
[8] 1 / 46

Course "Softwaretechnik"
Book Chapter 5

Lutz Prechelt, Bernd Bruegge, Allen H. Dutoit

Freie Universität Berlin, Institut für Informatik
http://www.inf.fu-berlin.de/inst/ag-se/

Analysis: Dynamic Modeling

• Dynamic modeling
• Sequence diagrams
• State diagrams

• Using dynamic modeling for the
design of user interfaces

And then:
• Requirements analysis

document template
• esp. non-functional req's.

• Requirements analysis model
validation

Lutz Prechelt, prechelt@inf.fu-berlin.de

[8] 2 / 46

How do you find classes?

• In previous lectures we have already established
the following sources
• Application domain analysis: Talk to client to identify abstractions
• Application of general world knowledge and intuition
• Scenarios
• Use Cases
• Textual analysis of problem statement (Abbott)

• Today we show how to identify classes and their operations
and attributes from dynamic models
• Activity lines in sequence diagrams identify candidates for classes
• Messages in sequence diagrams may turn up as operations in

classes
• Actions and activities in statecharts or activity diagrams are

candidates for public operations in classes

Lutz Prechelt, prechelt@inf.fu-berlin.de

[8] 3 / 46

Dynamic Modeling with UML

• Diagrams for dynamic modeling
• Interaction diagrams describe behavior examples
• Statecharts specify a single object

• Interaction diagrams
• Sequence diagram:

• Dynamic behavior of a set of objects in time sequence
• Good for real-time specifications and complex scenarios

• Collaboration diagram:
• Different but roughly equivalent diagram type, rare

• Statechart diagram:
• A state machine of the responses of an object

to the receipt of outside stimuli (Events)
• Activity Diagram: A special type of statechart diagram,

where all states are action states

Lutz Prechelt, prechelt@inf.fu-berlin.de

[8] 4 / 46

Dynamic Modeling

• Definition of dynamic model:
• A collection of multiple behavior diagrams (such as statechart,

activity, and sequence diagrams),
• usually at least one regarding each important class

with important dynamic behavior

• Purpose:
• Understand behavioral requirements
• Detect and supply methods for the object model

• How do we do this?
• Start with use case or scenario, plus identification of classes
• Model interaction between objects sequence diagram
• Model dynamic behavior of a single object statechart diagram

Lutz Prechelt, prechelt@inf.fu-berlin.de

[8] 5 / 46

Heuristics for sequence diagrams

• A typical layout:
• 1st column: The actor who initiated the use case
• 2nd column: A boundary object (perhaps missing in analysis)
• 3rd column: The control object managing the rest of the use case
• further columns: the other participating objects

• Creation:
• Control objects are often created at the initiation of a use case
• Additional boundary objects may be created by control objects

• Access:
• Entity objects are accessed by control and boundary objects
• Entity objects should never call boundary or control objects:

• This makes it easier to share entity objects across use cases and
• makes entity objects resilient against technology-induced changes in

boundary objects

Lutz Prechelt, prechelt@inf.fu-berlin.de

[8] 6 / 46

An ARENA sequence diagram:
create tournament

League
Owner

:Tournament
Boundary

newTournament
(league)

:Announce
Tournament

Control

«new»

setName(name)

setMaxPlayers
(maxp)

commit() createTournament
(name, maxp)

checkMax
Tournament()

create
Tournament
(name, maxp)

:Arena :League

:Tournament
«new»

ARENA is a
tournament
control SW
on top of
computer
games

Lutz Prechelt, prechelt@inf.fu-berlin.de

[8] 7 / 46

ARENA’s Object Model (before)

Attributes
Operations

League

Attributes
Operations

Tournament

Attributes
Operations

Player
Attributes
Operations

Match

Attributes
Operations

LeagueOwner 1 *

* *

Attributes
Operations

Arena• This is the ARENA object model
before we formulated the previous
sequence diagram

• The Sequence Diagram identified
new classes
• Tournament Boundary
• Announce_Tournament_Control
(see next slide)

Lutz Prechelt, prechelt@inf.fu-berlin.de

[8] 8 / 46

ARENA’s Object Model (new)

