
[11] 1 / 41Lutz Prechelt, prechelt@inf.fu-berlin.de

Course "Softwaretechnik"
Book Chapter 8

Lutz Prechelt, Bernd Bruegge, Allen H. Dutoit
Freie Universität Berlin, Institut für Informatik

http://www.inf.fu-berlin.de/inst/ag-se/

Object Design: Reuse and Patterns

• About "difficult" and "simple"
• Get-15, Tic-Tac-Toe

• Patterns as simplification and
reuse

• Design patterns
• Composite
• Adapter
• Bridge
• Facade

[11] 2 / 41Lutz Prechelt, prechelt@inf.fu-berlin.de

Wo sind wir?: Taxonomie
"Die Welt der Softwaretechnik"

Welt der Problemstellungen:

• Produkt (Komplexitätsprob.)
• Anforderungen (Problemraum)
• Entwurf (Lösungsraum)

• Prozess (psycho-soziale P.)
• Kognitive Beschränkungen
• Mängel der Urteilskraft
• Kommunikation, Koordination
• Gruppendynamik
• Verborgene Ziele
• Fehler

Welt der Lösungsansätze:

• Technische Ansätze ("hart")
• Abstraktion
• Wiederverwendung
• Automatisierung

• Methodische Ansätze ("weich")
• Anforderungsermittlung
• Entwurf
• Qualitätssicherung
• Projektmanagement

[11] 3 / 41Lutz Prechelt, prechelt@inf.fu-berlin.de

Wo sind wir?:
Entwurf

• Einsicht: Man sollte vor dem Kodieren über eine günstige
Struktur der Software nachdenken
• und diese als Koordinationsgrundlage schriftlich festhalten

• Prinzipien:
• Trennung von Belangen
• Architektur: Globale Struktur festlegen (Grobentwurf), insbes.

für das Erreichen der nichtfunktionalen Anforderungen
• Modularisierung: Trennung von Belangen durch

Modularisierung, Kombination der Teile durch Schnittstellen
(information hiding, Lokalität)

• Wiederverwendung: Erfinde Architekturen und Entwurfsmuster
nicht immer wieder neu

• Dokumentation: Halte sowohl Schnittstellen als auch zu Grunde
liegende Entwurfsentscheidungen und deren Begründungen fest

[11] 4 / 41Lutz Prechelt, prechelt@inf.fu-berlin.de

• Start with the nine numbers 1, 2, 3, 4, 5, 6, 7, 8, 9
• You and your opponent take alternate turns, each taking a

number
• Each number can be taken only once: If your opponent has

selected a number, you cannot also take it
• The first person to have any three numbers

that sum up to 15 wins the game
• Example:

A game: Get-15

You:

Opponent:

1 5 83

6 4 27 Opponent
Wins!

[11] 5 / 41Lutz Prechelt, prechelt@inf.fu-berlin.de

Get-15 is "difficult"

• Hard to play
• The game is especially hard if you are not allowed to write

anything down

• Why?
• All the numbers need to be scanned to see if you have won/lost
• It is hard to see what the opponent will take if you take a certain

number
• The choice of the number depends on all the previous numbers

• Not easy to devise a simple strategy

[11] 6 / 41Lutz Prechelt, prechelt@inf.fu-berlin.de

Another game: Tic-Tac-Toe

Source: http://boulter.com/ttt/index.cgi

Players take turns signing a field with their mark.
The first player to get three of his marks in a row, column,
or diagonal wins.

[11] 7 / 41Lutz Prechelt, prechelt@inf.fu-berlin.de

A draw sitation

[11] 8 / 41Lutz Prechelt, prechelt@inf.fu-berlin.de

Strategy
for determining a winning move

You win if
• you hold three fields on the two-segment line
• your opponent has none
• and yours include the corner

[11] 9 / 41Lutz Prechelt, prechelt@inf.fu-berlin.de

Winning situations for Tic-Tac-Toe

Winning
Patterns

or likewise
with the
middle
row or
column

or likewise
with a
horizontal
and
diagonal

[11] 10 / 41Lutz Prechelt, prechelt@inf.fu-berlin.de

Tic-Tac-Toe is "Easy"

• Why? Reduction of complexity through patterns and
symmetries

• Patterns: Knowing the following patterns, the player can
anticipate the opponents move

• Symmetries:
• The player needs to remember only these three patterns to deal

with all different game situations

[11] 11 / 41Lutz Prechelt, prechelt@inf.fu-berlin.de

Get-15 and Tic-Tac-Toe
are identical problems!

