
[4] 1 / 56Lutz Prechelt, prechelt@inf.fu-berlin.de

Modeling with UML

• Modeling, models and UML
• Static view:

• Class diagrams
• Dynamic view:

• Sequence diagrams
• State machine diagrams
• Activity diagrams

• Other UML diagram types
• component d., collaboration

use d., deployment d.,
communication d., interaction
overview d.

• UML Metamodel, Profiles
• Some notation details

• Classes, associations,
interfaces, states

Course "Softwaretechnik"
Book Chapter 2

Lutz Prechelt, Bernd Bruegge, Allen H. Dutoit
Freie Universität Berlin, Institut für Informatik

[4] 2 / 56

Lernziele

• Einen groben Überblick über Grundideen und die wichtigsten
Diagrammarten der UML gewinnen.

• Erkennen: UML kann informell oder präzise eingesetzt
werden.

Lutz Prechelt, prechelt@inf.fu-berlin.de

[4] 3 / 56Lutz Prechelt, prechelt@inf.fu-berlin.de

Taxonomie
"Die Welt der Softwaretechnik"

Welt der Problemstellungen:

• Produkt (Komplexitätsprob.)
• Anforderungen (Problemraum)
• Entwurf (Lösungsraum)

• Prozess (psycho-soziale P.)
• Kognitive Beschränkungen
• Mängel der Urteilskraft
• Kommunikation, Koordination
• Gruppendynamik
• Verborgene Ziele
• Fehler

Welt der Lösungsansätze:

• Technische Ansätze ("hart")
• Abstraktion
• Wiederverwendung
• Automatisierung

• Methodische Ansätze ("weich")
• Anforderungsermittlung
• Entwurf
• Qualitätssicherung
• Projektmanagement

[4] 4 / 56Lutz Prechelt, prechelt@inf.fu-berlin.de

What is modeling?

• Modeling consists of building an abstraction of reality
• Models ignore irrelevant details (i.e., they simplify)
• and only represent the relevant details

• What is relevant or irrelevant depends on the
purpose of the model. We typically want to
• draw complicated conclusions about reality

with simple steps in the model in order to
• get insights into the past or presence or make predictions

• Reality R:
• Real things, people, etc.
• Processes happening during some time
• Relationships between things etc.

• Model M:
• Abstractions of any or all of the above

[4] 5 / 56Lutz Prechelt, prechelt@inf.fu-berlin.de

What is a "good" model?

• In a good model, relationships which are valid in reality R
are also valid in model M (if they exist in M at all).
• I : Mapping of reality R to the model M (abstraction)
• fM: relationship between abstractions in M
• fR: equivalent relationship between real things in R

• In a good model, the following diagram is commutative:

fM

fR

mbma

ra rb

I I

[4] 6 / 56Lutz Prechelt, prechelt@inf.fu-berlin.de

Models of models of models...

• We can think of a model as reality and can build another
model from it (with additional abstractions)
• The development of software systems is a transformation of models:

Requirements elicitation ( req's document M1),
Requirements analysis ( analysis model M2),
Design ( design model M3),
Implementation ( source code M4)

fM1

fR

M1M1

R R

Requirements
Elicitation I1

M2M2

Analysis I2

fM2

….

"Model-Driven
Development"
uses this idea for its
engineering approach.

[4] 7 / 56Lutz Prechelt, prechelt@inf.fu-berlin.de

Systems, models and views

• A model is an abstraction describing relevant aspects of a
system

• A view ("Sicht") depicts selected aspects of a model
• Any view is a model itself
• Calling a model a view makes clear it is part of a larger model
• Complex models are often shown as many views only

• never as a whole

• A notation is a set of rules for depicting models
• graphically or textually

• Example:
• System: Aircraft
• Models: Flight simulator, scale model, construction plan, …
• Views: All blueprints (e.g. electrical wiring, fuel system)

[4] 8 / 56Lutz Prechelt, prechelt@inf.fu-berlin.de

What is UML?