Attributes
Operations

League

Attributes
Operations

Tournament

Attributes
Operations

Player

Attributes
Operations

Match

Attributes
Operations

LeagueOwner 1 *

* *

Attributes
Operations

Tournament_
Boundary

Attributes
Operations

Announce_
Tournament_

Control
Attributes
Operations

Arena

Lutz Prechelt, prechelt@inf.fu-berlin.de

[8] 9 / 46

Impact on ARENA’s Object Model (2)

• The Sequence Diagram also supplied us several new events
• newTournament(league)
• setName(name)
• setMaxPlayers(maxp)
• commit()
• checkMaxTournaments()
• createTournament(name, maxp)

Who "owns" these events?
• For each object that receives an event

there is a public operation in the associated class
• The name of the operation is usually the name of the event

Lutz Prechelt, prechelt@inf.fu-berlin.de

[8] 10 / 46

Example from the sequence diagram

create
Tournament
(name, maxp)

League
Owner

:Tournament
Boundary

newTournament
(league)

:Announce
Tournament

Control
«new»

setName(name)

setMaxPlayers
(maxp)

commit()

checkMax
Tournament()

:Arena :League

:Tournament
«new»

createTournament is a (public)
operation in

Announce_Tournament_Control

createTournament
(name, maxp)

and so:

Lutz Prechelt, prechelt@inf.fu-berlin.de

[8] 11 / 46

Attributes
Operations

League

Attributes
Operations

Tournament

Attributes
Operations

Player

Attributes
Operations

Match

Attributes
Operations

LeagueOwner 1 *

* *

Attributes
Operations

Tournament_
Boundary

Attributes
createTournament

(name, maxp)

Announce_
Tournament_

Control

Attributes
Operations

Arena

Lutz Prechelt, prechelt@inf.fu-berlin.de

[8] 12 / 46

What else
can we get out of sequence diagrams?

• Sequence diagrams are derived from use cases
• We therefore see the structure of the use cases

• The structure of the sequence diagram helps us to determine
how decentralized the system should be

• We distinguish two basic structures of sequence diagrams
(Ivar Jacobson):
• Fork-style diagrams (central control)
• Stair-style diagrams (distributed control)

(see next slides)

btw:

Lutz Prechelt, prechelt@inf.fu-berlin.de

[8] 13 / 46

Central control: Fork diagram

• Much of the dynamic behavior is placed in a single object,
usually the control object
• It knows all the other objects and uses them for direct questions

and commands

Lutz Prechelt, prechelt@inf.fu-berlin.de

[8] 14 / 46

Decentralized control: Stair diagram

• The dynamic behavior is distributed.
Each object delegates some responsibility to other objects
• Each object knows only a few of the other objects and knows

which objects can help with a specific behavior

Lutz Prechelt, prechelt@inf.fu-berlin.de

[8] 15 / 46

Fork or Stair?
(Design thinking, not analysis thinking!)

Which of these diagram types should be chosen?
• Object-oriented fans claim the stair structure is better

• "The more the responsibility is spread out, the better"
• However, this is not always true

• One should usually have a "suitable" mix of both forms
• (see also design patterns "Mediator", "Façade")

Considerations:
• Decentralized control structure is locally simple:

• Objects do not get overly complex
• Responsibilities are easy to understand

• Centralized control structure better supports change:
• The operations can easily change order
• New operations can easily be inserted for new requirements

Lutz Prechelt, prechelt@inf.fu-berlin.de

[8] 16 / 46

UML statechart diagram notation

• Notation based on work by Harel
• UML adds a few object-oriented modifications

• A UML statechart diagram can be mapped into a finite state
machine

State2State1 Event1(attr) [condition]/action1

entry/action2
exit/action3

do/Activity

Event trigger
With parameters

Guard
condition

event2/action4

Lutz Prechelt, prechelt@inf.fu-berlin.de

[8] 17 / 46

Statechart diagrams

• Graph whose nodes are states and whose directed arcs are
transitions labeled by event names

• We distinguish between two types of elements in statecharts:
• Activity: Compound operation that takes time to complete

• associated with states
• (in UML:) can be described by its own Activity diagram

• Action: Elementary, "instantaneous" operation
• associated with events
• associated with states (reduces drawing complexity):

