Freie Universitit ;;)

Course "Softwareprozesse"
Agile Methods:
Crystal, Scrum, Lean SD, Kanban, ...

Lutz Prechelt
Freie Universitat Berlin, Institut fur Informatik

http://www.inf.fu-berlin.de/inst/ag-se/

e Crystal Clear / e Rational Unified Process (RUP)
The Crystal Light family e Agile Development in the Large
® Scrum * Pragmatic Programmer

e The daily scrum

e | ean Software Development
(Lean SD)

e Kanban

Lutz Prechelt, prechelt@inf.fu-berlin.de 1/ 41

Freie Universitat ;LS V2 Berlin

Learning objectives

® Understand the basic ideas, strengths, and application scope
of several other agile approaches

® Thereby get an overview of the methods space of agile
methods overall

Lutz Prechelt, prechelt@inf.fu-berlin.de 2/ 41

Chrystal Clear,
The Crystal Light family

Freie Universitat G .

e Alistair Cockburn: "Crystal Clear: A Human-Powered
Methodology for Small Teams", Addison-Wesley 2004

e Alistair Cockburn: "Surviving Object-Oriented Projects",
Addison-Wesley 1997 ;

e Contains a sketch of Crystal Orange (in Ch.4)

e (Crystal Light is meant to be a family of methods =
for different project sizes and criticalities |
Clear, Yellow, Orange, Red, Blue, "and so on"
e Only Crystal Clear has been spelled out
and can be taken seriously

e Other books may or may not be forthcoming
probably not

Lutz Prechelt, prechelt@inf.fu-berlin.de 3/41

Crystal Clear
Goals and Practices

Freie Universitat (fL ‘

http://alistair.cockburn.us/index.php/Crystal_Clear_distilled
e "Crystal Clear is a highly optimized way to use a small,
colocated team,
e prioritizing for safety in delivering a satisfactory outcome,
- efficiency in development, and
 habitability of the working conventions."
e Brief description of Crystal Clear:
e "The lead designer and two to seven other developers

. iIn a large room or adjacent rooms,

. using information radiators such as whiteboards or flip charts,
. having easy access to expert users,

. distractions kept away,

. deliver running, tested, usable code to the users

. every month or two (quarterly at worst),

. reflecting and adjusting their working conventions periodically"

Lutz Prechelt, prechelt@inf.fu-berlin.de 4/ 41

Crystal Clear
Project Safety "Properties"

Freie Universitat (| Se)

http://alistair.cockburn.us/index.php/Crystal_Clear_distilled

® The people set in place the safety properties below using the
techniques they feel appropriate.
e The first three properties are required in Crystal Clear;
= the next four get the team further into the safety zone.

. Frequent Delivery
sort of a bare-bones

. Reflective Improvement .
summary of Agile

. Osmotic Communication
. Personal Safety

. Focus

. Easy Access to Expert Users

~NOoO abh WNR

. A technical environment with Automated Tests,
Configuration Management, and Frequent Integration

Lutz Prechelt, prechelt@inf.fu-berlin.de 5/ 41

Crystal process improvement
technique: Reflection workshop

Freie Universitat /L Se)

e Hang a flipchart
. _g P Keep these Iry these
e Fill in the chart , _
- 30 minutes test lock-down pair testing
) quiet time fines for interruptions
L J . .
Ha”g the_ (_:hart In a daily meetings programmers help testers
public, visible,
frequently seen place !
® Try the ideas
e Repeat each month or Problems
after each iteration too many interruptions
shipping buggy code

(Headings are part of the chart.
Entries are examples only.)

Lutz Prechelt, prechelt@inf.fu-berlin.de 6/41

Freie Universitat (.S)¢

Crystal Clear vs. XP

http://alistair.cockburn.us/index.php/Crystal _light _methods

e Crystal is based on developers’ maximum individual
preference

e XP is based on having everyone follow disciplined practices

e XP pursues greater productivity through increased discipline,
but is harder for a team to follow:

e Crystal Clear permits greater individuality within the team, and
more relaxed work habits, for some loss in productivity.

e Crystal Clear should be easier for a team to adopt,
but XP produces better results if the team can follow it.

e A team can start with Crystal Clear and move up to XP later.
e A team that falls off XP can back up to Crystal Clear.

