrate the QA department (if any) into the project
• Integrate the Operations department into the project
• Larger organizations tend to have higher fractions of below-

average developers
• To compensate for that, work towards a Learning Organization

• Make learning materials part of the project deliverables
• always to be kept consistent, part of acceptance testing

• Handle insourcing, outsorcing, part-time employees
• The book ends with a case-story of a complex project

• Perhaps the most useful part of the book!

37 / 41Lutz Prechelt, prechelt@inf.fu-berlin.de

The Pragmatic Programmer

• Andrew Hunt, David Thomas:
"The Pragmatic Programmer: From Journeyman to Master",
Addison-Wesley 1999

• http://www.pragmaticprogrammer.com

Dave ThomasAndy Hunt

38 / 41Lutz Prechelt, prechelt@inf.fu-berlin.de

The Pragmatic Programmer (2)

• Not really a method as such, but rather
a book of good advice and useful attitudes
• and a highly acclaimed one

• Framed in the form of 70 "tips", based on a few principles:
• Take responsibility for what you do.

• Think in terms of solutions, not of excuses.
• Don't just accept bad design or coding – improve them
• Actively introduce process changes where necessary
• Create software that delights your customer – and then stop
• Automate
• Broaden your knowledge. Learn. Improve yourself.
• Improve your self and your communication skills

• http://pragprog.com/the-pragmatic-programmer/extracts/tips

39 / 41Lutz Prechelt, prechelt@inf.fu-berlin.de

The Pragmatic Programmer (3)

Fills in some details missing in other methods, such as:

• Some hints about HOW to keep a design simple

• Some hints about HOW to write sensible automated tests
(e.g. assertions)

• Some hints about WHEN and HOW to use refactoring

Will be a useful companion no matter which method
you are using, agile or other. (Just don't expect miracles…)

40 / 41Lutz Prechelt, prechelt@inf.fu-berlin.de

Summary

• There is a broad range of methods that could be considered
agile methods

• They range from the super-light (Crystal Clear)
to the very complex (Rational Unified Process, RUP)

• They focus on different strengths, e.g.:
• Communication and management (Scrum)
• Simplicity (Crystal)
• Comprehensiveness and scalability (RUP)
• Holistic approach (Lean SD)
• Individual-centered advice (Practical Programmer)

41 / 41Lutz Prechelt, prechelt@inf.fu-berlin.de

Thank you!