Entry, Exit, Internal Action
• (May in fact have structure, too, but the present statechart ignores it)

• A statechart diagram relates events and states for one class
• An object model with a set of objects

can have a corresponding set of state diagrams

Lutz Prechelt, prechelt@inf.fu-berlin.de

[8] 18 / 46

State

• An abstraction of the attribute values of a later
implementation class
• A state describes a certain set of configurations of attribute

values in an object (instance)

• Basically an "appropriate" equivalence class of attribute value
configurations that need not be distinguished
• example: the state "in_active_region" may mean

• x in 0..150 & y in 100…150
• What is appropriate depends on our current goal

• State has duration

Lutz Prechelt, prechelt@inf.fu-berlin.de

[8] 19 / 46

Example of a statechart diagram

testing item and computing change
entry / test and charge item

making changedo/dispensing item

Idle

[item empty]

select(item)

[change==0] [change>0]

[change<0]

Collecting Money
coin_in(amount)/add to balance

coin_in(amount) / set balance

cancel / refund coins

Note some states do not have (nor need) a name,
but need further details

Lutz Prechelt, prechelt@inf.fu-berlin.de

[8] 20 / 46

Nested state diagram

• Activities in states are composite items
denoting other lower-level state diagrams
• which may be spelled out or not

• A lower-level state diagram corresponds to lower-level states
and events that are invisible at the higher level

• The set of substates in such a nested state diagram
denotes a composite state
• enclosed by a large rounded box, also called region

• Transitions from other states to the composite state enter the
initial substate of the composite state
• Much like the entry point of a subroutine

• Transitions to other states from a composite state are
inherited by all the substates (state inheritance)
• Much like a runtime exception whose occurrence can terminate a

method at many points

Lutz Prechelt, prechelt@inf.fu-berlin.de

[8] 21 / 46

Example
of a nested statechart diagram

dispensing item

'Dispense item' as
an atomic activity:

moving arm
to row

'Dispense item' as
a composite activity:

arm ready

moving arm
to column

pushing item
off shelf

arm
ready

The little glasses indicate that
there are sub-activities hidden in

this composite activity

Lutz Prechelt, prechelt@inf.fu-berlin.de

[8] 22 / 46

Composite State

moving arm
to row

arm ready

moving arm
to column

pushing item
off shelf

arm
ready

Lutz Prechelt, prechelt@inf.fu-berlin.de

[8] 23 / 46

Modeling concurrency

Two types of concurrency:
• 1. System concurrency (across objects)

• State of overall system as the aggregation of state machines,
one for each object

• Note that one state diagram (for a class) may result in many
state machines (one per instance of the class)

• Each state machine is conceptually executing concurrently with
all others

• 2. Object concurrency (within objects)
• An object can be partitioned into subsets of states (attributes and

links) such that each subset has its own subdiagram
• The state of the object consists of a set of states:

one state from each subdiagram
• State diagrams (or composite states) are divided into regions by

dotted lines

Lutz Prechelt, prechelt@inf.fu-berlin.de

[8] 24 / 46

Example
of concurrency within an object

Setting Ready
Up to reset

Dispensing
Cash

Ejecting
Card

Ready

Cash taken

Card taken

SynchronizationSplitting control

Activity diagram style
Lutz Prechelt, prechelt@inf.fu-berlin.de

[8] 25 / 46

Using implicit join/split

Emitting

Setting Ready
Up to reset

Dispensing
Cash

Ejecting
Card

Ready

Cash taken

Card taken

SynchronizationSplitting control

Statechart style
Lutz Prechelt, prechelt@inf.fu-berlin.de

[8] 26 / 46

Dynamic modeling of user interfaces

• Statechart diagrams can be used for the design of user
interfaces
• to represent the Navigation Path or Page Flow

• States: Name of screens
• Graphical layout of the screens associated with the states helps

when presenting the dynamic model of a user interface
• Activities/actions are shown as bullets under screen name

• Often only the exit action is shown
• State transitions: Result of exit action

• Button click
• Menu selection
• Cursor movements

• Good for web-based user interface design

Lutz Prechelt, prechelt@inf.fu-berlin.de

[8] 27 / 46

Simplified navigation path example
Diagnostics Menu
•User moves cursor to Control Panel or Graph

