)1 12
Freie Universitat ()
o IJ R é?'

Course "Softwaretechnik™
Book Chapters 9, 10
Object Design: Specifying Interfaces,
Model-to-implementation mapping

Lutz Prechelt, Bernd Bruegge & Allen H. Dutoit
Freie Universitat Berlin, Institut fur Informatik

* Visibility * Mapping associations to code
* Type information

® Contracts: OCL

e preconditions, postconditions,
Invariants

e includes, asSet, forAll, exists

Lutz Prechelt, prechelt@inf.fu-berlin.de [13] 1 / 37

Wo sind wir?: Taxonomie

"Die Welt der Softwaretechnik"

Welt der Problemstellungen:

® Produkt (Komplexitatsprob.)

Anforderungen (Problemraum)
Entwurf (LOsungsraum)

® Prozess (psycho-soziale P.)

Kognitive Beschrankungen
Mangel der Urteilskraft

Kommunikation,
Koordination

Gruppendynamik
Verborgene Ziele
Fehler

Welt der Losungsanséatze:

® Technische Ansatze ("hart")
e Abstraktion
e Wiederverwendung
e Automatisierung

® Methodische Ansatze ("weich")
e Anforderungsermittiung
e Entwurf
e Qualitatssicherung
e Projektmanagement

Lutz Prechelt, prechelt@inf.fu-berlin.de

[13] 2/ 37

Wo sind wir?:
Entwurf

Freie Universitit G |

e Einsicht: Man sollte vor dem Kodieren Uber eine gunstige
Struktur der Software nachdenken

= und diese als Koordinationsgrundlage schriftlich festhalten

® Prinzipien:

Trennung von Belangen

Architektur: Globale Struktur festlegen (Grobentwurf), insbes.
far das Erreichen der nichtfunktionalen Anforderungen

Modularisierung: Trennung von Belangen durch
Modularisierung, Kombination der Teile durch Schnittstellen
(information hiding, Lokalitat)

Wiederverwendung: Erfinde Architekturen und Entwurfsmuster
nicht immer wieder neu

Dokumentation: Halte sowohl Schnittstellen als auch zu Grunde
liegende Entwurfsentscheidungen und deren Begrundungen fest

Lutz Prechelt, prechelt@inf.fu-berlin.de [13] 3 / 37

Part of ARENA’s object model
Identified during the analysis

Freie Universitat (L

TournamentForm 1
1
applyForTournament() TournamentControl
21 selectSponsors() %
advertizeTournament()
acceptPlayer()
announceTournament()
1
1
Tournament
=] name =
* *| player Zt]adrt sponsor | * *
Player acceptPlayer() Advertiser
” removePlayer()
schedule()
match |
match
Match
*
start
status
playMove()
getScore()

Lutz Prechelt, prechelt@inf.fu-berlin.de [13] 4 / 37

Freie Universitit |

Specifying Interfaces

® Requirements analysis activities

« ldentifying attributes and operations without specifying their
types or their parameters

Often not all attributes and operations are identified in this stage

® Object design: Four activities
e 0. ldentify remaining attributes and operations
e 1. Add visibility information
e 2. Add type signature information
e 3. Add contracts

* Object design is a detail-level subtask of modularization

Lutz Prechelt, prechelt@inf.fu-berlin.de [13] 5 / 37

Freie Universitat (S

1. Add Visibility Information

UML defines four kinds of visibility:

e 1: Private (visible for class implementer only) _;'i\f/;e
e marked by '-' in diagrams
e 2a: Protected (visible also for class extender) / \
- marked by '#' in diagrams #protected —package

e 2b: Package (private to a package, not to a class) \ /
e when a package represents a module, this means

: a S +public
'publicly visible inside the module'
e marked by '—' in diagrams
] : . . Java:
e 3: Public (fully visible) orivate
e marked by '+' in diagrams |
(package)
e Difference to Java visibilities: '
= Java: 'protected' is also visible for classes in the package. protected
This is not true (and cannot be expressed) in UML "bl'
public