UML (Unified Modeling Language):
• The most-used standard for software modeling

• For both requirements modeling (application domain)
• and software modeling (solution domain)

• A set of related graphical notations
• Quite complex, we will use a subset only

• Resulted from the convergence of notations from
three leading object-oriented methods:
• OMT (James Rumbaugh)
• OOSE (Ivar Jacobson)
• Booch method (Grady Booch)
• The authors are known as "The Three Amigos"

• Supported by CASE tools
• http://de.wikipedia.org/wiki/UML-Werkzeug

http://de.wikipedia.org/wiki/UML-Werkzeug

[4] 9 / 56Lutz Prechelt, prechelt@inf.fu-berlin.de

Common UML diagram types

• Use Case diagrams (functional view)
• Catalog scenarios that describe the functional behavior of the

system as seen by the user [see lecture "use cases"]
• Class diagrams / Object diagr. (static view and examples)

• Describe the static structure of the system: Classes, attributes,
object associations (class diagram) or
snapshots of possible resulting configurations (object diagram)

• Sequence diagrams (dynamic view examples)
• Describe examples of the dynamic behavior between objects of

the system (and possibly actors)
• State machine diagrams (dynamic view)

• Describe some aspects of the dynamic behavior of the individual
object of a class by a finite state automaton

• Activity diagrams (dynamic view)
• Model the dynamic behavior of a system, in particular the

workflow (essentially a flowchart, but with concurrency)

[4] 10 / 56Lutz Prechelt, prechelt@inf.fu-berlin.de

Less common UML diagram types

Hardly covered in this course:
• Implementation diagrams

• Component diagrams
• Deployment diagrams

• Communication diagrams
• Equivalent to sequence diagrams, but embedded in an object

diagram (shows both static structure and dynamic interaction)
• Interaction overview diagrams

• Related to activity diagrams, for describing control flow

There is also a non-graphical language for expressing conditions:
• Object constraint language (OCL)

• Introduced in lecture on Object Design

[4] 11 / 56Lutz Prechelt, prechelt@inf.fu-berlin.de

UML core conventions

• Diagrams are mostly graphs
• Nodes are entities
• Edges are relationships between entities

• Rectangles are classes or instances
• Ovals are functionalities or use cases

• An instance is denoted with an underlined name
• myWatch:SimpleWatch or with no classifier: myWatch:
• Jane:Firefighter or with no name: :Firefighter
• (Anonymous instance of unnamed classifier: :

• Please don’t use this …)

• A classifier is denoted with a non-underlined name
• SimpleWatch
• Firefighter

[4] 12 / 56

Watch

push()
release()

state
PushButton

blinkSeconds()
blinkMinutes()
blinksHours()
stopBlinking()
refresh()

blinkIdx
LCDDisplay

load
Battery

now
Time

1 1 1 1

2 1 2 1

Lutz Prechelt, prechelt@inf.fu-berlin.de

UML class diagrams

ClassAssociation

Multiplicity

Attribute
Operations

Class diagrams represent the structure of the system

[4] 13 / 56

getZones()
getPrice()

zone2price
TariffSchedule

Lutz Prechelt, prechelt@inf.fu-berlin.de

Class diagrams:
Classes

In terms of modeling:
• Problem domain: A class has a name and represents a concept
• Solution domain: A class encapsulates state (attributes) and

behavior (operations)
• Each attribute has a type
• Each operation has a signature

Name

Attributes

Operations
TariffSchedule

getZones() : Enumeration
getPrice(eing. zone) : Price

zone2price : Table
TariffSchedule

getPrice(zone : Zone) : Price

Signature

[4] 14 / 56Lutz Prechelt, prechelt@inf.fu-berlin.de

Instances ("Exemplare", "Objekte")

• An instance represents a phenomenon
• The name of an instance is underlined and may indicate the class of

the instance
• May indicate instance name or class or both

• Attributes may be represented with their values

• What is the fundamental difference between a class diagram
and an object diagram?