• Any three numbers that solve the Get-15 problem also
solve tic-tac-toe

• Any tic-tac-toe solution is also a solution of Get-15
• To see the relationship between the two games, we simply

arrange the 9 digits into the following pattern

8 1 6

3 5 7

4 9 2

[11] 12 / 41Lutz Prechelt, prechelt@inf.fu-berlin.de

Get-15 as Tic-Tac-Toe

8 1 6

3 5 7

4 9 2

1 5 83

6 9 27

You:

Opponent:

8 1 6

3 5 7

4 9 2

[11] 13 / 41Lutz Prechelt, prechelt@inf.fu-berlin.de

Why patterns are helpful

• Patterns are abstractions
• Understanding a pattern reduces a number of elements to a

single idea
• This saves mental resources and simplifies understanding

• and communication

• Patterns provide reuse
• If I know the patterns solution previously,

I do not have to invent my own solution: Reuse of ideas!

• In the next two lectures we show how to use design patterns

[11] 14 / 41Lutz Prechelt, prechelt@inf.fu-berlin.de

Modeling heuristics

• Modeling must address our mental limitations:
• Our short-term memory has only limited capacity (7+-2)

• Good models deal with this limitation, because they
• reduce complexity

• Turn complex tasks into easy ones (by good choice of representation)
• Use symmetries or other regularities
• Use helpful abstractions

• "Obvious" taxonomies
• Memory limitations are overcome with an appropriate

representation ("natural model")
• and therefore do not tax the mind

• A good model requires only little mental effort to understand

Design patterns have these properties

[11] 15 / 41Lutz Prechelt, prechelt@inf.fu-berlin.de

Outline of the lecture

• Design Patterns
• Usefulness of design patterns
• Design Pattern Categories

• Patterns covered in this lecture
• Composite: Model dynamic aggregates
• Facade: Interfacing to subsystems
• Adapter: Interfacing to existing systems (legacy systems)
• Bridge: Interfacing to existing and future systems

• Patterns covered in the next lecture
• Abstract Factory
• Builder
• Command
• Observer
• Proxy
• Strategy

[11] 16 / 41Lutz Prechelt, prechelt@inf.fu-berlin.de

Patterns help finding objects

• The possibly hardest problems in object-oriented system
development are:
• Identifying objects
• Decomposing the system appropriately into objects

• Requirements Analysis focuses on application domain:
• Identify application objects

• System Design addresses both, application and
implementation domain:
• Identify architecture
• Partition into subsystems and modules

• Object Design focuses on implementation domain:
• Transform application objects into solution objects
• Identify technical solution objects

Design patterns help with Object Design

[11] 17 / 41Lutz Prechelt, prechelt@inf.fu-berlin.de

Definition: Design Patterns

What are Design Patterns?

• A design pattern describes a problem which occurs over
and over again in our environment

• Then it describes the idea of a solution to that problem
• in such a way that you can use the pattern many times,

without ever doing it the exact same way twice:
• The solution idea will always be adapted to the specific

context in which the pattern is being used

[11] 18 / 41Lutz Prechelt, prechelt@inf.fu-berlin.de

What is common
between these two definitions?

• Definition Software System:
• "A software system consists of parts which are either

themselves systems (called subsystems) or individual
classes"

• Definition Software Lifecycle:
• "A software development process consists of steps which

are either smaller processes (called activities) or
elementary tasks"

[11] 19 / 41Lutz Prechelt, prechelt@inf.fu-berlin.de

The Composite Pattern

• Models tree structures that represent part/whole hierarchies
with arbitrary depth and width.