The 'package' default promotes creation of Facades

Lutz Prechelt, prechelt@inf.fu-berlin.de [13] 6 / 37

Freie Universitat (L

Information Hiding Heuristics

e Carefully define the public interface for classes as well as
subsystems (facade)

e Always apply the "Need to know" principle

= Only if somebody needs to access the information make it
publicly possible,

e but then only through well-defined channels, so the module can
control the access (in particular changes to individual attributes).
* The less an operation knows
 the less likely it will be affected by any changes
e the easier the module can be changed

e Trade-off: Information hiding vs. efficiency

e In a few cases, accessing a private attribute might be needed for
speed reasons (for example in real-time systems or games)
BUT: "Make it work first before you make it work fast"

Lutz Prechelt, prechelt@inf.fu-berlin.de [13] 7 / 37

Freie Universitit G |

Java: Packages as modules

* The module interface contains one Facade class (for methods)
plus perhaps several data type classes (for data and methods)

 perhaps interfaces only, not actual classes
® These classes or interfaces are public,
all others have package visibility

e and all members of these 'other' classes have
package or private visibility (public and protected would not help)

e Package (or default) visibility in Java has no visibility declarator
e Most members of public classes
have public or protected visibility

< Note that protected members add an inheritance aspect to the
interface of the class that results in less information hiding.

e private should be used when the class is so complicated that
protected would likely lead to integrity violations

e package (for module-internal class-external access)
Is rarely needed

Lutz Prechelt, prechelt@inf.fu-berlin.de [13] 8 / 37

Freie Universitit E(L.®

2. Add Type Signhature Information

Map

-numElements:int

+put()

+get()
+remove()
+containsKey()

+size()

Map

-numElements:int

+put(key:Object,entry:Object)
+get(key:Object):Object
+remove(key:Object)
+containsKey(key:0Object):boolean
+size():int

Attributes and
operations
without type information
are acceptable
during analysis

Lutz Prechelt, prechelt@inf.fu-berlin.de [13] 9 / 37

3. Add Contracts

e Contracts on a class enable caller and callee to share the
same assumptions about the class

Contracts include three types of constraints:

e |nvariant:

e A predicate that is true for an instance after any external call.
Invariants are constraints associated with classes or interfaces

e The invariant is thus an implicit part of each postcondition
® Precondition:

e Preconditions are predicates associated with a specific operation
and must be true before the operation is invoked

» They specify constraints that a caller must ensure before the call
e Postcondition:

e Postconditions are predicates associated with a specific operation
and must be true after the operation is invoked

» They specify constraints that the class must ensure when the call
returns

Lutz Prechelt, prechelt@inf.fu-berlin.de [13] 10 / 37

OCL:
Expressing Constraints in UML Models

Freie Universitat E(L$

e An OCL constraint can be depicted as a note attached to the
constrained UML element by a dependency relationship

] «invariant»
.~ | numElements >= 0

HashTable
numElements:int =" «pos ﬁo{)ﬁjﬂ%”é’ntry

“put(key,entry:Object) ~
get(key):Object

not containsKey(k

«precondition>» lj)
e

~

AV

«precondition>»

contalnsKey(key) " | remove(key:Object) -

. -~ | containsKey(key: Object) boolean_ .
recon t|o .| |«postcondition»
“Shtains kGY) size():int ' ngt containsKey(keﬁ

e Or it can be specified textually outside the UML diagram:

Lutz Prechelt, prechelt@inf.fu-berlin.de [13] 11 / 37

Contract
for acceptPlayer in Tournament

Freie Universitat ([l

context Tournament::acceptPlayer(p) pre:
not isPlayerAccepted(p)

context Tournament::acceptPlayer(p) pre:
getNumPlayers() < getMaxNumPlayers()

context Tournament::acceptPlayer(p) post:
ISPlayerAccepted(p)

context Tournament::acceptPlayer(p) post:
getNumPlayers() = getNumPlayers@pre() + 1

The value of the
expression before the call

Lutz Prechelt, prechelt@inf.fu-berlin.de

[13]

12 / 37

Contract
for removePlayer in Tournament

Freie Universitit G

context Tournament::removePlayer(p) pre:
ISPlayerAccepted(p)

context Tournament::removePlayer(p) post:
not isPlayerAccepted(p)

context Tournament::removePlayer(p) post:
getNumPlayers() = getNumPlayers@pre() - 1

Is this contract complete?