zone2price = {
 {'1', 0.20},
 {'2', 0.40},
 {'3', 0.60}
}

tariff1974 : TariffSchedule Class nameInstance
Name

Value

2 Verstehen

[4] 15 / 56Lutz Prechelt, prechelt@inf.fu-berlin.de

Associations

• Associations denote relationships between classes

• The multiplicity of an association end denotes how many objects the
source object can legitimately reference:
• Any one TariffSchedule object is associated with at least one TripLeg

object
• Any one TripLeg object is associated with at least one TariffSchedule

object
• n and m can be numbers ("5") or ranges (closed/open: "1..5" or "2..*")
• A missing annotation can mean "don't know yet", "is specified elsewhere"

or (by special convention) "1"
• "*" alone means "arbitrarily many" (zero, one, or several)

getZones()
getPrice()

TariffSchedule
price
zone

TripLeg
1..* 1..*

n m

[4] 16 / 56Lutz Prechelt, prechelt@inf.fu-berlin.de

1-to-1 and 1-to-many associations

One-to-one association

One-to-many association

(Too restrictive?:
Some countries
have a separate
seat of
government)

(Too flexible?:
Does a Polygon with
0, 1, or 2 Points
really make sense?)

name : string
Country

name : string
CityCapital 11

draw()

Polygon
x : int
y : int

Point
1 *

0..1

[4] 17 / 56Lutz Prechelt, prechelt@inf.fu-berlin.de

Many-to-many associations

Problem Statement: "A stock exchange lists many companies.
Each company is uniquely identified by a ticker symbol."

(Now a Company could have
different tickerSymbols at each
StockExchange)

StockExchange name
tickerSymbol

Company
lists* *

tickerSymbol
StockExchange

name
Companylists

* 0..1

Qualified
multiplicity

[4] 18 / 56

ExhaustSystem

diameter
Muffler

diameter
Tailpipe

0..21

Lutz Prechelt, prechelt@inf.fu-berlin.de

Aggregation

• An aggregation is a special case of association denoting a
"consists of"/"is part of" hierarchy

• The object representing the whole is called the aggregate,
the objects representing the parts are called components

• A solid diamond denotes composition, a strong form of aggregation
where the parts never exist without the composite
• The association is in force

throughout the life of the
parts objects

ExhaustSystem

diameter
Muffler

diameter
Tailpipe

0..21

TicketMachine

ZoneButton3

[4] 19 / 56Lutz Prechelt, prechelt@inf.fu-berlin.de

Inheritance (Java: "extends")

• The children classes inherit the attributes and operations of
the parent class

• Read the triangle as an arrowhead,
meaning "inherits from" (just like "extends")
• CancelButton inherits from Button
• ZoneButton inherits from Button

Button

CancelButtonZoneButton

Button

CancelButtonZoneButton

[4] 20 / 56Lutz Prechelt, prechelt@inf.fu-berlin.de

Realization (Java: "implements")

[4] 21 / 56Lutz Prechelt, prechelt@inf.fu-berlin.de

Example:
Plato’s and Aristotle’s world views

Plato Aristotle

Reality

Thing

Particular Form

*

Reality

Substance

Form Matter

*

3 Anwenden

[4] 22 / 56Lutz Prechelt, prechelt@inf.fu-berlin.de

Association classes

• Individual associations between objects can have attributes
• Described by an association class

[4] 23 / 56Lutz Prechelt, prechelt@inf.fu-berlin.de

Association constraints

• Associations can be described by further details:

[4] 24 / 56Lutz Prechelt, prechelt@inf.fu-berlin.de

Class diagrams: theater example

• ..and some more
notation details:
• role name
• XOR constraint
• static operation

[4] 25 / 56

• A package is a UML mechanism for organizing elements (e.g.
classes or whole class diagrams) into groups
• to simplify model readability and handling

• A complex system can be decomposed into subsystems,
where each subsystem is modeled as a package

Lutz Prechelt, prechelt@inf.fu-berlin.de

Packages

IncidentManagement

DispatcherInterface

Notification

[4] 26 / 56

 : TicketMachine

selectZone()
Passenger

insertCoins()

pickUpChange()

pickUpTicket()

Lutz Prechelt, prechelt@inf.fu-berlin.de

UML sequence diagrams

• Used during requirements
analysis and system design
• to refine the model

• Used for explaining behavior
to other stakeholders

Objects are represented by
columns (objname:classname)
Messages are represented by
arrows
Activations are represented
by narrow rectangles
Lifelines are represented by
dashed lines

Actor

[4] 27 / 56

 : ZoneButton : Display

selectZone()
Passenger

 : TariffSchedule

getPrice(zone)

price

displayPrice(price)

Lutz Prechelt, prechelt@inf.fu-berlin.de

Nested messages

• The source of an arrow indicates the activation which sent the
message

• An activation is as long as all nested activations (for normal calls)
• Horizontal dashed arrows indicate data flow
• Vertical dashed lines indicate lifelines

Dataflow
…to be continued...