Lutz Prechelt, prechelt@inf.fu-berlin.de 7/ 41

Scrum

e Ken Schwaber, Jeff Sutherland:
"The Scrum Guide",
www.scrum.orq, 1991-2011

e H. Takeuchi, I. Nunaka:
"The New Product Development Game",
Harvard Business Review, January 1986

e Ken Schwaber, Mike Beedle:
"Agile Software Development with Scrum”,
Prentice Hall 2001

e Ken Schwaber, Jeff Sutherland:
"Software in 30 Days",
Wiley 2012

- targeted at managers
® http://www.controlchaos.com/

Jeff Sutherland Mike Beedle

Lutz Prechelt, prechelt@inf.fu-berlin.de 8/ 41

Freie Universitit & .-

Scrum? What a strange word!

'scrum’ is a standard situation in Rugby

Lutz Prechelt, prechelt@inf.fu-berlin.de 9/ 41

Freie Universitat (fL ‘

Scrum basics

e Scrum is an approach for managing a development process
e not only for software development

® |t does not describe technical development activities

e Scrum's goal is facilitating the self-organization of the team
so that it can adapt to

e the specifics of the project and
= their changes over time

e Scrum is currently the most-used agile method

Lutz Prechelt, prechelt@inf.fu-berlin.de 10/ 41

Freie Universitat G

Scrum roles

® Product Owner
e Represents all customers, manages the Product Backlog
e Sets priorities, selects requirements for a Sprint

® Scrum Master

e Responsible for ensuring a smooth execution of the Scrum
process (as teacher and coach, not as a manager)

This role targets both Team and Product Owner
e Responsible for removing organizational obstacles
e Master and Team together are responsible for product delivery

® Team

e The developers (typically 3-9), viewed as a self-organizing group
of technical and process experts

Note the role is team, not developer!
e Larger projects can use multiple teams

e Sometimes, the Scrum Master will be Product Owner or Team
member, too. This produces conflict, but is possible.

Lutz Prechelt, prechelt@inf.fu-berlin.de 11/ 41

Freie Universitat (.S)¢

Scrum process elements

® Product: Product Backlog List

e Collects all requirements that are currently known
Including priorities and effort estimates

e Can be updated at any time (by any stakeholder)
e Activity: Sprint
e The unit of iterative development, addressing
e usually 2-5 customer-chosen requirements (- Product Backlog)
e and taking a fixed time (usually one month)
e for doing analysis, design, implementation, testing
e Product: Sprint Backlog List (fine-grained task list)
e 7 Current Approach
e Technology, Architecture, Conventions, Resources
e Can be modified at any time, typically before a Sprint
e Activity: Sprint retrospective
e A postmortem for process and approach adaptation

http://www.scrumalliance.org/articles/39-glossary-of-scrum-terms 12741

Scrum process elements:
The Daily Scrum

Freie Universitat il):

A (perhaps the) key feature of the Scrum process:

e A Scrum Team holds a daily meeting to say and hear
e what has been done,
e what is to be done,
e what is problematic and who could help,
e what adjustments might be needed to succeed with the Sprint.

®* The meeting is strictly limited to 15 minutes

e and is performed
standing up
rather than
sitting down

Lutz Prechelt, prechelt@inf.fu-berlin.de 13/ 41

Scrum center of attention:
The Sprint

Freie Universitat Gl Sw.

e During a Sprint, requirements are fixed, but the process it not

e Daily scrum may adapt anything as needed
Craily Scrum
Meetings
Siprir
Requirementz backlog ‘
— 4 it N A
. . / \ AU
~ ook Sprint 7/ R\ A N
. stcg — # Planning ~ . =
— /N 30day Spring
‘/ N\ ; —p»= Review
\ etinnation s / .
7 -,
Standards ’ -
R e
Technology - o _ |
Fesources
Architecture *
d -.E.::e-c:utable
b ~ _. = product
~ - . increment
T~ —_— . -

Lutz Prechelt, prechelt@inf.fu-berlin.de 14 / 41

S0
Freie Universitat (| Se)):

Scrum engineering techniques

e Scrum itself is a management method,
not an engineering method

® However, it iIs compatible with any engineering approach that
can be applied in monthly iterations

e Scrum is often combined with (some) XP practices
e Scrum replaces/extends the planning game

Lutz Prechelt, prechelt@inf.fu-berlin.de 15/ 41

Freie Universitdt Gl /)2

Scaling Scrum

e Ken Schwaber claims he has coached a project using Scrum
that took 2,5 years and had 3500 participants overall

® The technique to do this is the "Scrum of Scrums":

e One participant of each daily Scrum is sent of the daily Scrum-of-
Scrums on a second project-level

e This scales Scrum from 10 up to 100 participants

e If necessary, a third level
could scale up to 1000. [o 1.