No. OCL specifications tend to make the tacit assumption that
"everything else stays the same" -- they are very often incomplete.

Lutz Prechelt, prechelt@inf.fu-berlin.de [13] 13 / 37

Freie Universitat (1 ,,.w

Annotation of Tournament class

public class Tournament { /** Assumes that the specified
/** The maximum number of players * player has not been accepted
* is positive at all times. * in the Tournament yet.
* @invariant maxNumPlayers > 0O * @pre lisPlayerAccepted(p)
*/ * @pre getNumPlayers()<maxNumPlayers
private int maxNumPlayers; * @post isPlayerAccepted(p)

* @post getNumPlayers() =

. . * .getN Pl + 1
/** The players List contains x/ @pre.getNumPlayers()

* references to Players who are
* are registered with the
* Tournament. */
private List players; /** The removePlayer() operation
* assumes that the specified player
ek * is currently in the Tournament.
e o * pre isPlayeracceptea()
T) * @post lisPlayerAccepted(p)
public int getNumPlayers() {...} * @post getNumPlayers() =
@pre.getNumPlayers() - 1

public void acceptPlayer (Player p) {...}

/** Returns the maximum number of */
* players in the tournament. */ public void removePlayer(Player p) {...}
public int getMaxNumPlayers() {...} }

Note: @pre etc. is not Javadoc syntax, but JContract (or similar) syntax.
See http://en.wikipedia.org/wiki/Design_by contract for a list of tools.

Lutz Prechelt, prechelt@inf.fu-berlin.de [13] 14 / 37

http://en.wikipedia.org/wiki/Design_by_contract

Constraints
can involve more than one class

. . ooy S5 I\
Freie Universitat (o)
NS 2,

How do we specify constraints on
more than one class?

Lutz Prechelt, prechelt@inf.fu-berlin.de [13] 15 / 37

3 Types of

: : . Freie Uni itat 02
Navigation through a Class Diagram 7

1. Local attribute

2. Directly related class
Tournament
start:Date League
end:Date

*

Player

Any OCL constraint for any class diagram
can be built using only a combination
of these three navigation types

3. Indirectly related class

League

x*

Tournament

*

Player

Lutz Prechelt, prechelt@inf.fu-berlin.de

[13] 16/ 37

ARENA Example:
League, Tournament and Player

Freie Universitét (i(l.Ss

League

+start:Date
+end:Date

+getActivePlayers()

{ordered}
=| tournaments

Tournament

+start:Date
+end:Date

+acceptPlayer(p:Player)
*| tournaments

*| players

players

Player

+name:String
+email: String

Lutz Prechelt, prechelt@inf.fu-berlin.de [13] 17 / 37

Model refinement
with 3 additional constraints

Freie Universitit G

1. A Tournament’s planned duration must be under one week

2. Players can be accepted in a Tournament only if they are
already registered with the corresponding League

3. The Active Players in a League are those that have taken part
In at least one Tournament of the League

* To better understand these constraints we instantiate the
class diagram for a specific group of instances

e 2 Leagues, 2 Tournaments and 5 Players

Lutz Prechelt, prechelt@inf.fu-berlin.de [13] 18 / 37

Instance Diagram: 2 Leagues,
2 Tournaments, and 5 Players

Freie Universitit E(L.®

tttExpert:League chessNovice:League
winter:Tournament xmas:Tournament
start=Dec 21 start=Dec 23
end=Dec 22 end=Dec 25

{

—1 alice:Player

bob:Player

marc:Player

joe:Player

zoe:Player

Lutz Prechelt, prechelt@inf.fu-berlin.de [13] 19 / 37

Specifying the Model Constraints

Freie Universitat E(L$

Local attribute navigation
conte rnament inv:
end - start = Calendar.WEEK

Directly related class navigation

context
Tournament::acceptPlayer(p)
pre:

league)playersi-=tincludes(p)

Is the League arrow correct?

