
[8] 1 / 43Lutz Prechelt, prechelt@inf.fu-berlin.de

Course "Softwaretechnik"

Lutz Prechelt, Bernd Bruegge, Allen H. Dutoit

Freie Universität Berlin, Institut für Informatik

Dynamic Modeling, Req's Document

• Dynamic modeling
• Sequence diagrams

• ARENA
• State machine diagrams

• Using dynamic modeling for the
design of user interfaces

• Requirements analysis
document template

• Conventional vs. agile
• Requirements analysis model

validation

[8] 2 / 43Lutz Prechelt, prechelt@inf.fu-berlin.de

Dynamic Modeling

• Definition of dynamic model:
• A collection of multiple behavior diagrams

• such as state machine, activity, and sequence diagrams
• usually at least one regarding each important class

with important dynamic behavior

• Purpose:
• Understand behavioral requirements (not discussed much)

• Detect and supply methods for the object model

• How do we do this?
• Start with use case or scenario, plus identification of classes
• Model interaction between objects  sequence diagram
• Model behavior of a single object  state machine diagram

[8] 3 / 43Lutz Prechelt, prechelt@inf.fu-berlin.de

Heuristics for sequence diagrams

• A typical layout:
• 1st column: The actor who initiated the use case
• 2nd column: A boundary object (in design, perhaps not in analysis)
• 3rd column: Perhaps a control object managing the use case
• further columns: the other participating objects

• Creation:
• Control objects are often created at the initiation of a use case
• Additional boundary objects may be created by control objects

• Access:
• Entity objects are accessed by control and boundary objects
• Entity objects should never call boundary or control objects

[8] 4 / 43Lutz Prechelt, prechelt@inf.fu-berlin.de

An ARENA sequence diagram:
create tournament

League
Owner

:Tournament
Boundary

newTournament
(league)

:Announce
Tournament

Control
«new»

setName(name)

setMaxPlayers
(maxp)

commit() createTournament
(name, maxp)

checkMax
Tournament()

create
Tournament
(name, maxp)

:Arena :League

:Tournament
«new»

ARENA is a
tournament
control SW
on top of
computer
games

[8] 5 / 43Lutz Prechelt, prechelt@inf.fu-berlin.de

ARENA’s Object Model (before)

Attributes
Operations

League

Attributes
Operations

Tournament

Attributes
Operations

Player
Attributes
Operations

Match

Attributes
Operations

LeagueOwner 1 *

* *

Attributes
Operations

Arena• This is the ARENA object model
before we formulated the previous
sequence diagram

• The Sequence Diagram identified
new classes
• Tournament Boundary
• Announce_Tournament_Control
(see next slide)

[8] 6 / 43Lutz Prechelt, prechelt@inf.fu-berlin.de

ARENA’s Object Model (new)

Attributes
Operations

League

Attributes
Operations

Tournament

Attributes
Operations

Player

Attributes
Operations

Match

Attributes
Operations

LeagueOwner 1 *

* *

Attributes
Operations

Tournament_
Boundary

Attributes
Operations

Announce_
Tournament_

Control
Attributes
Operations

Arena

[8] 7 / 43Lutz Prechelt, prechelt@inf.fu-berlin.de

Impact on ARENA’s Object Model (2)

• The Sequence Diagram also supplied us several new events
• newTournament(league)
• setName(name)
• setMaxPlayers(maxp)
• commit()
• checkMaxTournaments()
• createTournament(name, maxp)

Who "owns" these events?
• For each object that receives an event

there is a public operation in the associated class
• The name of the operation is usually the name of the event

• e.g. create_tournament() in AnnounceTournament_Control

[8] 8 / 43Lutz Prechelt, prechelt@inf.fu-berlin.de

What else
can we get out of sequence diagrams?

• Sequence diagrams are derived from use cases
• We therefore see the structure of the use cases

• The structure of the sequence diagram suggests
how decentralized the resulting system structure might be

• We distinguish two basic structures of sequence diagrams
(Ivar Jacobson):
• Fork-style diagrams (central control)
• Stair-style diagrams (distributed control)

(see next slides)

UML stereotype symbols:

[8] 9 / 43Lutz Prechelt, prechelt@inf.fu-berlin.de

Central control: Fork diagram

• Much of the dynamic behavior is placed in a single object,
usually the control object
• It knows all the other objects and uses them for direct questions

and commands

[8] 10 / 43Lutz Prechelt, prechelt@inf.fu-berlin.de

Decentralized control: Stair diagram

• The dynamic behavior is distributed.
Each object delegates some responsibility to other objects
• Each object knows only a few of the other objects and knows

which objects can help with a specific behavior

[8] 11 / 43Lutz Prechelt, prechelt@inf.fu-berlin.de

Fork or Stair?
(A design issue, not an analysis issue!)