Graph
• User selects data group
and type of graph

Selection
• User selects data group

• Field site
• Car
• Sensor group
• Time range

• User selects type of graph
• time line
• histogram
• pie chart

Visualize
• User views graph
• User can add data groups
for being viewed

Link
• User makes a link
(doclink)

Control panel
• User selects functionality of sensors

Disable
• User can disable
a sensor event
from a list of
sensor events

Define
• User defines a sensor event

from a list of events

Enable
• User can
enable a sensor
event from a list
of sensor events

List of sensor
events
• User selects sensor
event(s)

List of events
• User selects event(s)

(lines represent
pairs of arrows
in both directions)

Lutz Prechelt, prechelt@inf.fu-berlin.de

[8] 28 / 46

Practical tips for state chart modeling

• Construct dynamic models only for classes with significant
(complex/important) dynamic behavior
• Avoid "analysis paralysis"
• Exception: If state diagrams suffice for code generation

• e.g. for control logic in telecommunications systems

• Consider only relevant attributes when defining states
• Use abstraction heavily

• Stick to a sensible granularity of actions and activities
• This is still analysis, not design!

• Reduce notational clutter
• Try to put actions into state boxes (look for identical actions on

events leading to the same state)

Lutz Prechelt, prechelt@inf.fu-berlin.de

[8] 29 / 46

Summary: requirements analysis

1. What is the external behavior?
Create scenarios , use cases, use case diagrams

Talk to client, observe, get historical records, do thought experiments

2. What is the structure of the system?
Create class diagrams

Identify objects, associations, attributes, operations

3. What is its behavior?
Create sequence diagrams

Identify senders and receivers
Show sequence of messages exchanged between objects

Create state diagrams
Only for the dynamically interesting objects

Dynamic Modeling

Functional Modeling

Object Modeling

Lutz Prechelt, prechelt@inf.fu-berlin.de

[8] 30 / 46

Analysis: UML activity diagram

Note that this diagram
is rather vague, as the
meaning of the arrows
is not explained

R e v i e w
m o d e l

C o n s o l i d a t e
m o d e l

D e f i n e
e n t i t y

D e f i n e
b o u n d a r y

D e f i n e
c o n t r o l

D e f i n e
i n t e r a c t i o n s

D e f i n e
a s s o c i a t i o n s

D e f i n e
a t t r i b u t e s

D e f i n e
n o n t r i v i a l
b e h a v i o r

D e f i n e
p a r t i c i p a t i n g

D e f i n e
u s e c a s e s

o b j e c t s

o b j e c t s o b j e c t so b j e c t s

Lutz Prechelt, prechelt@inf.fu-berlin.de

[8] 31 / 46

When is a model dominant?

• We call a model dominant if it contains a much larger fraction
of the interesting information than the others

Examples:

• Simple database system:
• Situation: The operations are straightforward (load, store),

but there are complex data structures
• Consequence: The static object model is dominant

• Telephone switching system:
• Data structures do not tell us much and

behavior is too complex to be fully described by use cases
• The dynamic model (in particular using statecharts) is dominant

Lutz Prechelt, prechelt@inf.fu-berlin.de

[8] 32 / 46

Requirements analysis
document template

1. Introduction
2. Current system
3. Proposed system

3.1 Overview
3.2 Functional requirements [keep this short! 3.5.2]
3.3 Nonfunctional requirements
3.4 Constraints ("Pseudo requirements") see the following slides
3.5 Analysis Model on 3.5 (short), 3.3, 3.4

3.5.1 Scenarios
3.5.2 Use case model
3.5.3 Object model

3.5.3.1 Data dictionary
3.5.3.2 Class diagrams

3.5.4 Dynamic model
3.5.5 User interface

4. Glossary
Lutz Prechelt, prechelt@inf.fu-berlin.de

[8] 33 / 46

Section 3.5: system models

• 3.5.1 Scenarios
• As-is scenarios, visionary scenarios

• 3.5.2 Use case model
• Actors and use cases

• 3.5.3 Object model (this is still analysis!)
• Data dictionary
• Class diagrams (classes, associations, attributes and operations)

