
[4] 1 / 59Lutz Prechelt, prechelt@inf.fu-berlin.de

Modeling with UML

• Modeling, models and UML
• Static view:

• Class diagrams
• Dynamic view:

• Sequence diagrams
• State machine diagrams
• Activity diagrams

• Other UML diagram types
• component d., collaboration

use d., deployment d.,
communication d., interaction
overview d.

• UML Metamodel, Profiles
• Some notation details

• Classes, associations,
interfaces, states

Course "Softwaretechnik"
Book Chapter 2

Lutz Prechelt, Bernd Bruegge, Allen H. Dutoit
Freie Universität Berlin, Institut für Informatik

http://www.inf.fu-berlin.de/inst/ag-se/

[4] 2 / 59Lutz Prechelt, prechelt@inf.fu-berlin.de

What is modeling?

• Modeling consists of building an abstraction of reality
• Models ignore irrelevant details (i.e., they simplify)
• and only represent the relevant details

• What is relevant or irrelevant depends on the
purpose of the model. We typically want to
• draw complicated conclusions about reality

with simple steps in the model in order to
• get insights into the past or presence or make predictions

• Reality R:
• Real things, people, etc.
• Processes happening during some time
• Relationships between things etc.

• Model M:
• Abstractions of any or all of the above

[4] 3 / 59Lutz Prechelt, prechelt@inf.fu-berlin.de

What is a "good" model?

• In a good model, relationships which are valid in reality R
are also valid in model M (if they exist in M at all).
• I : Mapping of reality R to the model M (abstraction)
• fM: relationship between abstractions in M
• fR: equivalent relationship between real things in R

• In a good model, the following diagram is commutative:

fM

fR

MM

R R
I I

[4] 4 / 59Lutz Prechelt, prechelt@inf.fu-berlin.de

Models of models of models...

• Modeling is relative

• We can think of a model as reality and can build another
model from it (with additional abstractions)
• The development of software systems is a transformation of models:

Analysis,
Design,
Implementation

fM1

fR

M1M1

R R

Requirements
Elicitation I1

M2M2

Analysis I2

fM2

….

[4] 5 / 59Lutz Prechelt, prechelt@inf.fu-berlin.de

Systems, models and views

• A model is an abstraction describing relevant aspects of a
system

• A view ("Sicht") depicts selected aspects of a model
• Any view is a model itself
• Calling a model a view makes clear it is part of a larger model
• Complex models are often shown as many views only

• never as a whole

• A notation is a set of rules for depicting models
• graphically or textually

• Example:
• System: Aircraft
• Models: Flight simulator, scale model, construction plan, …
• Views: All blueprints (e.g. electrical wiring, fuel system)

[4] 6 / 59Lutz Prechelt, prechelt@inf.fu-berlin.de

What is UML?

UML (Unified Modeling Language):
• The most-used standard for software modeling

• For both requirements modeling (application domain)
• and software modeling (solution domain)

• A set of related notations
• Quite complex, we will use a subset only

• Resulted from the convergence of notations from
three leading object-oriented methods:
• OMT (James Rumbaugh)
• OOSE (Ivar Jacobson)
• Booch (Grady Booch)
• The authors are known as "The Three Amigos"

• Supported by CASE tools
• http://de.wikipedia.org/wiki/UML-Werkzeug

[4] 7 / 59Lutz Prechelt, prechelt@inf.fu-berlin.de

Common UML diagram types

• Use Case diagrams (functional view)
• Catalog scenarios that describe the functional behavior of the

system as seen by the user [see lecture "use cases"]
• Class diagrams / Object diagr. (static view and examples)

• Describe the static structure of the system: Classes, attributes,
object associations (class diagram) or
snapshots of possible resulting configurations (object diagram)

• Sequence diagrams (dynamic view examples)
• Describe examples of the dynamic behavior between objects of

the system (and possibly actors)
• State machine diagrams (dynamic view)