Which of these diagram types should be chosen?
• Object-oriented fans claim the stair structure is better

• "The more the responsibility is spread out, the better"
• However, this is not always true

• One should usually have a "suitable" mix of both forms
• (see also design patterns "Mediator", "Façade")

Considerations:
• Decentralized control structure (stair) is locally simple:

• Objects do not get overly complex
• Responsibilities are easy to understand

• Centralized control structure (fork) better supports change:
• The operations can easily change order
• New operations can easily be inserted for new requirements

4 Analysieren

[8] 12 / 43Lutz Prechelt, prechelt@inf.fu-berlin.de

UML state machine diagram notation

• Notation based on work by Harel ("statecharts")
• UML adds a few object-oriented modifications

• A UML state machine diagram (statechart diagram, state
chart diagram) can be mapped to a finite state machine

State2State1 Event1(attr) [condition]/action1

entry/action2
exit/action3

do/Activity

Event trigger
With parameters

Guard
condition

event2/action4

[8] 13 / 43Lutz Prechelt, prechelt@inf.fu-berlin.de

State machine diagrams

• Graph whose nodes are states and whose directed edges are
transitions labeled by event names

• We distinguish between two types of executable nodes
in a state machine:
• Activity: Compound operation

• can be described by its own Activity diagram
• Action: Elementary operation

• May in fact have structure, too, but the present state machine
ignores it

• A state machine diagram relates events and states
for one class
• An object model with a set of objects

can have a corresponding set of state machine diagrams

[8] 14 / 43Lutz Prechelt, prechelt@inf.fu-berlin.de

State

• An abstraction of the attribute values of a later
implementation class
• A state describes a certain set of configurations of attribute

values in an object (instance)

• Basically an "appropriate" equivalence class of attribute value
configurations that need not be distinguished
• example: the state "in_active_region" may mean

• x in 0..150 & y in 100…150 (in fact 7701 different states!)
• What is appropriate depends on our current goal

• State has duration

[8] 15 / 43Lutz Prechelt, prechelt@inf.fu-berlin.de

Example of a state machine diagram

testing item and computing change
entry / test and charge item

making changeentry/dispense item

Idle

[item empty]

select(item)

[change==0] [change>0]

[change<0]

Collecting Money
coin_in(amount)/add to balance

coin_in(amount) / set balance

cancel / refund coins

Note some states do not have (nor need) a name,
but need further details

A vending machine example:

[8] 16 / 43Lutz Prechelt, prechelt@inf.fu-berlin.de

Nested states: Example

dispense item

'Dispense item' as
an atomic activity:

moving arm
to row

'Dispense item' as
a composite activity:

arm ready

moving arm
to column

pushing item
off shelf

arm
ready

The little glasses indicate that
there are sub-activities hidden in

this composite activity

[8] 17 / 43Lutz Prechelt, prechelt@inf.fu-berlin.de

Composite State

moving arm
to row

arm ready

moving arm
to column

pushing item
off shelf

arm
ready

[8] 18 / 43Lutz Prechelt, prechelt@inf.fu-berlin.de

Modeling concurrency

Two types of concurrency in UML:
• 1. System concurrency (across objects)

• State of overall system as the aggregation of state machines,
one for each object

• Note that one state diagram (for a class) may result in many
state machines (one per instance of the class)

• Each state machine is conceptually executing concurrently with
all others

• 2. Object concurrency (within objects)
• An object can be partitioned into subsets of states (attributes

and links) such that each subset has its own subdiagram
• The state of the object consists of a set of states:

one state from each subdiagram
• State diagrams or composite states may be divided into

regions by dotted lines

This course
m

ostly
ignores

concurrency!