~ 'a P
~ 1.
A a»

;o ™ ¢ T 4

FAN

~ ™)
%0
b h . ﬁ
[:H- | | sl | kot N
u‘_-,-"-._ . L i & L “_.-"K._ A
w .) _‘r"ﬁ
Lw.,. g | (2022 2 (e

e || A | | 4 o | Vi

Lutz Prechelt, prechelt@inf.fu-berlin.d

Freie Universitadt @E - Berlin

Lean Software Development

e Mary and Tom Poppendieck:
"Lean Software Development: An Agile Toolkit",
Addison-Wesley 2003

e http://www.poppendieck.com

Software Development
An Agile Toolkit

Mary Poppendieck Tom Poppendieck

Lutz Prechelt, prechelt@inf.fu-berlin.de 17 / 41

Lean SD principles

Freie Universitat “ !

e Based on Toyota's principles of Lean Production

= a holistic approach to optimizing cost and quality:
a philosophy and set of principles
a set of more-or-less concrete techniques
but not a complete, prescriptive method

® Principles of Lean Software Development:
1. Eliminate waste

. Build quality in

. Create knowledge

. Defer commitment

. Deliver fast

. Respect people

. Optimize the whole

N O O b~ WN

Lutz Prechelt, prechelt@inf.fu-berlin.de

18 / 41

Lean SD:
Eliminate Waste, Build Quality In

Freie Universitat (.S)¢

e Eliminate Waste. The three biggest wastes in SW dev. are:

e Extra Features: We need a process which allows us to develop
just those 20% of the features that give 80% of the value.

e Churn: If you have requirements churn, you are specifying too
early. If you have test and fix cycles, you are testing too late.

e Crossing Boundaries: Organizational boundaries typically
Increase cost by over 25%; they interfere with communication.

e Build Quality In. If you routinely find defects during
verification, your development process is defective.

e Mistake-Proof Code with Test-Driven Development: Write
executable specifications instead of requirements.

e Stop Building Legacy Code: Legacy code is code that lacks
automated unit and acceptance tests.

e The Big Bang is Obsolete: Use continuous integration and
nested synchronization.

Lutz Prechelt, prechelt@inf.fu-berlin.de 19 / 41

Lean SD:
Create Knowledge, Defer Committment

reie Universitat (LSl

® Create Knowledge.
Planning is useful. Learning is essential.

e Use the Scientific Method:
Teach teams to establish hypotheses, conduct many rapid
experiments, create concise documentation, and implement the
best alternative.

e Standards Exist to be Challenged and Improved:
Embody the current best known practice in standards that
everyone follows.

Encourage everyone to challenge the standards.

e Predictable Performance is Driven by Feedback:
A predictable organization does not guess about the future and
call it a plan; it develops the capacity to rapidly respond to the
future as it unfolds.

Lutz Prechelt, prechelt@inf.fu-berlin.de 20/ 41

Lean SD:
Defer Commitment

Freie Universitat (.S)¢

e Defer Commitment:
Abolish the idea that it is a good idea to start development
with a complete specification.
e Break Dependencies:
System architecture should support the addition of any feature at
any time.
e Maintain Options:
Think of code as an experiment — make it change-tolerant.
e Schedule Irreversible Decisions at the Last Responsible

Moment:
Learn as much as possible before making irreversible decisions.

Lutz Prechelt, prechelt@inf.fu-berlin.de 21/ 41

Lean SD:
Deliver Fast

Freie Universitit cif. Sl ¥

e Deliver Fast.
Lists and queues are buffers between organizations that
simply slow things down.

e Rapid Delivery, High Quality, and Low Cost are Fully
Compatible:
Companies that compete on the basis of speed have a big cost
advantage, are more attuned to their customers' needs, and
deliver superior quality.

e Queuing Theory Applies to Development, not Just Servers:
Focusing on utilization creates a traffic jam that actually reduces
utilization.

Drive down cycle time with small batches and fewer things-in-
process.

e Limit Work to Capacity:
Establish a reliable, repeatable velocity with iterative
development.
Aggressively limit the size of lists and queues to your capacity to
deliver.

Lutz Prechelt, prechelt@inf.fu-berlin.de 22 / 41

Lean SD: Freie Universitit Al dl 2
rele Umversitat gk :
Respect People e

®* Respect People.

Engaged, thinking people provide the most sustainable
competitive advantage.
e Teams Thrive on Pride, Commitment, Trust, and Applause:
What makes a team?
Members mutually committed to achieve a common goal.
e Provide Effective Leadership:
Effective teams have effective leaders who bring out the best in
the team.
» Respect Partners:

Allegiance to the joint venture must never create a conflict of
interest.