• 3.5.4 Dynamic model
• State diagrams for classes with significant dynamic behavior
• Sequence diagrams for collaborating objects (protocol)

• 3.5.5 User Interface
• Navigational Paths, Screen mockups

Lutz Prechelt, prechelt@inf.fu-berlin.de

[8] 34 / 46

Section 3.3:
nonfunctional requirements

• 3.3.1 User interface and human factors
• 3.3.2 Documentation
• 3.3.3 Hardware considerations
• 3.3.4 Performance characteristics
• 3.3.5 Error handling and extreme conditions
• 3.3.6 System interfacing
• 3.3.7 Quality issues
• 3.3.8 System modifications
• 3.3.9 Physical environment
• 3.3.10 Security issues
• 3.3.11 Resources and management issues

see the following slides

Lutz Prechelt, prechelt@inf.fu-berlin.de

[8] 35 / 46

Nonfunctional requirements:
trigger questions

• 3.3.1 User interface and human factors
• What type of user will be using the system?
• Will more than one type of user be using the system?
• What sort of training will be required for each type of user?
• Is it particularly important that the system be easy to learn?
• Must users be particularly well protected from making errors?
• What sort of UI input/output devices will be used?

• 3.3.2 Documentation
• What kind of documentation is required?
• What audience is to be addressed by each document?

• 3.3.3 Hardware considerations
• What hardware is the proposed system to be used on?
• What are the characteristics of the target hardware, including

memory size and auxiliary storage space?
Lutz Prechelt, prechelt@inf.fu-berlin.de

[8] 36 / 46

Nonfunctional requirements (2)

• 3.3.4 Performance characteristics
• Are there any speed, throughput, or response time constraints on

the system?
• Are there size or capacity constraints on the data to be processed

by the system?

• 3.3.5 Error handling and extreme conditions
• How should the system respond to input errors?
• How should the system respond to extreme conditions?

• 3.3.6 System interfacing
• What input is coming from systems outside the proposed

system?
• What output is going to systems outside the proposed system?

Lutz Prechelt, prechelt@inf.fu-berlin.de

[8] 37 / 46

Nonfunctional requirements (3)

• 3.3.7 Quality issues
• What are the requirements for reliability?
• Must the system trap faults?
• How fast must the system restart after a failure?
• What is the acceptable system downtime per day/month/year?
• Is it important that the system be portable (able to move to

different hardware or operating system environments)?

• 3.3.8 System Modifications
• What parts of the system are likely candidates for later

modification?
• What sorts of modifications are expected?

• 3.3.9 Physical Environment
• For example, unusual temperatures, humidity, vibrations,

magnetic fields, ...

Lutz Prechelt, prechelt@inf.fu-berlin.de

[8] 38 / 46

Nonfunctional requirements (4)

• 3.3.10 Security Issues
• Must access to any data or the system itself be controlled?
• Is physical security an issue?

• 3.3.11 Resources and Management Issues
• How often will the system be backed up?
• Who will be responsible for

• system installation?
• daily operation and configuration?
• back up? When? How often?
• maintenance?

• What is the desaster recovery plan?

Lutz Prechelt, prechelt@inf.fu-berlin.de

[8] 39 / 46

Section 3.4
Constraints (pseudo requirements)

• Constraint:
• Any client restriction on the solution domain

• Examples:
• The target platform must be an IBM iSeries
• The implementation language must be COBOL
• The documentation standard X must be used
• A dataglove must be used
• ActiveX must not be used
• The system must interface to a papertape reader

Lutz Prechelt, prechelt@inf.fu-berlin.de

[8] 40 / 46

Verification and validation of models

VerificationVerificationVerificationValidation

fM

fR

MM

R R
A A

R

R
fR fMA

MAnalysis

MAnalysis

Analysis
MImpl

MImpl

fImpl

Implemen-
tation

fMS

MSystem

MSystem

System
Design

fMD

MObject

MObject

Object
Design

Validation (acceptance test)

M = Model

R = Reality

f = Behavior/relationships

A = abstraction/modelling

Lutz Prechelt, prechelt@inf.fu-berlin.de

[8] 41 / 46

Correctness,
completeness and consistency

• Verification is an equivalence check between two related
models:
• The second was derived from the first by transformation.