[8] 19 / 43Lutz Prechelt, prechelt@inf.fu-berlin.de

Example
of concurrency within an object

Setting Ready
Up to reset

Dispensing
Cash

Ejecting
Card

Ready

Cash taken

Card taken

SynchronizationSplitting control

Activity diagram style

[8] 20 / 43Lutz Prechelt, prechelt@inf.fu-berlin.de

Using implicit join/split

Emitting

Setting Ready
Up to reset

Dispensing
Cash

Ejecting
Card

Ready

Cash taken

Card taken

SynchronizationSplitting control

Statechart style

[8] 21 / 43Lutz Prechelt, prechelt@inf.fu-berlin.de

Dynamic modeling of user interfaces

• Statechart diagrams can be used for the design of user
interfaces
• to represent the Navigation Path or Page Flow

• States: Name of screens
• Graphical layout of the screens associated with the states helps

when presenting the dynamic model of a user interface
• Activities/actions are shown as bullets under screen name

• Often only the exit action is shown
• State transitions: Result of exit action

• Button click
• Menu selection
• Cursor movements

• Good for web-based user interface design

[8] 22 / 43Lutz Prechelt, prechelt@inf.fu-berlin.de

Simplified navigation path example
Diagnostics Menu
•User moves cursor to Control Panel or Graph

Graph
• User selects data group
and type of graph

Selection
• User selects data group

• Field site
• Car
• Sensor group
• Time range

• User selects type of graph
• time line
• histogram
• pie chart

Visualize
• User views graph
• User can add data groups
for being viewed

Link
• User makes a link
(doclink)

Control panel
• User selects functionality of sensors

Disable
• User can disable
a sensor event
from a list of
sensor events

Define
• User defines a sensor event

from a list of events

Enable
• User can
enable a sensor
event from a list
of sensor events

List of sensor
events
• User selects sensor
event(s)

List of events
• User selects event(s)

(lines represent
pairs of arrows
in both directions)

[8] 23 / 43Lutz Prechelt, prechelt@inf.fu-berlin.de

Practical tips for
state machine modeling

1. Construct dynamic models only for classes with significant
(complex/important) dynamic behavior
• To avoid "analysis paralysis"
• Exception: If state diagrams suffice for code generation

• e.g. for control logic in telecommunications systems

2. Consider only relevant attributes when defining states
• Use abstraction heavily

3. Stick to a sensible granularity of actions and activities
• This is still analysis, not design!

4. Reduce notational clutter
• Try to put actions into state boxes (look for identical actions on

events leading to the same state)

[8] 24 / 43Lutz Prechelt, prechelt@inf.fu-berlin.de

Summary: requirements analysis

1. What is the external behavior?
Create scenarios , use cases, use case diagrams

2. What is the structure of the system?
Create class diagrams

Identify objects, associations, attributes, operations

3. What is its behavior?
Create sequence diagrams

Identify senders and receivers
Show sequence of messages exchanged between objects

Create state machine diagrams
Only for the dynamically interesting objects

Dynamic Modeling

Functional Modeling

Object Modeling

[8] 25 / 43Lutz Prechelt, prechelt@inf.fu-berlin.de

When is a model dominant?

• We call a model dominant if it contains a much larger fraction
of the interesting information than the others

Examples:

• Simple database system:
• Situation: The operations are straightforward (load, store),

but there are complex data structures
• Consequence: The static object model is dominant

• Telephone switching system:
• Data structures do not tell us much and

behavior is too complex to be easily described by use cases
• The dynamic model (in particular using statecharts) is dominant

6 Beurteilen

[8] 26 / 43

Requirements
document

Lutz Prechelt, prechelt@inf.fu-berlin.de

[8] 27 / 43Lutz Prechelt, prechelt@inf.fu-berlin.de

A possible requirements analysis
document template

1. Introduction
2. Current system
3. Proposed system

3.1 Overview
3.2 Functional requirements [avoid overlap with 3.5.2]
3.3 Nonfunctional requirements
3.4 Constraints ("Pseudo requirements") see the following slides
3.5 Analysis Model on 3.5 (short), 3.3, 3.4

3.5.1 Scenarios
3.5.2 Use case model
3.5.3 Object model

3.5.3.1 Data dictionary
3.5.3.2 Class diagrams

3.5.4 Dynamic model
3.5.5 User interface

4. Glossary

Remember this is only conceptually
a single document.
It may actually be a variety of
separate things, some not even
written up at all.