[4] 28 / 56Lutz Prechelt, prechelt@inf.fu-berlin.de

Sequence diagram: theater example

external call,
external return

[4] 29 / 56

• creation
• nesting

• iteration

• conditions,
branching

• destruction

Advanced features

Lutz Prechelt, prechelt@inf.fu-berlin.de

[4] 30 / 56Lutz Prechelt, prechelt@inf.fu-berlin.de

Sequence diagram summary

• UML sequence diagrams represent behavior in terms of object
interactions
• Useful to find missing objects
• Useful for explaining design ideas

• Describes examples only, no general specification

• Time-consuming to build, but may be worth it

• Complement the class diagrams (which represent structure)

dynamic view

static view

[4] 31 / 56Lutz Prechelt, prechelt@inf.fu-berlin.de

State machine diagrams (statecharts)

Event

Initial state

Transition

State

Do Activity

Transition Effect

[4] 32 / 56Lutz Prechelt, prechelt@inf.fu-berlin.de

Transitions can be
subject to guard conditions

4 Analysieren

[4] 33 / 56Lutz Prechelt, prechelt@inf.fu-berlin.de

Parallel (orthogonal)
states, explicit exits

[4] 34 / 56Lutz Prechelt, prechelt@inf.fu-berlin.de

A transition is
the consequence of an event

[4] 35 / 56Lutz Prechelt, prechelt@inf.fu-berlin.de

There can be
multiple transitions at one state

• Internal transitions don’t leave the state
• Entry and Exit Activities can be annotated inside the state box

• to avoid redundancy and encapsulate the state

• also: do / some_activity
• for a concurrent, abortable, potentially long-running activity

occuring throughout the state

[4] 36 / 56Lutz Prechelt, prechelt@inf.fu-berlin.de

Activity Diagrams

• An activity diagram shows flow control (and optionally data
flow) within a system

• Two types of (executable) nodes:
• Action node:

• Basic activity, cannot be decomposed any further
• Predefined in UML, e.g. object creation/destruction,

accessing/modifying attributes or links, calling operations
• Activity node:

• Can be decomposed further
• The activity is modeled by another activity diagram

• Difference to State Chart?

HandleIncident DocumentIncident ArchiveIncident

4 Analysieren

[4] 37 / 56

Active Inactive Closed Archived
incidentHandled incidentDocumented incidentArchived

Lutz Prechelt, prechelt@inf.fu-berlin.de

State machine diagram
vs. activity diagram

State machine diagram for Incident
(Node represents some set of attribute values)

Activity diagram for Incident handling
(Node represents some collection of operations)

Event causes
transition

HandleIncident DocumentIncident ArchiveIncident

Completion of activity
causes execution to proceed

[4] 38 / 56Lutz Prechelt, prechelt@inf.fu-berlin.de

Activity diagram: decisions

Decision

OpenIncident
[lowPriority]

[fire & highPriority]

[not fire & highPriority]

NotifyPoliceChief

NotifyFireChief

AllocateResources

[4] 39 / 56Lutz Prechelt, prechelt@inf.fu-berlin.de

Activity diagrams: concurrency

• Synchronization of multiple activities
• Splitting the flow of control into multiple threads

JoinFork

OpenIncident

AllocateResources

DocumentIncident

ArchiveIncidentCoordinateResources

2 Verstehen

• Difference between Fork (here)
and Decision Split (previous slide)?