Is the transformation correct?
• Validation is different. We don’t have two models, we need to

compare one model with reality
• "Reality" can also be an artificial system, like a legacy system

• Requirements and implementations should be validated with
the client and the user
• Techniques for requirements: Formal and informal reviews

(Meetings, requirements review)
• Techniques for implementations: Acceptance testing, system use

• Requirements validation involves the checks for
• Correctness, Completeness, Ambiguity, Realism

Lutz Prechelt, prechelt@inf.fu-berlin.de

[8] 42 / 46

Modeling checklist for the review

• Is the model correct?
• A model is correct if it represents the client’s view of the the

system: Everything in the model represents an aspect of reality
• Is the model complete?

• Every relevant scenario, including exceptions, is described
• Is the model consistent?

• The model does not have components that contradict each other
(for example, deliver contradicting results)

• Is the model unambiguous?
• The model describes one target reality, not many

• Is the model realistic?
• The model can be implemented with acceptable effort

Lutz Prechelt, prechelt@inf.fu-berlin.de

[8] 43 / 46

At the end of analysis:
Project agreement

• The project agreement represents the acceptance of (parts of)
the analysis model (as documented by the requirements
analysis document) by the client

• The client and the developers converge on a single idea and
agree about the functions and features that the system will
have. In addition, they agree on:
• a list of prioritized requirements
• a revision process
• a list of criteria that will be used to accept or reject the system
• a schedule, and probably a budget

Lutz Prechelt, prechelt@inf.fu-berlin.de

[8] 44 / 46

Prioritizing requirements

• High priority ("Core requirements")
• Must be addressed during analysis, design, and implementation
• A high-priority feature must be demonstrated successfully during

client acceptance

• Medium priority ("Optional requirements")
• Must be addressed during analysis and design
• Often implemented and demonstrated in the second iteration of

the system development

• Low priority ("Fancy requirements")
• Must be addressed during analysis ("very visionary scenarios")
• Illustrates how the system may be going to be used in the future

• e.g. once not-yet-available technology becomes available

Lutz Prechelt, prechelt@inf.fu-berlin.de

[8] 45 / 46

Summary

• In this lecture, we reviewed the construction of the
dynamic model from use case and object models.
• In particular: Sequence and Statechart diagrams

for identifying new classes and operations

• In addition, we described the requirements analysis document
and its components

Lutz Prechelt, prechelt@inf.fu-berlin.de

[8] 46 / 46

Thank you!

Lutz Prechelt, prechelt@inf.fu-berlin.de

	Analysis: Dynamic Modeling �
	How do you find classes?
	Dynamic Modeling with UML
	Dynamic Modeling
	Heuristics for sequence diagrams
	An ARENA sequence diagram: �create tournament
	ARENA’s Object Model (before)
	ARENA’s Object Model (new)
	Impact on ARENA’s Object Model (2)
	Example from the sequence diagram
	Slide Number 11
	What else �can we get out of sequence diagrams?
	Central control: Fork diagram
	Decentralized control: Stair diagram
	Fork or Stair?�(Design thinking, not analysis thinking!)
	UML statechart diagram notation
	Statechart diagrams
	State
	Example of a statechart diagram
	Nested state diagram
	Example �of a nested statechart diagram
	Composite State
	Modeling concurrency
	Example �of concurrency within an object
	Using implicit join/split
	Dynamic modeling of user interfaces
	Simplified navigation path example
	Practical tips for state chart modeling
	Summary: requirements analysis
	Analysis: UML activity diagram
	When is a model dominant?
	Requirements analysis�document template
	Section 3.5: system models
	Section 3.3: �nonfunctional requirements
	Nonfunctional requirements: �trigger questions
	Nonfunctional requirements (2)
	Nonfunctional requirements (3)
	Nonfunctional requirements (4)
	Section 3.4 �Constraints (pseudo requirements)
	Verification and validation of models
	Correctness, �completeness and consistency
	Modeling checklist for the review
	At the end of analysis:�Project agreement
	Prioritizing requirements
	Summary
	Thank you!

