
[13]    1 / 37Lutz Prechelt, prechelt@inf.fu-berlin.de

Course "Softwaretechnik"
Book Chapters 9, 10

Object Design: Specifying Interfaces,
Model-to-implementation mapping

Lutz Prechelt, Bernd Bruegge & Allen H. Dutoit
Freie Universität Berlin, Institut für Informatik

http://www.inf.fu-berlin.de/inst/ag-se/

• Visibility
• Type information
• Contracts: OCL

• preconditions, postconditions, 
invariants

• includes, asSet, forAll, exists

• Mapping associations to code



[13]    2 / 37Lutz Prechelt, prechelt@inf.fu-berlin.de

Wo sind wir?: Taxonomie 
"Die Welt der Softwaretechnik"

Welt der Problemstellungen:

• Produkt (Komplexitätsprob.)
• Anforderungen (Problemraum)
• Entwurf (Lösungsraum)

• Prozess (psycho-soziale P.)
• Kognitive Beschränkungen
• Mängel der Urteilskraft
• Kommunikation, 

Koordination
• Gruppendynamik
• Verborgene Ziele
• Fehler

Welt der Lösungsansätze:

• Technische Ansätze ("hart")
• Abstraktion
• Wiederverwendung
• Automatisierung

• Methodische Ansätze ("weich")
• Anforderungsermittlung
• Entwurf
• Qualitätssicherung
• Projektmanagement



[13]    3 / 37Lutz Prechelt, prechelt@inf.fu-berlin.de

Wo sind wir?:
Entwurf

• Einsicht: Man sollte vor dem Kodieren über eine günstige 
Struktur der Software nachdenken
• und diese als Koordinationsgrundlage schriftlich festhalten

• Prinzipien:
• Trennung von Belangen
• Architektur: Globale Struktur festlegen (Grobentwurf), insbes. 

für das Erreichen der nichtfunktionalen Anforderungen
• Modularisierung: Trennung von Belangen durch 

Modularisierung, Kombination der Teile durch Schnittstellen 
(information hiding, Lokalität)

• Wiederverwendung: Erfinde Architekturen und Entwurfsmuster 
nicht immer wieder neu

• Dokumentation: Halte sowohl Schnittstellen als auch zu Grunde 
liegende Entwurfsentscheidungen und deren Begründungen fest



[13]    4 / 37Lutz Prechelt, prechelt@inf.fu-berlin.de

Part of ARENA’s object model 
identified during the analysis

TournamentControl

Player
players*

Tournament
name

1

1

applyForTournament()

Match

playMove()
getScore()

matches

*
start
status

selectSponsors()
advertizeTournament()
acceptPlayer()
announceTournament()

start
end

1
1

*

matches *

TournamentForm

*

*

acceptPlayer()
removePlayer()
schedule()

Advertiser

sponsors *
*

*

*

*



[13]    5 / 37Lutz Prechelt, prechelt@inf.fu-berlin.de

Specifying Interfaces

• Requirements analysis activities
• Identifying attributes and operations without specifying their 

types or their parameters
• Often not all attributes and operations are identified in this stage

• Object design: Four activities
• 0. Identify remaining attributes and operations
• 1. Add visibility information 
• 2. Add type signature information
• 3. Add contracts

• Object design is a detail-level subtask of modularization



[13]    6 / 37Lutz Prechelt, prechelt@inf.fu-berlin.de

1. Add Visibility Information 

UML defines four kinds of visibility:
• 1: Private (visible for class implementer only)

• marked by '-' in diagrams
• 2a: Protected (visible also for class extender)

• marked by '#' in diagrams
• 2b: Package (private to a package, not to a class)

• when a package represents a module, this means 
'publicly visible inside the module'

• marked by '~' in diagrams
• 3: Public (fully visible)

• marked by '+' in diagrams

• Difference to Java visibilities:
• Java: 'protected' is also visible for classes in the package. 

This is not true (and cannot be expressed) in UML
• The 'package' default promotes creation of Facades 

UML:
-private

#protected ~package

+public

protected

Java:
private

package

public



[13]    7 / 37Lutz Prechelt, prechelt@inf.fu-berlin.de

Information Hiding Heuristics

• Carefully define the public interface for classes as well as 
subsystems (façade)

• Always apply the "Need to know" principle
• Only if somebody needs to access the information make it 

publicly possible, 
• but then only through well-defined channels, so the module can 

control the access (in particular changes to individual attributes). 
• The less an operation knows 

• the less likely it will be affected by any changes
• the easier the module can be changed

• Trade-off: Information hiding vs. efficiency 
• In a few cases, accessing a private attribute might be needed for 

speed reasons (for example in real-time systems or games)
• BUT: "Make it work first before you make it work fast"



[13]    8 / 37Lutz Prechelt, prechelt@inf.fu-berlin.de

Java: Packages as modules

• The module interface contains one Facade class (for methods) 
plus perhaps several data type classes (for data and methods)
• perhaps interfaces only, not actual classes

• These classes or interfaces are public, all others have package
visibility
• and all members of these 'other' classes have 

package or private visibility (public and protected would not help)
• Package (or default) visibility in Java has no visibility declarator