\

D ——— - ";l Player

players |

League

+start:Date
+end:Date

+getActivePlayers()

league

{ordered
*| fournament

Tournament

+start:Date
+end:Date

BptPlayer(p:Player)
*| tournaments

*| players

d

+name:String
+email: String

Lutz Prechelt, prechelt@inf.fu-berlin.de

[13] 20/ 37

Specifying the Model Constraints

Freie Universitét (i(l.Ss

Local attribute navigation
context Tournament inv:
end - start <= Calendar.WEEK

Directly related class navigation
context Tournament::acceptPlayer(p) pre:
league.players-=includes(p)

Indirectly related class navigation

players

+start:Date
+end:Date

+getActivePlayers()

league
{ordere

*

Tournameiit

+start:Date
+end:Date

+acceptPlayer(p:Player)

*| toLrnaments

@players

X

Player

+name:String
+email:String

Lutz Prechelt, prechelt@inf.fu-berlin.de

[13] 21737

Pre- and post-conditions for ordering
operations on TournamentControl

Freie Universitat

TournamentControl

1. Which order of calls will be

enforced? +selectSponsors(advertisers):List

2. There are at least two dubious [+advertizeTournament()

- - i +acceptPlayer(p)
conditions here. Which? +announceTournament()

+isPlayerOverbooked():boolean
context TournamentControl::selectSponsors(advertisers) pre:
iInterestedSponsors->notEmpty and tournament.sponsors-=isEmpty

context TournamentControl::selectSponsors(advertisers) post:
tournament.sponsors.equals(advertisers)

context TournamentControl::advertiseTournament() pre:
tournament.sponsors-=>isempty and not tournament.advertised

context TournamentControl::advertiseTournament() post:
tournament.advertised

context TournamentControl::acceptPlayer(p) pre:
tournament.advertised and interestedPlayers->includes(p) and
not isPlayerOverbooked(p)
context TournamentControl::acceptPlayer(p) post:
tournament.players-=>includes(p)

Lutz Prechelt, prechelt@inf.fu-berlin.de [13] 22 / 37

Freie Universitat (.S

OCL supports Quantification

e QOCL forall quantifier
/™ "All Matches in a Tournament occur within the

Tournament’s time frame'": */

e context Tournament inv:
matches->forAll(m |
m.start.after(self.start) and m.end.before(self.end))

e OCL exists quantifier
/™ "Each Tournament conducts at least one Match on the first

day of the Tournament": */

e context Tournament inv:
matches->exists(m | m.start.equals(self.start))

There is at least one dubious
condition here. Which?

Lutz Prechelt, prechelt@inf.fu-berlin.de [13] 23 / 37

Specifying invariants on
Tournament and Tournament Control

Freie Universitit G

e /*"All Matches in a Tournament occur within the
Tournament’s time frame": */

context Tournament inv:
matches->forAll(m | m.start.after(self.start) and
m.end.before(self.end))

e /* "No Player can take part in two or more Tournaments that
overlap": */

context TournamentControl inv:
tournament.players->forAll(p|
p.tournaments->forAll(t|
t <> tournament implies
not t.overlap(tournament)))

Lutz Prechelt, prechelt@inf.fu-berlin.de [13] 24 / 37

Freie Universitat (|3

Specifying invariants on Match

In this diagram, can Match m7 be among a Tournament's Matches
without being among that Tournament's Players' Matches?

players *
Player — Tournament
I tournaments
players |=*
x*
matches
Match N

Yes. So we specify:

/™ "A match can only involve players who are accepted in the
tournament™ */

context Match inv:
players-=>forAll(p|
p.tournaments->exists(t|
t.matches->includes(self)))

context Match inv:
players.tournaments.matches.includes(self) /* insufficient! */

/* this condition is too weak, as it requires only one player to be registered */