• Describe some aspects of the dynamic behavior of the individual
object of a class by a finite state automaton

• Activity diagrams (dynamic view)
• Model the dynamic behavior of a system, in particular the

workflow (essentially a flowchart, but with concurrency)

[4] 8 / 59Lutz Prechelt, prechelt@inf.fu-berlin.de

Less common UML diagram types

Hardly covered in this course:
• Implementation diagrams

• Component diagrams
• Deployment diagrams

• Communication diagrams
• Equivalent to sequence diagrams, but embedded in an object

diagram (shows both static structure and dynamic interaction)
• Interaction overview diagrams

• Related to activity diagrams, for describing control flow

There is also a non-graphical language for expressing conditions:
• Object constraint language (OCL)

• Introduced in lecture on Object Design

[4] 9 / 59Lutz Prechelt, prechelt@inf.fu-berlin.de

UML core conventions

• Diagrams are mostly graphs
• Nodes are entities
• Edges are relationships between entities

• Rectangles are classes or instances
• Ovals are functionalities or use cases

• An instance is denoted with an underlined name
• myWatch:SimpleWatch or with no classifier: myWatch:
• Joe:Firefighter or with no name: :Firefighter
• (Anonymous instance of unnamed classifier: :

• Please don’t use this …)

• A classifier is denoted with a non-underlined name
• SimpleWatch
• Firefighter

[4] 10 / 59Lutz Prechelt, prechelt@inf.fu-berlin.de

UML class diagrams

ClassAssociation

Multiplicity

Attribute
Operations

Class diagrams represent the structure of the system

[4] 11 / 59Lutz Prechelt, prechelt@inf.fu-berlin.de

Class diagrams:
Classes

• A class represents a concept
• A class encapsulates state (attributes) and behavior (operations)
• Each attribute has a type
• Each operation has a signature
• But the class name is the only mandatory information in a UML class

description

Name

Attributes

Operations
Signature

[4] 12 / 59Lutz Prechelt, prechelt@inf.fu-berlin.de

Instances ("Exemplare", "Objekte")

• An instance represents a phenomenon
• The name of an instance is underlined and may indicate the class of

the instance
• May indicate instance name or class or both

• Attributes may be represented with their values

Class nameInstance
Name

Value

[4] 13 / 59Lutz Prechelt, prechelt@inf.fu-berlin.de

Associations

• Associations denote relationships between classes

• The multiplicity of an association end denotes how many objects the
source object can legitimately reference:
• Any one TariffSchedule object is associated with at least one TripLeg

object
• Any one TripLeg object is associated with at least one TariffSchedule

object
• n and m can be numbers ("5") or ranges (closed/open: "1..5" or "2..*")
• A missing annotation means "1"

• Informally, if there are no annotations anywhere, it may also mean *
• "*" means "arbitrarily many" (zero, one, or several)

n m

[4] 14 / 59Lutz Prechelt, prechelt@inf.fu-berlin.de

1-to-1 and 1-to-many associations

One-to-one association

One-to-many association

Too restrictive?:
Some countries
have a separate
seat of
government

Too flexible?:
Does a Polygon
with 0, 1, or 2
Points really
make sense?

[4] 15 / 59Lutz Prechelt, prechelt@inf.fu-berlin.de

Many-to-many associations

Problem Statement: "A stock exchange lists many companies.
Each company is uniquely identified by a ticker symbol."