[4] 40 / 56Lutz Prechelt, prechelt@inf.fu-berlin.de

Activity diagrams: theater example

(ohne neue Konstrukte)

[4] 41 / 56Lutz Prechelt, prechelt@inf.fu-berlin.de

Further UML diagram types

Static view:
• Component diagrams, internal structure diagrams

• Subsystems (components) and their interfaces
• Collaboration use diagram

• A part of a structure that collaborates for a specific purpose
• Deployment diagrams

• Computers and which part of the system runs on which

Dynamic view:
• Communication diagrams

• Equivalent to sequence diagrams, but embedded in an object
diagram (shows both static structure and dynamic interaction)

• Interaction overview diagrams
• Related to activity diagrams, for describing control flow

[4] 42 / 56Lutz Prechelt, prechelt@inf.fu-berlin.de

Components

• Components represent classes or subsystems
(multiple classes)
• The focus is on their interfaces
• All implementation details are ignored

[4] 43 / 56Lutz Prechelt, prechelt@inf.fu-berlin.de

Component diagram,
internal structure diagram

• Compositions of components
• Component diagram: relationships between components
• Internal structure diagram: structure of a component (as below)

or any other classifier

[4] 44 / 56

• A view describing the roles different parts play for one specific
purpose
• Can be on class level or on instance level

Lutz Prechelt, prechelt@inf.fu-berlin.de

Collaboration use diagram

[4] 45 / 56Lutz Prechelt, prechelt@inf.fu-berlin.de

Deployment diagram

for distributed
systems:
describes
which code
runs on which
computer
("node")

[4] 46 / 56Lutz Prechelt, prechelt@inf.fu-berlin.de

Communication diagram

• An object diagram with interaction annotations
• Indicates interactions (like a sequence diagram) as well as object

relationships (by the object diagram)

4 Analysieren 6 Beurteilen

[4] 47 / 56Lutz Prechelt, prechelt@inf.fu-berlin.de

Interaction overview diagram

• A combination of two other
diagram types.
Which?

• Activity diagram and
sequence diagram:
• activities may be

sequence diagram
fragments

2 Verstehen

[4] 48 / 56

Diagram types overview (UML 2.2)

Lutz Prechelt, prechelt@inf.fu-berlin.de source: Wikimedia Commons

[4] 49 / 56Lutz Prechelt, prechelt@inf.fu-berlin.de

UML is described in UML itself

• The UML model describing UML is called the
UML metamodel
• It consists of UML class diagrams plus descriptive text

• Class level: Every kind of UML element (e.g. "association")
is a class in that metamodel
• The characteristics are described by attributes or associated

classes
• e.g. the UML metamodel contains a class Association

• Instance level: Every association in a specific UML model can
be interpreted as an instance of the Association class in the
UML metamodel
• But actually there is much more than just one class:

[4] 50 / 56Lutz Prechelt, prechelt@inf.fu-berlin.de

The UML Metamodel of associations

Source:
UML 2.4.1,
section 7.2
http://www.omg.org

http://www.omg.org/

[4] 51 / 56Lutz Prechelt, prechelt@inf.fu-berlin.de

UML is extensible

• Profiles add elements to the UML metamodel
• A profile is a package that defines «stereotypes» and constraints

that can be applied to certain metamodel elements

stereotype of the
metamodel
stereotype of the
EJB profile

[4] 52 / 56Lutz Prechelt, prechelt@inf.fu-berlin.de

UML is fairly precise

• In this course, we will often use UML in a rather informal and
imprecise manner
• Our models are usually not very detailed
• They leave many things unspecified (i.e., they are incomplete)

• However, one can produce fairly precise UML models
• Such models have a reasonably well-defined meaning, as UML

itself is specified in a semi-formal manner
• No complete semantics have been specified for UML overall, though

• There is much more to UML than can be said here
• UML 2.4 Infrastructure + Superstructure: 200 + 800 pages
• UML 2.5, rewritten in one document: 800 pages

• Precise UML usage is relevant for automatic code generation
from the UML model
• In some domains, such as telecommunication, complete

subsystems are sometimes code-generated from UML models
today

[4] 53 / 56Lutz Prechelt, prechelt@inf.fu-berlin.de

What should you know about UML?