Lutz Prechelt, prechelt@inf.fu-berlin.de 23/ 41

Lean SD:
Optimize the Whole

Freie Universitat “ !

e Optimize the Whole.
Brilliant products emerge from a unigue combination of
opportunity and technology.

e Focus on the Entire Value Stream:
from concept to cash,
from customer request to deployed software.

e Deliver a Complete Product:
Develop a complete product, not just software.
Complete products are built by complete teams.

 Measure Up:
Measure process capability with cycle time.
Measure team performance with delivered business value.
Measure customer satisfaction with a net promoter score.

Lutz Prechelt, prechelt@inf.fu-berlin.de 24 / 41

Freie Universitat (fL ‘

Kanban

e Kanban: Japanese for "signboard" (i.e. a kanban is a card)

e Originates from Toyota Production System ca. 1950
e is an application of Lean principles

® The core principle is evolutionary improvement in small steps
e valid for both process and product

® The core metaphor is the work-flow
e from upstream to downstream

e \War cry:
- Waterfall: "Never change a running system"
e Kanban: "Always run a changing system"

e http://www.infog.com/articles/hiranabe-lean-agile-kanban

Lutz Prechelt, prechelt@inf.fu-berlin.de 25/ 41

. Freie Universitit bl
Kanban principles Mt

1. Visualize the workflow

e because good overview is needed for efficient improvements
2. Limit work-in-progress

to limit complexity, minimize waste, reduce cycle time, and
establish a predictable development speed (velocity)

buzzword: "pull, not push" (the crucial point is a limited buffer)
3. Manage flow: monitor, measure, report
e to evaluate process improvements

and also:

e Spell out process rules

e a corollary of "visualize the workflow":
agreeing on changes requires a common process view
® |Improve the process by using the scientific method
e theorize, predict, experiment, validate

Lutz Prechelt, prechelt@inf.fu-berlin.de

26 / 41

Visualize the workflow

Freie Universitat cf\ sl [y
)

Visualizing Agile Projects withiCEn Il ety

ol oo

S Dy

TRICHORD

Niko-Nikodalen dar

b= . =
s 1 1 LA L F

i L 3] R
. §23 2208

hﬂtunﬂitmmd

4 TN

=

http://www.infog.com/articles/agile-kanban-boards

Visualize the workflow:
A real Kanban board

Freie Universitat (.S,

Limit work-in-progress

Upstream Aot stream

Wite Llser Story [

Acceptance Test
H I _
N | . LInit Tests
B | CodeiRefactor
\7“*- | (m
| Bl |
! Arcceptance Test
[
[

-
nu]
=
=

i'/all :
;
"TF

Ciowtrstream pulls
it ToDo is empty.

Lutz Prechelt, prechelt@inf.fu-berlin.de 29 / 41

Freie Universitat GiLSw

Rational Unified Process (RUP)

® Philippe Kruchten, lvar Jacobson, et al.

* http://en.wikipedia.org/wiki/RUP

* There is a substantial number of books about RUP
e A number of RUP variants exist

Philippe Kruchten Ivar Jacobson

Lutz Prechelt, prechelt@inf.fu-berlin.de 30/ 41

Rational Unified Process (RUP)

Freie Universitit (Sl /)¢

* RUP iIs a huge process
e targeted mainly at large projects

® |t is built around modeling (using UML) and tool-centric,
object-oriented, component-based software construction

e and other "best practices"

* |t is normally considered a rather heavyweight process,
but can be instantiated as an agile one

e (appropriate when substantial upfront design is needed)
e RUP is inherently iterative in any case

e Full RUP has more than 100 different product types

e Tailoring is left to the user (but supported by tools)

Lutz Prechelt, prechelt@inf.fu-berlin.de

31/41

Rational Unified Process:
Dimensions

Freie Universitit & .-

1. A set of best practices

RUP has three dimensions: 2. 4 lifecycle phases

Phases
Disciplines | | Inception|| Elaboration Construction Transition

Business Modeling : 5
Requirements : i

Analysis & Design

3. A number of Implementation

process areas Test
a1 , Deployment

(called 'disciplines")

and corresponding enfiguration

KF| & Change Mgmt
WOTKTHOwWS Project Management

Environment

Elab #1 | | Elab #2 || Const || Const | Const || Tran || Tran
Initial #1 #2 paly] #1 w2

Iterations

Lutz Prechelt, prechelt@inf.fu-berlin.de 32/ 41

Rational Unified Process:
Agile variants

Freie Universitat “ !