[8] 28 / 43Lutz Prechelt, prechelt@inf.fu-berlin.de

Section 3.5: system models

• 3.5.1 Scenarios
• As-is scenarios, visionary scenarios

• 3.5.2 Use case model
• Actors and use cases

• 3.5.3 Object model (this is still analysis!)
• Data dictionary (explain data: formats and terms)
• Class diagrams (classes, associations, attributes and operations)

• 3.5.4 Dynamic model
• State diagrams for classes with significant dynamic behavior
• Sequence diagrams for collaborating objects (protocol)

• 3.5.5 User Interface
• Navigational Paths, Screen mockups

[8] 29 / 43Lutz Prechelt, prechelt@inf.fu-berlin.de

Section 3.3:
nonfunctional requirements

• 3.3.1 User interface and human factors
• 3.3.2 Documentation
• 3.3.3 Hardware considerations
• 3.3.4 Performance characteristics
• 3.3.5 Error handling and extreme conditions
• 3.3.6 System interfacing
• 3.3.7 Quality issues
• 3.3.8 System modifications
• 3.3.9 Physical environment
• 3.3.10 Security issues
• 3.3.11 Resources and management issues

see the following slides

[8] 30 / 43Lutz Prechelt, prechelt@inf.fu-berlin.de

Nonfunctional requirements:
trigger questions

• 3.3.1 User interface and human factors
• What type of user will be using the system?
• Will more than one type of user be using the system?
• What sort of training will be required for each type of user?
• Is it particularly important that the system be easy to learn?
• Must users be particularly well protected from making errors?
• What sort of UI input/output devices will be used?

• 3.3.2 Documentation
• What kind of documentation is required?
• What audience is to be addressed by each document?

• 3.3.3 Hardware considerations
• What hardware is the proposed system to be used on?
• What are the characteristics of the target hardware, including

memory size and auxiliary storage space?

[8] 31 / 43Lutz Prechelt, prechelt@inf.fu-berlin.de

Nonfunctional requirements (2)

• 3.3.4 Performance characteristics
• Are there any speed, throughput, or response time constraints on

the system?
• Are there size or capacity constraints on the data to be processed

by the system?

• 3.3.5 Error handling and extreme conditions
• How should the system respond to input errors?
• How should the system respond to extreme conditions?

• 3.3.6 System interfacing
• What input is coming from systems outside the proposed

system?
• What output is going to systems outside the proposed system?

6 Beurteilen

[8] 32 / 43Lutz Prechelt, prechelt@inf.fu-berlin.de

Nonfunctional requirements (3)

• 3.3.7 Quality issues
• What are the requirements for reliability?
• Must the system trap faults?
• How fast must the system restart after a failure?
• What is the acceptable system downtime per day/month/year?
• Is it important that the system be portable (able to move to

different hardware or operating system environments)?

• 3.3.8 System Modifications
• What parts of the system are likely candidates for later

modification?
• What sorts of modifications are expected?

• 3.3.9 Physical Environment
• For example, unusual temperatures, humidity, vibrations,

magnetic fields, ...

[8] 33 / 43Lutz Prechelt, prechelt@inf.fu-berlin.de

Nonfunctional requirements (4)

• 3.3.10 Security Issues
• Must access to any data or the system itself be controlled?
• Is physical security an issue?

• 3.3.11 Resources and Management Issues
• How often will the system be backed up?
• Who will be responsible for

• system installation?
• daily operation and configuration?
• back up? When? How often?
• maintenance?

• What is the desaster recovery plan?

This course
m

ostly
ignores

operation!

[8] 34 / 43Lutz Prechelt, prechelt@inf.fu-berlin.de

Section 3.4
Constraints (pseudo requirements)

• Constraint:
• Any client restriction on the solution domain

• Examples:
• Common in areas with long-lived systems or strong regulation
• Often highly specialized territory

• The target platform must be an IBM iSeries
• The implementation language must be PL/SQL
• The documentation standard X must be used
• ActiveX must not be used
• The system must interface to an IBM 1621 papertape reader

[8] 35 / 43

Concluding remarks:
1. Conventional vs. Agile

Lutz Prechelt, prechelt@inf.fu-berlin.de

[8] 36 / 43

Requirements documents (req docs) in
Conventional vs. Agile processes

• Initially called Lightweight
processes, because they
shied away from many
conventional process
elements

• Meant-to-be Agile projects
are often run in fixed-price
style as well. Huh??

• Iff an "agile req doc" is less
detailed, quality may be
better

Lutz Prechelt, prechelt@inf.fu-berlin.de

• Having a detailed, formal
requirements document is
the hallmark of a
conventional project

• Often a core element of a
fixed-price contract for a
hired project

• Despite their size, req doc
quality is often dubious

To understand a software organization,
looking at their req docs is helpful.