Lutz Prechelt, prechelt@inf.fu-berlin.de [13] 25 / 37

Freie Universitat (.S

OCL in practice: general comments

Rules of thumb:
® Preconditions can often be expressed quite easily

e |nvariants as well

e Postconditions are usually difficult to express in OCL
e but even incomplete specifications can be useful
e In that case, add a comment describing the rest
* |t is often useful to introduce predicate methods in a class for
simplifying the OCL expressions
e see examples above

Lutz Prechelt, prechelt@inf.fu-berlin.de [13] 26 / 37

Freie Universitat E(L$

OCL in practice: today

® OCL can be used to generate code which checks the behavior
of classes at run time
e Such implementations today often do not handle quantifiers
because their operationalization is often not practical

e Similar mechanisms are available for Java by means of
preprocessors
e.g. JContract
The constraints are expressed using Javadoc tags
The preprocessor inserts appropriate code

e A simpler mechanism is built into the Eiffel language
- keywords require, ensure, invariant
* Plain Java uses assert expressions in the code instead

Lutz Prechelt, prechelt@inf.fu-berlin.de [13] 27 / 37

Freie Universitit |

OCL in practice: future

® |n the future, more and more compilers will be able to check
the consistency of code and OCL specifications
e SO no runtime checks are required
e May often even be capable of checking quantified expressions
by applying formal verification
< Will not be able to check all kinds of OCL specification, but many

® Consequence:
Start using OCL as soon as possible in your daily work

Lutz Prechelt, prechelt@inf.fu-berlin.de [13] 28 / 37

Freie Universitat (.S

Model-to-implementation mapping

® Some aspects of detailed UML design models can be mapped
Into implementations schematically

e More and more often, this is done automatically by tools
(Model-driven architecture, MDA)

e Examples:
e Mapping associations to code
= Mapping contract violations to exceptions

e Mapping classes and associations to rDBMS database tables
(Object-relational mapping, ORM)

® Let us look at association mapping as an example

Lutz Prechelt, prechelt@inf.fu-berlin.de [13] 29 / 37

Realization of a

unidirectional, one-to-one association

Freie Universitat (.S

Object design model before transformation

Advertiser

1

Source code after transformation

public class Advertiser {

protected Account account;

public Advertiser() {

account = new Account();

}

public Account getAccount() {

return account;

+
}

]J* Account

create a setAccount()
If the Account object
IS pre-existing

for bidirectional
associations

do likewise

in Account:

Lutz Prechelt, prechelt@inf.fu-berlin.de

[13] 30/ 37

Freie Universitat

Bidirectional one-to-one association

Object design model before transformation

Advertiser 1 1 Account
Source code after transformation
public class Advertiser { public class Account {
/* account is initialized in /* owner is initialized in
* constructor, never modified. :/constructor, never modified.
protected Account account: protected Advertiser owner;
public Advertiser() { public Account(
account = new Account(this); Advertiser owner) {
1 this.owner = owner;
: b
public Account getAccount() { public Advertiser getOwner() {
return account; return owner:
¥ h
¥ ¥

Does this work as intended? What can go wrong?

Lutz Prechelt, prechelt@inf.fu-berlin.de [13] 31 / 37

- : .. Freie Universitat]
Bidirectional, one-to-many association —— g

Object design model before transformation

: 1 *]
Advertiser Account
Source code after transformation
public class Advertiser { public class Account {
protected Set accounts = new HashSet(); protected Advertiser owner = null;
public void addAccount(Account a) { public void setOwner(Advertiser
accounts.add(a); newOwner) {
if (a.getOwner() != this) Advertiser oldOwner = owner;
a.setOwner(this); owner = null; // cancel previous owner
3} iIf (oldOwner !'= null)
public void removeAccount(Account a) { oldOwner.removeAccount(this);
accounts.remove(a); owner = newoOwner;
if (a.getOwner() == this) if (newOwner != null)
a.setOwner(null); newOwner.addAccount(this);
} by
3} public Advertiser getOwner() {

return owner;

by
}

(beware of infinite recursion!)