• The Composite Pattern lets a client treat individual objects
and compositions of these objects uniformly

[11] 20 / 41Lutz Prechelt, prechelt@inf.fu-berlin.de

Describing the Composite Pattern

• Problem: Represent part/whole hierarchies so that
1. they can have arbitrary depth and width
2. can be created and modified dynamically
3. composite parts can be handled just like elementary parts

• Solution idea:
• Have a common superclass Component
• Have two kinds of subclasses, one for elementary parts, one for

composite parts
• The composite part classes are containers holding Component

objects
• This realizes (1) and (2)

• Operations common to all parts are defined in the Component
class
• This realizes (3)

• http://c2.com/cgi/wiki?CompositePattern

[11] 21 / 41Lutz Prechelt, prechelt@inf.fu-berlin.de

Two applications
of the Composite Pattern

Client Component

Leaf Composite

Children

System

SWProcess

steps

Class

Subsystem

parts

ElementaryTask

A software system consists of parts
which are either themselves systems
(called subsystems) or indiv. classes

A SW dev. process consists of steps
which are either smaller processes
(called activities) or elementary tasks

User SWteam

Activity

[11] 22 / 41Lutz Prechelt, prechelt@inf.fu-berlin.de

The Composite Patterns
models dynamic aggregates

University School Department

Organization Chart (variable aggregate):

Dynamic tree (recursive aggregate):

CarFixed Structure:

Doors Wheels Battery Engine

Block Simple
Statement

Program

Statement

2..5 4

*

* *
Composite

Pattern

*

[11] 23 / 41Lutz Prechelt, prechelt@inf.fu-berlin.de

Graphic applications
also use Composite Patterns

Client Graphic

Circle

Draw()

Picture

Draw()
Add(Graphic g)

RemoveGraphic)
GetChild(int)

Children
Line

Draw()

The Graphic Class
represents both primitives
(Line, Circle) and their
containers (Picture)

[11] 24 / 41Lutz Prechelt, prechelt@inf.fu-berlin.de

More variants:
many primitives and many containers

• Some Composite structures
have many primitives and even
several kinds of container

• E.g. the basic Java GUI
framework java.awt

• Primitives:
• Button, Canvas, Checkbox,

Choice, Label, List, Scrollbar,
TextArea, TextField

• Containers
• Container, Dialog, Frame,

CellRendererPane, FileDialog,
Panel, ScrollPane, Window, …

• This is important about
design patterns in general:

Basic idea is fixed,
details vary!

Graphics

Component

Button

TextField

Label

*

TextArea

Text
Component

Container
add(Component c)
paint(Graphics g)

getGraphics()

JPanel Frame

incomplete
model

[11] 25 / 41Lutz Prechelt, prechelt@inf.fu-berlin.de

Design Patterns
reduce the complexity of models

• To communicate a complex model we use navigation and
reduction of complexity
• We do not simply use a picture from a CASE tool and dump it in

front of somebody
• The key is to navigate through the model so the user can follow it

• We start with a very simple model and then decorate it
incrementally
• Start with key abstractions (use animation)
• Then decorate the model with the additional classes

• To reduce the complexity of the model even further, we
• Apply the use of inheritance (for taxonomies, and for design

patterns)
• If the model is still too complex, we show subclasses only separately

• Then identify (or introduce) patterns in the model
• We make sure to use the name of the patterns

[11] 26 / 41Lutz Prechelt, prechelt@inf.fu-berlin.de

*

Resource

Participant

Fund

Equipment

Schedule

Task

*

Activity

con-

Facility

*

Staff

Department Team

produces

Work Set of Work

*

ProductProducts

*

Internal Project

Work

respon-

sumes

Package

Role

*

des-

*

cribes

Deliverable

sible playsfor

Organi-
zation

Structure

**

depends

Work Product Project Function

Project

Outcome Work
Organizational

Unit

Work
Breakdown

Example:
a model of a software project

Composite Patterns

Taxonomies

Basic Abstractions

24 classes
15+9+7

associations

[11] 27 / 41Lutz Prechelt, prechelt@inf.fu-berlin.de

Exercise

• There are 55 basic elements (classes, associations)
in the model
• plus association names and multiplicities

• Your short-term memory can hold about 5 to 9 elements
• Redraw the complete model for Project from your memory

using the following knowledge
• Key abstractions: Project, WorkProduct, Task, Schedule,

Participant
• WorkProduct, Task and Participant are modeled with composite

patterns, such as

• You have 5 minutes!