• Most members of public classes have public or protected
visibility
• Note that protected members add an inheritance aspect to the 

interface of the class that results in less information hiding.
• private should be used when the class is so complicated that 

protected would likely lead to integrity violations
• package (for module-internal class-external access) 

is rarely needed



[13]    9 / 37Lutz Prechelt, prechelt@inf.fu-berlin.de

2. Add Type Signature Information

Map

+put(key:Object,entry:Object)
+get(key:Object):Object
+remove(key:Object)
+containsKey(key:Object):boolean
+size():int

-numElements:int

Map

+put()
+get()
+remove()
+containsKey()
+size()

-numElements:int

Attributes and 
operations

without type information
are acceptable
during analysis



[13]    10 / 37Lutz Prechelt, prechelt@inf.fu-berlin.de

3. Add Contracts

• Contracts on a class enable caller and callee to share the 
same assumptions about the class

Contracts include three types of constraints:
• Invariant: 

• A predicate that is true for an instance after any external call. 
Invariants are constraints associated with classes or interfaces

• The invariant is thus an implicit part of each postcondition
• Precondition: 

• Preconditions are predicates associated with a specific operation 
and must be true before the operation is invoked

• They specify constraints that a caller must ensure before the call 
• Postcondition: 

• Postconditions are predicates associated with a specific operation 
and must be true after the operation is invoked

• They specify constraints that the class must ensure when the call 
returns



[13]    11 / 37Lutz Prechelt, prechelt@inf.fu-berlin.de

OCL:
Expressing Constraints in UML Models

• An OCL constraint can be depicted as a note attached to the 
constrained UML element by a dependency relationship

• Or it can be specified textually outside the UML diagram:

«precondition»
not containsKey(key)

«precondition»
containsKey(key)

«precondition»
containsKey(key)

«postcondition»
get(key) == entry

«postcondition»
not containsKey(key)

«invariant»
numElements >= 0

HashTable

put(key,entry:Object)
get(key):Object
remove(key:Object)
containsKey(key:Object):boolean
size():int

numElements:int



[13]    12 / 37Lutz Prechelt, prechelt@inf.fu-berlin.de

Contract 
for acceptPlayer in Tournament

context Tournament::acceptPlayer(p) pre:
not isPlayerAccepted(p)

context Tournament::acceptPlayer(p) pre:
getNumPlayers() < getMaxNumPlayers()

context Tournament::acceptPlayer(p) post:
isPlayerAccepted(p)

context Tournament::acceptPlayer(p) post:
getNumPlayers() = getNumPlayers@pre() + 1

The value of the 
expression before the call



[13]    13 / 37Lutz Prechelt, prechelt@inf.fu-berlin.de

Contract 
for removePlayer in Tournament

context Tournament::removePlayer(p) pre:
isPlayerAccepted(p)

context Tournament::removePlayer(p) post:
not isPlayerAccepted(p)

context Tournament::removePlayer(p) post:
getNumPlayers() = getNumPlayers@pre() - 1

Is this contract complete?

No. OCL specifications tend to make the tacit assumption that
"everything else stays the same" -- they are very often incomplete.



[13]    14 / 37Lutz Prechelt, prechelt@inf.fu-berlin.de

Annotation of Tournament class

public class Tournament {
/** The maximum number of players
* is positive at all times.
* @invariant maxNumPlayers > 0
*/

private int maxNumPlayers;

/** The players List contains 
* references to Players who are
* are registered with the
* Tournament. */

private List players;

/** Returns the current number of
* players in the tournament. */

public int getNumPlayers() {…}

/** Returns the maximum number of
* players in the tournament. */

public int getMaxNumPlayers() {…}

/** Assumes that the specified
* player has not been accepted
* in the Tournament yet.
* @pre !isPlayerAccepted(p)
* @pre getNumPlayers()<maxNumPlayers
* @post isPlayerAccepted(p)
* @post getNumPlayers() = 
*     @pre.getNumPlayers() + 1
*/

public void acceptPlayer (Player p) {…}

/** The removePlayer() operation
* assumes that the specified player
* is currently in the Tournament.
* @pre isPlayerAccepted(p)
* @post !isPlayerAccepted(p)
* @post getNumPlayers() =

@pre.getNumPlayers() - 1
*/

public void removePlayer(Player p) {…}
}

Note: @pre etc. is not Javadoc syntax, but JContract (or similar) syntax.
See http://en.wikipedia.org/wiki/Design_by_contract for a list of tools.



[13]    15 / 37Lutz Prechelt, prechelt@inf.fu-berlin.de

Constraints 
can involve more than one class

How do we specify constraints on 
more than one class?