Lutz Prechelt, prechelt@inf.fu-berlin.de [13]

32/ 37

Bidirectional,
many-to-many association

Freie Universitit

Object design model before transformation

~fordered} *
Tournament Player
Source code after transfor
public class Tournament public class Player {

protected List players:> prot ISt tournamentss>
public Tournament() { public Player() {
players = new ArrayList(); tournaments = new ArraylList();
ke ¥
public void addPlayer(Player p) { public void addTournament(
if (Iplayers.contains(p)) { Tournament t) {
players.add(p); If (Itournaments.contains(t)) {
p.addTournament(this); tournaments.add(t);
3} t.addPlayer(this);
3} ¥
1 ¥
¥

(beware of infinite recursion!)

Lutz Prechelt, prechelt@inf.fu-berlin.de [13] 33 / 37

Bidirectional qualified association (2)

Freie Universitat (| S):

League

nickName

Player

Source code after forward engineering:

public class League {
protected Map players;

public void addPlayer
(String nickName, Player p) {

It (Iplayers.
containsKey(nickName)) {
players.put(nickName, p);
p.addLeague(nickName, this);

by
+
}

public class Player {
protected Map leagues;

public void addLeague
(String nickName, League |) {
iIf (leagues.
containsKey(l)) {
leagues.put(l, nickName);
|.addPlayer(nickName,this);
+
¥
b

Lutz Prechelt, prechelt@inf.fu-berlin.de

[13] 34/37

Freie Universitat E(L$

Transformation of an association class

Object design model before transformation

Statistics

+getAverageStat(name)
+getTotalStat(name)
+updateStats(match)

Tournament ' Player
* *

Object design model after transformation:
A class and two binary associations

Statistics

+getAverageStat(name)
+getTotalStat(name)
+updateStats(match)

* *

Tournament Player

Lutz Prechelt, prechelt@inf.fu-berlin.de [13] 35 / 37

Freie Universitit G |

Summary

e During object design (and only then) we specify visibility

e Contracts are constraints on a class that enable class users,
Implementers, and extenders to share the same assumptions
about the class ("Design by contract")

e Constraints are boolean expressions on model elements
e OCL is a language that allows us to express constraints
e OCL (object constraint language) is part of the UML world

e Complicated constraints involving more than one class,
attribute or operation can be expressed with 3 basic
navigation types

e Various types of models can be mapped to code
systematically

Lutz Prechelt, prechelt@inf.fu-berlin.de [13] 36 / 37

Freie Universitat i

Thank youl!

Lutz Prechelt, prechelt@inf.fu-berlin.de [13] 37 / 37

	Course "Softwaretechnik"�Book Chapters 9, 10� Object Design: Specifying Interfaces,�Model-to-implementation mapping��Lutz Prechelt, Bernd Bruegge & Allen H. Dutoit�Freie Universität Berlin, Institut für Informatik�
	Wo sind wir?: Taxonomie �"Die Welt der Softwaretechnik"
	Wo sind wir?:�Entwurf
	Part of ARENA’s object model �identified during the analysis
	Specifying Interfaces
	1. Add Visibility Information
	Information Hiding Heuristics
	Java: Packages as modules
	2. Add Type Signature Information
	3. Add Contracts
	OCL:�Expressing Constraints in UML Models
	Contract �for acceptPlayer in Tournament
	Contract �for removePlayer in Tournament
	Annotation of Tournament class
	Constraints �can involve more than one class
	3 Types of �Navigation through a Class Diagram
	ARENA Example: �League, Tournament and Player
	Model refinement �with 3 additional constraints
	Instance Diagram: 2 Leagues, �2 Tournaments, and 5 Players
	Specifying the Model Constraints
	Specifying the Model Constraints
	Pre- and post-conditions for ordering operations on TournamentControl
	OCL supports Quantification
	Specifying invariants on �Tournament and Tournament Control
	Specifying invariants on Match
	OCL in practice: general comments
	OCL in practice: today
	OCL in practice: future
	Model-to-implementation mapping
	Realization of a �unidirectional, one-to-one association
	Bidirectional one-to-one association
	Bidirectional, one-to-many association
	Bidirectional, �many-to-many association
	Bidirectional qualified association (2)
	Transformation of an association class
	Summary
	Thank you!