Work
Product

*

[11] 28 / 41Lutz Prechelt, prechelt@inf.fu-berlin.de

Adapter pattern

Also known as Wrapper pattern
• Problem: We need to provide a service that conforms to

a given target interface T.
We have an existing (legacy) implementation of that service,
but it has a different interface S.

• Solution idea: Introduce an adapter class A that implements T
based on S
• Then use an A object plus an S object in place of a T object

• Used in Interface engineering and reengineering
• Two adapter patterns:

• Class adapter: Uses multiple inheritance
• Object adapter: Uses single inheritance and delegation

• Object adapters are much more frequent
• We will only cover object adapters

[11] 29 / 41Lutz Prechelt, prechelt@inf.fu-berlin.de

Adapter pattern

• Target and Adaptee (usually called legacy system) pre-exist
the Adapter
• Target may be realized as an interface in Java

• Interface inheritance is used to specify the interface of the
Adapter class

• Delegation is used to
bind an Adapter and a legacy class (Adaptee)

Client
Target

Request()

LegacyClass

ExistingRequest()

Adapter

Request()

adaptee

[11] 30 / 41Lutz Prechelt, prechelt@inf.fu-berlin.de

Bridge pattern

Also known as Handle/Body pattern

• Problem: We need a complex domain abstraction (that may
even evolve over time) that is realized on a technical basis
that also evolves (or may vary or be exchanged completely)
• Put differently: We want to decouple an abstraction from its

implementation so that the two can vary independently

• Allows different implementations of an interface to be decided
upon dynamically

[11] 31 / 41Lutz Prechelt, prechelt@inf.fu-berlin.de

Solution structure of Bridge pattern

Abstraction

operation()

Client

Implementation

operationsImp()

[sometimes just]
imp.operationsImp()

SpecializedAbstraction

ConcreteImplementationB

operationsImp()

ConcreteImplementationA

operationsImp()

[11] 32 / 41Lutz Prechelt, prechelt@inf.fu-berlin.de

Bridge motivation

• GUI libraries often need two inheritance hierarchies:
• multiple classes for the GUI domain abstractions (design space)
• multiple implementations for each (solution space)

• (one per platform: Mac, Windows, X11, OS/2, etc.)

• Combining these into one leads to giant hierarchies:

Window

XWindow PMWindow

Window

XWindow PMWindow IconWindow

XIconWindow PMIconWindow

X: Unix X11 Windowing System
PM: OS/2 Presentation Manager

[11] 33 / 41Lutz Prechelt, prechelt@inf.fu-berlin.de

Bridge example

AbstractionBrücke
Window

drawText()
drawRectangle()

WindowImp

imp.platformDrawLine()
imp.platformDrawLine()
imp.platformDrawLine()
imp.platformDrawLine()

platformDrawText()
platformDrawLine()

XWindowImp

platformDrawText()
platformDrawLine()

PMWindowImp

platformDrawText()
platformDrawLine()

IconWindow

drawFrame()

TransientWindow

drawCloseButton()

XDrawLine() XDrawString()drawRectangle()
drawRectangle()
drawText()

(Simplified. Actual GUI libraries are more complex than this)