Agile variants of RUP:

® Project-specific variants
e formed by leaving out many RUP process elements and
executing the rest with an agile mindset

e dX
e RUP in XP mode : A minimal version of RUP resembling XP

Grady Booch, Robert Martin, James Newkirk: "Object Oriented

Analysis and Design with Applications",
2nd ed., Addison-Wesley 1998, chapter 4

http://www.objectmentor.com/resources/articles/RUPvsXP.pdf
e Agile modeling
e Not a full process, just an approach to modeling worth reading!

e Based on 11 practices in four categories:
Iterative and Incremental Modeling, Teamwork, Simplicity,

Validation

Lutz Prechelt, prechelt@inf.fu-berlin.de 33741

Freie Universitat (| Se.):

Agile development in the large

e Jutta Eckstein: "Agile Softwareentwicklung im Grofl3en: Ein
Eintauchen in die Untiefen erfolgreicher Projekte",
dpunkt Verlag 2004

e "Agile Software Development in the Large:
Diving into the Deep", Dorset House B&T 2004

® http://www.jeckstein.de/
e http://www.agilebuch.de/

Jutta Eckstein

Lutz Prechelt, prechelt@inf.fu-berlin.de 34 / 41

Freie Universitit ;;)

Agile development in the large (2)

* The book does not claim to present a 'method’
e This is a German author after all...

® Has a discussion of scaling agile development
to large projects (30-200 people)

e Discusses a number of aspects or techniques ignored by many
of the other publications, such as:

= Using explicit "communication teams"
e Coping with virtual and distributed teams
e Handling the surrounding organization (see next slide)

Lutz Prechelt, prechelt@inf.fu-berlin.de 35/ 41

Freie Universitat ?. !

Agile development in the large (3)

e Handling the surrounding organization:
e Talk early to people unfamilar with Agile Development, such as
project planning and control departments,
the Method Police (process quality assurance group),

the Tool Support group
if relevant: Human Resources, Legal, Marketing

= Integrate the QA department (if any) into the project
e Integrate the Operations department into the project

e Larger organizations tend to have higher fractions of below-

average developers
To compensate for that, work towards a Learning Organization

- Make learning materials part of the project deliverables
always to be kept consistent, part of acceptance testing

e Handle insourcing, outsorcing, part-time employees
* The book ends with a case-story of a complex project
e Perhaps the most useful part of the book!

Lutz Prechelt, prechelt@inf.fu-berlin.de 36/ 41

Freie Universitdt Gl /)2

The Pragmatic Programmer

® Andrew Hunt, David Thomas:
"The Pragmatic Programmer: From Journeyman to Master",
Addison-Wesley 1999

e http://www.pragmaticprogrammer.com

The
Pragmatic

Bookshelf

Andy Hunt Dave Thomas

Lutz Prechelt, prechelt@inf.fu-berlin.de 37/ 41

Freie Universitat (.S)¢

The Pragmatic Programmer (2)

e Not really a method as such, but rather
a book of good advice and useful attitudes

e and a highly acclaimed one

e Framed in the form of 70 "tips", based on a few principles:

» Take responsibility for what you do.
Think in terms of solutions, not of excuses.

e Don't just accept bad design or coding — improve them

e Actively introduce process changes where necessary

e Create software that delights your customer — and then stop
e Automate

e Broaden your knowledge. Learn. Improve yourself.

e Improve your self and your communication skills

e http://pragprog.com/the-pragmatic-programmer/extracts/tips

Lutz Prechelt, prechelt@inf.fu-berlin.de 38/ 41

& &
Freie Universitat (™)

The Pragmatic Programmer (3)

Fills in some details missing in other methods, such as:
e Some hints about HOW to keep a design simple

e Some hints about HOW to write sensible automated tests
(e.g. assertions)

e Some hints about WHEN and HOW to use refactoring

Will be a useful companion no matter which method
you are using, agile or other. (Just don't expect miracles...)

Lutz Prechelt, prechelt@inf.fu-berlin.de 39/ 41

Summary

S0
Freie Universitat (| Se)):

* There is a broad range of methods that could be considered
agile methods

* They range from the super-light (Crystal Clear)
to the very complex (Rational Unified Process, RUP)

e They focus on different strengths, e.g.:

Communication and management (Scrum)
Simplicity (Crystal)

Comprehensiveness and scalability (RUP)

Holistic approach (Lean SD)

Individual-centered advice (Practical Programmer)

Lutz Prechelt, prechelt@inf.fu-berlin.de 40 / 41

Freie Universitat & !

Thank youl!

Lutz Prechelt, prechelt@inf.fu-berlin.de 41 / 41