(Now a Company could have
different tickerSymbols at each
StockExchange)

Qualified
multiplicity

[4] 16 / 59Lutz Prechelt, prechelt@inf.fu-berlin.de

Aggregation

• An aggregation is a special case of association denoting a
"consists of"/"is part of" hierarchy

• The object representing the whole is called the aggregate,
the objects representing the parts are called components

• A solid diamond denotes composition, a strong form of aggregation
where the parts never exist without the composite
• The association is in force

throughout the life of the
parts objects

[4] 17 / 59Lutz Prechelt, prechelt@inf.fu-berlin.de

Inheritance (Java: "extends")

• The children classes inherit the attributes and operations of
the parent class

• Read the triangle as an arrowhead,
meaning "inherits from"
• CancelButton inherits from Button
• ZoneButton inherits from Button

[4] 18 / 59Lutz Prechelt, prechelt@inf.fu-berlin.de

Realization (Java: "implements")

[4] 19 / 59Lutz Prechelt, prechelt@inf.fu-berlin.de

Example:
Plato’s and Aristotle’s world views

Plato Aristotle

[4] 20 / 59Lutz Prechelt, prechelt@inf.fu-berlin.de

Association classes

• Individual associations between objects can have attributes
• Described by an association class

[4] 21 / 59Lutz Prechelt, prechelt@inf.fu-berlin.de

Association constraints

• Associations can be described by further details:

[4] 22 / 59Lutz Prechelt, prechelt@inf.fu-berlin.de

Class diagrams: theater example

• ..and some more
notation details:
• role name
• XOR constraint
• static operation

[4] 23 / 59

• A package is a UML mechanism for organizing elements (e.g.
classes or whole class diagrams) into groups
• Does not usually represent an application domain concept

• Packages are the basic grouping construct with which you
may organize UML models to increase their readability

• A complex system can be decomposed into subsystems,
where each subsystem is modeled as a package

Lutz Prechelt, prechelt@inf.fu-berlin.de

Packages

IncidentManagement

DispatcherInterface

Notification

[4] 24 / 59Lutz Prechelt, prechelt@inf.fu-berlin.de

UML sequence diagrams

• Used during requirements
analysis
• To refine use case descriptions
• to find additional objects

("participating objects")
• Used during system design

• to refine subsystem interfaces

Objects are represented by
columns (objname:classname)
Messages are represented by
arrows
Activations are represented
by narrow rectangles
Lifelines are represented by
dashed lines

[4] 25 / 59Lutz Prechelt, prechelt@inf.fu-berlin.de

Nested messages

• The source of an arrow indicates the activation which sent the
message

• An activation is as long as all nested activations (for normal calls)
• Horizontal dashed arrows indicate data flow
• Vertical dashed lines indicate lifelines

Dataflow
…to be continued...

[4] 26 / 59Lutz Prechelt, prechelt@inf.fu-berlin.de

Sequence diagram: theater example

external call,
external return

[4] 27 / 59

• creation
• nesting

• iteration

• conditions,
branching

• destruction

Advanced features

Lutz Prechelt, prechelt@inf.fu-berlin.de

[4] 28 / 59Lutz Prechelt, prechelt@inf.fu-berlin.de

Sequence diagram summary

• UML sequence diagrams represent behavior in terms of object
interactions
• Useful to find missing objects
• Useful for explaining design ideas

• Describes examples only, no general specification

• Time-consuming to build, but may be worth it

• Complement the class diagrams (which represent structure)

dynamic view

static view

[4] 29 / 59Lutz Prechelt, prechelt@inf.fu-berlin.de

State machine diagrams

Event

Initial state

Transition

State

Do Activity

Transition Effect

[4] 30 / 59Lutz Prechelt, prechelt@inf.fu-berlin.de

Transitions can be
subject to guard conditions

[4] 31 / 59Lutz Prechelt, prechelt@inf.fu-berlin.de

Parallel (orthogonal)
states, explicit exits

[4] 32 / 59Lutz Prechelt, prechelt@inf.fu-berlin.de

A transition is
the consequence of an event

[4] 33 / 59Lutz Prechelt, prechelt@inf.fu-berlin.de

There can be
multiple transitions at one state

• Internal transitions don’t leave the state
• Entry and Exit Activities can be annotated inside the state box