6 Beurteilen

[8] 37 / 43Lutz Prechelt, prechelt@inf.fu-berlin.de

Prioritizing requirements

• High priority ("Core requirements")
• Must be addressed during analysis, design, and implementation
• A high-priority feature must be demonstrated successfully during

client acceptance

• Medium priority ("Optional requirements")
• Must be addressed during analysis and design
• Often implemented and demonstrated in a

later iteration of the system development

• Low priority ("Fancy requirements")
• Must be addressed during analysis ("very visionary scenarios")
• Illustrates how the system may be going to be used in the future

• e.g. once not-yet-available technology becomes available

[8] 38 / 43Lutz Prechelt, prechelt@inf.fu-berlin.de

2. Verification and validation of models

VerificationVerificationVerificationValidation

fM

fR

MM

R R
A A

R

R
fR fMA

MAnalysis

MAnalysis

Analysis
MImpl

MImpl

fImpl

Implemen-
tation

fMS

MSystem

MSystem

System
Design

fMD

MObject

MObject

Object
Design

Validation (acceptance test)

M = Model

R = Reality

f = Behavior/relationships

A = abstraction/modelling

[8] 39 / 43Lutz Prechelt, prechelt@inf.fu-berlin.de

Correctness,
completeness and consistency

• Verification is an equivalence check between two related
models:
• The second was derived from the first by transformation.

Is the transformation correct?
• Validation is different. We don’t have two models, we need to

compare one model with reality
• "Reality" can also be an artificial system, like a legacy system

• Requirements and implementations should be validated with
the client and the user
• Techniques for requirements: Formal and informal reviews

(Meetings, requirements review)
• Techniques for implementations: Acceptance testing, system use

• Requirements validation involves the checks for
• Correctness, Completeness, Ambiguity, Realism

[8] 40 / 43Lutz Prechelt, prechelt@inf.fu-berlin.de

Modeling checklist for the review

• Is the model correct?
• A model is correct if it represents the client’s view of the the

system: Everything in the model represents an aspect of reality
• Is the model complete?

• Every relevant scenario, including exceptions, is described
• Is the model consistent?

• The model does not have components that contradict each other
(for example, deliver contradicting results)

• Is the model sufficiently unambiguous (i.e. not vague)?
• All plausible interpretations will be acceptable solutions

• Is the model realistic?
• The model can be implemented with acceptable effort

[8] 41 / 43Lutz Prechelt, prechelt@inf.fu-berlin.de

3. At the end of analysis:
Project agreement

• The project agreement represents the acceptance of (parts of)
the analysis model (as documented by the requirements
analysis document) by the client

• The client and the developers converge on a single idea and
agree about the functions and features that the system will
have. In addition, they agree on:
• requirements priorities
• the criteria that will be used to accept or reject the system
• a revision process
• a schedule, and probably a budget

• In a phased development model, this is a single event,
in modern iterative development, it will be several
• and can even be a continuous process

[8] 42 / 43Lutz Prechelt, prechelt@inf.fu-berlin.de

Summary

• Sequence diagrams and State Machine diagrams
can help in identifying classes and (in particular) operations

• The requirements document contains far more than just
functional requirements as use cases

• True agile processes will not have such a document

[8] 43 / 43Lutz Prechelt, prechelt@inf.fu-berlin.de

Thank you!

	Dynamic Modeling, Req's Document �
	Dynamic Modeling
	Heuristics for sequence diagrams
	An ARENA sequence diagram: �create tournament
	ARENA’s Object Model (before)
	ARENA’s Object Model (new)
	Impact on ARENA’s Object Model (2)
	What else �can we get out of sequence diagrams?
	Central control: Fork diagram
	Decentralized control: Stair diagram
	Fork or Stair?�(A design issue, not an analysis issue!)
	UML state machine diagram notation
	State machine diagrams
	State
	Example of a state machine diagram
	�Nested states: Example
	Composite State
	Modeling concurrency
	Example �of concurrency within an object
	Using implicit join/split
	Dynamic modeling of user interfaces
	Simplified navigation path example
	Practical tips for�state machine modeling
	Summary: requirements analysis
	When is a model dominant?
	Requirements document
	A possible requirements analysis�document template
	Section 3.5: system models
	Section 3.3: �nonfunctional requirements
	Nonfunctional requirements: �trigger questions
	Nonfunctional requirements (2)
	Nonfunctional requirements (3)
	Nonfunctional requirements (4)
	Section 3.4 �Constraints (pseudo requirements)
	Concluding remarks:�1. Conventional vs. Agile
	Requirements documents (req docs) in�Conventional vs. Agile processes
	Prioritizing requirements
	2. Verification and validation of models
	Correctness, �completeness and consistency
	Modeling checklist for the review
	3. At the end of analysis:�Project agreement
	Summary
	Thank you!