[11] 34 / 41Lutz Prechelt, prechelt@inf.fu-berlin.de

Adapter vs. Bridge

• Similarities:
• Both are used to hide the details of the underlying

implementation

• Difference:
• The adapter pattern is geared towards making unrelated

components work together
• Applied to systems after they’re designed (reengineering, interface

engineering)
• A bridge, on the other hand, is used up-front in a design to let

abstractions and implementations vary independently
• Green field engineering of an "extensible system"
• New "beasts" can be added to the "object zoo", even if these are not

known at analysis or system design time

[11] 35 / 41Lutz Prechelt, prechelt@inf.fu-berlin.de

Façade pattern

• Provides a unified interface to a set of objects in a subsystem
• A facade defines a higher-level interface that makes the

subsystem easier to use
• i.e. it abstracts away many details

• Facades allow us to provide a closed architecture
• When a module consists of multiple classes,

the Façade represents the module's interface

[11] 36 / 41Lutz Prechelt, prechelt@inf.fu-berlin.de

Subsystem design
with Façade, Adapter, Bridge

• The ideal structure of a subsystem consists of
• an interface object (boundary object)
• a set of application domain objects (entity objects) modeling real

entities or existing systems
• Some of the application domain objects are interfaces to existing

systems
• one or more control objects

We can use design patterns to realize this subsystem structure:
• Realization of the Interface Object: Facade

• Provides the interface to the subsystem
• Interface to existing systems: Adapter or Bridge

• Provides the interface to existing system (legacy system)
• The existing system is not necessarily object-oriented!

[11] 37 / 41Lutz Prechelt, prechelt@inf.fu-berlin.de

Design patterns
encourage reusable designs

• A facade pattern should be used for each subsystem in a
software system; it defines the visible services
• The facade will delegate requests to the appropriate components

within the subsystem
• Most of the time the façade does not need to be changed when

the component is changed

• Adapters interface to existing components
• For example, a smart card software system should interface to

different smart card readers via different adapters

• Bridges should be used to interface to a set of objects
• where the full set is not known at analysis or design time
• when the subsystem must be extended later after the system has

been deployed and client programs are in the field (dynamic
extension)

[11] 38 / 41Lutz Prechelt, prechelt@inf.fu-berlin.de

Additional design heuristics

1. Avoid implementation inheritance,
always prefer interface inheritance
• Because implementation inheritance often results in cascading

changes when you modify the superclass
• When you are tempted to use implementation inheritance,

consider delegation instead

2. Apply "design by contract" throughout each inheritance
hierarchy
• Each subclass operation

must require at most the preconditions of the superclass and
must provide at least the postconditions of the superclass

• Because only then code using the superclass will always
also work correctly with each subclass

• Make sure not to violate this rule when redefining superclass methods
• A subclass must never hide operations implemented in a

superclass

[11] 39 / 41Lutz Prechelt, prechelt@inf.fu-berlin.de

Literature

• Erich Gamma, Ralph Johnson, Richard Helm, John Vlissides:
"Design Patterns: Elements of Reusable Software", 1994.
• The classic "Gang of Four" (GoF) book. Collection of basic design

patterns found when constructing GUI frameworks, but useful in
many situations

• Frank Buschmann, Regine Meunier, Hans Rohnert, Peter
Sommerlad, Michael Stal: "Pattern-Oriented Software
Architecture: A System of Patterns", 1996
• The other classic (sometimes called "Gang of Five" book).

Discusses architecture patterns, design patterns, idioms, and
pattern systems

• http://c2.com "The Portland Pattern Repository"
• The world's first wiki, created for discussing design patterns

(and very many other things).
• Interesting!

[11] 40 / 41Lutz Prechelt, prechelt@inf.fu-berlin.de

Summary

• Design patterns are solution ideas for common problems
such as
• separating an interface from

(a number of alternate) existing implementations
• wrapping around a (set of) legacy class(es)
• protecting a caller from platform-specific changes

• A (oo-)design pattern describes how to compose a few classes
• use delegation and inheritance
• provide a robust and modifiable solution

• The idea underlying the pattern should be adapted/refined
for the specific system under construction
• Customization of the design and purpose
• Reuse of existing solutions
• Combination with other patterns

[11] 41 / 41Lutz Prechelt, prechelt@inf.fu-berlin.de

Thank you!