• to avoid redundancy and encapsulate the state

• also: do / some_activity
• for a concurrent, abortable, potentially long-running activity

occuring throughout the state

[4] 34 / 59Lutz Prechelt, prechelt@inf.fu-berlin.de

Activity Diagrams

• An activity diagram shows flow control (and optionally data
flow) within a system

• Two types of (executable) nodes:
• Action node:

• Basic activity, cannot be decomposed any further
• Predefined in UML, e.g. object creation/destruction,

accessing/modifying attributes or links, calling operations
• Activity node:

• Can be decomposed further
• The activity is modeled by another activity diagram

[4] 35 / 59Lutz Prechelt, prechelt@inf.fu-berlin.de

State machine diagram
vs. activity diagram

State machine diagram for Incident
(Node represents some set of attribute values)

Activity diagram for Incident handling
(Node represents some collection of operations)

Event causes
transition

Completion of activity
causes execution to proceed

[4] 36 / 59Lutz Prechelt, prechelt@inf.fu-berlin.de

Activity diagram: decisions

Decision

[4] 37 / 59Lutz Prechelt, prechelt@inf.fu-berlin.de

Activity diagrams: concurrency

• Synchronization of multiple activities
• Splitting the flow of control into multiple threads

JoinFork

[4] 38 / 59Lutz Prechelt, prechelt@inf.fu-berlin.de

Activity diagrams: theater example

[4] 39 / 59Lutz Prechelt, prechelt@inf.fu-berlin.de

Further UML diagram types

Static view:
• Component diagrams, internal structure diagrams

• Subsystems (components) and their interfaces
• Collaboration use diagram

• A part of a structure that collaborates for a specific purpose
• Deployment diagrams

• Computers and which part of the system runs on which

Dynamic view:
• Communication diagrams

• Equivalent to sequence diagrams, but embedded in an object
diagram (shows both static structure and dynamic interaction)

• Interaction overview diagrams
• Related to activity diagrams, for describing control flow

[4] 40 / 59Lutz Prechelt, prechelt@inf.fu-berlin.de

Components

• Components represent classes or subsystems
(multiple classes)
• The focus is on their interfaces

[4] 41 / 59Lutz Prechelt, prechelt@inf.fu-berlin.de

Component diagram,
internal structure diagram

• Compositions of components
• Component diagram: relationships between components
• Internal structure diagram: structure of a component (as below)

or any other classifier

[4] 42 / 59

• A view describing the roles different parts play for one specific
purpose
• Can be on class level (as below) and on instance level

Lutz Prechelt, prechelt@inf.fu-berlin.de

Collaboration use diagram

[4] 43 / 59Lutz Prechelt, prechelt@inf.fu-berlin.de

Deployment diagram

for distributed
systems:
describes
which code
runs on which
computer
("node")

[4] 44 / 59Lutz Prechelt, prechelt@inf.fu-berlin.de

Communication diagram

• An object diagram with interaction annotations
• Indicates interactions (like a sequence diagram) as well as object

relationships (by the object diagram)

[4] 45 / 59Lutz Prechelt, prechelt@inf.fu-berlin.de

Interaction overview diagram

• A combination of
activity diagram and
sequence diagram:
• activities may be

sequence diagram
fragments

[4] 46 / 59

Diagram types overview (UML 2.2)

Lutz Prechelt, prechelt@inf.fu-berlin.de source: Wikimedia Commons

[4] 47 / 59Lutz Prechelt, prechelt@inf.fu-berlin.de

UML is described in UML itself

• The UML model describing UML is called the
UML metamodel
• It consists of UML class diagrams plus descriptive text

• Class level: Every kind of UML element (e.g. "association")
is a class in that metamodel
• The characteristics are described by attributes or associated

classes
• e.g. the UML metamodel contains a class Association

• Instance level: Every association in a specific UML model can
be interpreted as an instance of the Association class in the
UML metamodel
• But actually there is much more than just one class:

[4] 48 / 59Lutz Prechelt, prechelt@inf.fu-berlin.de

The UML Metamodel of associations

Source:
UML 2.4.1,
section 7.2
http://www.omg.org

[4] 49 / 59Lutz Prechelt, prechelt@inf.fu-berlin.de

UML is extensible

• Profiles add elements to the UML metamodel
• A profile is a package that defines «stereotypes» and constraints

that can be applied to certain metamodel elements

stereotype of the
metamodel
stereotype of the
EJB profile

[4] 50 / 59Lutz Prechelt, prechelt@inf.fu-berlin.de

UML is fairly precise

• In this course, we will be using UML in a rather informal and
imprecise manner
• Our models are usually not very detailed
• They leave many things unspecified (i.e., they are incomplete)

• However, one can produce fairly precise UML models
• Such models have a reasonably well-defined meaning, as UML

itself is specified in a semi-formal manner
• No complete semantics have been specified for UML overall, though

• There is much more to UML than can be said here
• UML 2.4 Infrastructure + Superstructure: 200 + 800 pages
• UML 2.5, rewritten in one document: 800 pages

• Precise UML usage is relevant for automatic code generation
from the UML model
• In some domains, such as telecommunication, complete

subsystems are sometimes code-generated from UML models
today

[4] 51 / 59Lutz Prechelt, prechelt@inf.fu-berlin.de

What should you know about UML?

• For all application domains:
• Learn as much as you can about class diagrams

(object diagrams help in doing this)
• (soon maybe also component diagrams)

• Learn the basics of use case, sequence, communication, state
machine, and activity diagrams

• For realtime and formally specifiable (sub)domains:
• Also learn a lot about state machine diagrams

• If you want to make full use of UML CASE tools:
• Learn a lot about packages and about profiles

• If you want to build UML CASE tools:
• Learn about the UML metamodel (Warning: tough!)

[4] 52 / 59Lutz Prechelt, prechelt@inf.fu-berlin.de

UML summary

• UML provides a wide variety of notations for representing
many aspects of software development
• Powerful, but complex language
• Can be misused to generate unreadable models
• Can be misunderstood when using too many exotic features
• Many people who claim to "know UML" actually know very little

• For now we concentrate on a few notations:
• Functional model: Use case diagram
• Object model: class diagram
• Dynamic model: sequence diagrams,

state machine and activity diagrams

[4] 53 / 59Lutz Prechelt, prechelt@inf.fu-berlin.de

Literature

• James Rumbaugh, Ivar Jacobson, Grady Booch:
"The Unified Modeling Language Reference Manual", Second
Edition (UML 2.0), Addison-Wesley 2005.
• this is also the source of the figures with blue annotations

• James Rumbaugh, Ivar Jacobson, Grady Booch:
"The Unified Modeling Language User Guide",
Second Edition (UML 2.0), Addison-Wesley 2005.
• actually teaches how to use the UML

• this lecture did not do this, but some of the rest of the course will
• less misleading than some other books on the topic

The current version of UML is 2.5 (June 2015).
• http://www.omg.org/spec/UML/2.5/PDF/

[4] 54 / 59Lutz Prechelt, prechelt@inf.fu-berlin.de

Thank you!

[4] 55 / 59Lutz Prechelt, prechelt@inf.fu-berlin.de

UML language elements details

• The next few slides present a number of details in the
notation of
• Classes (Class diagrams)
• Associations (Class diagrams)
• Interfaces (Class diagrams)
• States (State machine diagrams)

[4] 56 / 59Lutz Prechelt, prechelt@inf.fu-berlin.de

Details: Class

[4] 57 / 59Lutz Prechelt, prechelt@inf.fu-berlin.de

Details: Association

[4] 58 / 59Lutz Prechelt, prechelt@inf.fu-berlin.de

Details: Interfaces

[4] 59 / 59Lutz Prechelt, prechelt@inf.fu-berlin.de

Details: States