• For all application domains:
• Learn as much as you can about class diagrams

(object diagrams help in doing this)
• (soon maybe also component diagrams)

• Learn the basics of use case, sequence, communication, state
machine, and activity diagrams

• For realtime and formally specifiable (sub)domains:
• Also learn a lot about state machine diagrams

• If you want to make full use of UML CASE tools:
• Learn a lot about packages and about profiles

• If you want to build UML CASE tools:
• Learn about the UML metamodel (Warning: tough!)

[4] 54 / 56Lutz Prechelt, prechelt@inf.fu-berlin.de

UML summary

• UML provides a wide variety of notations for representing
many aspects of software development
• Powerful, but complex language
• Can be misused to generate unreadable models
• Can be misunderstood when using too many exotic features
• Many people who say they "know UML" actually know very little

• We will concentrate on a few notations:
• Functional model: use case diagram (next lecture)
• Object model: class diagram
• Dynamic model: sequence diagrams,

state machine and activity diagrams

[4] 55 / 56Lutz Prechelt, prechelt@inf.fu-berlin.de

Literature

• James Rumbaugh, Ivar Jacobson, Grady Booch:
"The Unified Modeling Language Reference Manual", Second
Edition (UML 2.0), Addison-Wesley 2005.
• this is also the source of the figures with blue annotations

• James Rumbaugh, Ivar Jacobson, Grady Booch:
"The Unified Modeling Language User Guide",
Second Edition (UML 2.0), Addison-Wesley 2005.
• actually teaches how to use the UML

• this lecture did not do this, but some of the rest of the course will
• less misleading than some other books on the topic

The current version of UML is 2.5.1 (December 2017).
• http://www.omg.org/spec/UML

http://www.omg.org/spec/UML

[4] 56 / 56Lutz Prechelt, prechelt@inf.fu-berlin.de

Thank you!

and now: some bonus slides

[4] 57 / 56Lutz Prechelt, prechelt@inf.fu-berlin.de

UML language elements details

• The next few slides present a number of details in the
notation of
• Classes (Class diagrams)
• Associations (Class diagrams)
• Interfaces (Class diagrams)
• States (State machine diagrams)

[4] 58 / 56Lutz Prechelt, prechelt@inf.fu-berlin.de

Details: Class

[4] 59 / 56Lutz Prechelt, prechelt@inf.fu-berlin.de

Details: Association

[4] 60 / 56Lutz Prechelt, prechelt@inf.fu-berlin.de

Details: Interfaces

[4] 61 / 56Lutz Prechelt, prechelt@inf.fu-berlin.de

Details: States

	Modeling with UML ���
	Lernziele
	Taxonomie �"Die Welt der Softwaretechnik"
	What is modeling?
	What is a "good" model?
	Models of models of models...
	Systems, models and views
	What is UML?
	Common UML diagram types
	Less common UML diagram types
	UML core conventions
	UML class diagrams
	Class diagrams: �Classes
	Instances ("Exemplare", "Objekte")
	Associations
	1-to-1 and 1-to-many associations
	Many-to-many associations
	Aggregation
	Inheritance (Java: "extends")
	Realization (Java: "implements")
	Example: �Plato’s and Aristotle’s world views
	Association classes
	Association constraints
	Class diagrams: theater example
	Packages	
	UML sequence diagrams
	Nested messages
	Sequence diagram: theater example
	Advanced features
	Sequence diagram summary
	State machine diagrams (statecharts)
	Transitions can be �subject to guard conditions
	Parallel (orthogonal) �states, explicit exits
	A transition is �the consequence of an event
	There can be �multiple transitions at one state
	Activity Diagrams
	State machine diagram �vs. activity diagram
	Activity diagram: decisions
	Activity diagrams: concurrency
	Activity diagrams: theater example
	Further UML diagram types
	Components
	Component diagram, �internal structure diagram
	Collaboration use diagram
	Deployment diagram
	Communication diagram
	Interaction overview diagram
	Diagram types overview (UML 2.2)
	UML is described in UML itself
	The UML Metamodel of associations
	UML is extensible
	UML is fairly precise
	What should you know about UML?
	UML summary
	Literature
	Thank you!
	UML language elements details
	Details: Class
	Details: Association
	Details: Interfaces
	Details: States