[13]    16 / 37Lutz Prechelt, prechelt@inf.fu-berlin.de

3 Types of 
Navigation through a Class Diagram

Tournament
start:Date
end:Date

League

Player
Tournament

League

1. Local attribute
2. Directly related class

3. Indirectly related class

*

*

*

*

Player
*

Any OCL constraint for any class diagram 
can be built using only a combination 
of these three navigation types



[13]    17 / 37Lutz Prechelt, prechelt@inf.fu-berlin.de

ARENA Example: 
League, Tournament and Player

players

* tournaments
{ordered}

Tournament

+start:Date
+end:Date
+acceptPlayer(p:Player)

*
League

+start:Date
+end:Date
+getActivePlayers()

*
Player

+name:String
+email:String

* players

tournaments*



[13]    18 / 37Lutz Prechelt, prechelt@inf.fu-berlin.de

Model refinement 
with 3 additional constraints

1. A Tournament’s planned duration must be under one week

2. Players can be accepted in a Tournament only if they are 
already registered with the corresponding League

3. The Active Players in a League are those that have taken part 
in at least one Tournament of the League

• To better understand these constraints we instantiate the 
class diagram for a specific group of instances 
• 2 Leagues, 2 Tournaments and 5 Players



[13]    19 / 37Lutz Prechelt, prechelt@inf.fu-berlin.de

Instance Diagram: 2 Leagues, 
2 Tournaments, and 5 Players

chessNovice:League

zoe:Player

alice:Player

bob:Player

marc:Player

winter:Tournament

tttExpert:League

joe:Player

xmas:Tournament
start=Dec 21
end=Dec 22

start=Dec 23
end=Dec 25



[13]    20 / 37Lutz Prechelt, prechelt@inf.fu-berlin.de

Directly related class navigation
context 

Tournament::acceptPlayer(p)
pre:
league.players->includes(p)

Specifying the Model Constraints

Local attribute navigation
context Tournament inv:

end - start <= Calendar.WEEK

players

* tournaments
{ordered}

Tournament

+start:Date
+end:Date
+acceptPlayer(p:Player)

*
League

+start:Date
+end:Date
+getActivePlayers()

*
Player

+name:String
+email:String

* players

tournaments*

league

Is the League arrow correct?



[13]    21 / 37Lutz Prechelt, prechelt@inf.fu-berlin.de

Specifying the Model Constraints

Local attribute navigation
context Tournament inv:

end - start <= Calendar.WEEK

Directly related class navigation
context Tournament::acceptPlayer(p) pre:

league.players->includes(p)

Indirectly related class navigation
context League::getActivePlayers post:

result = tournaments->iterate( 
t, p = {} | p union t.players )

players

* tournaments
{ordered}

Tournament

+start:Date
+end:Date
+acceptPlayer(p:Player)

*
League

+start:Date
+end:Date
+getActivePlayers()

*
Player

+name:String
+email:String

* players

tournaments*

league



[13]    22 / 37Lutz Prechelt, prechelt@inf.fu-berlin.de

Pre- and post-conditions for ordering 
operations on TournamentControl

context TournamentControl::selectSponsors(advertisers) pre: 
interestedSponsors->notEmpty and tournament.sponsors->isEmpty

context TournamentControl::selectSponsors(advertisers) post:
tournament.sponsors.equals(advertisers)

context TournamentControl::advertiseTournament() pre:
tournament.sponsors->isEmpty and not tournament.advertised

context TournamentControl::advertiseTournament() post:
tournament.advertised

context TournamentControl::acceptPlayer(p) pre:
tournament.advertised and interestedPlayers->includes(p) and

not isPlayerOverbooked(p)
context TournamentControl::acceptPlayer(p) post:

tournament.players->includes(p)

TournamentControl

+selectSponsors(advertisers):List
+advertizeTournament()
+acceptPlayer(p)
+announceTournament()
+isPlayerOverbooked():boolean

1. Which order of calls will be
enforced?

2. There are at least two dubious
conditions here. Which?



[13]    23 / 37Lutz Prechelt, prechelt@inf.fu-berlin.de

OCL supports Quantification

• OCL forall quantifier
/* "All Matches in a Tournament occur within the 
Tournament’s time frame": */
• context Tournament inv:

matches->forAll(m |
m.start.after(self.start) and m.end.before(self.end))

• OCL exists quantifier
/* "Each Tournament conducts at least one Match on the first 
day of the Tournament": */
• context Tournament inv:

matches->exists(m | m.start.equals(self.start))

There is at least one dubious
condition here. Which?



[13]    24 / 37Lutz Prechelt, prechelt@inf.fu-berlin.de

Specifying invariants on 
Tournament and Tournament Control

• /* "All Matches in a Tournament occur within the 
Tournament’s time frame": */
context Tournament inv:

matches->forAll(m | m.start.after(self.start) and
m.end.before(self.end))

• /* "No Player can take part in two or more Tournaments that 
overlap": */
context TournamentControl inv:

tournament.players->forAll(p|
p.tournaments->forAll(t|

t <> tournament implies
not t.overlap(tournament)))



[13]    25 / 37Lutz Prechelt, prechelt@inf.fu-berlin.de

Specifying invariants on Match

/* "A match can only involve players who are accepted in the 
tournament" */

context Match inv:
players->forAll(p|

p.tournaments->exists(t| 
t.matches->includes(self)))

context Match inv:
players.tournaments.matches.includes(self)  /* insufficient! */

/* this condition is too weak, as it requires only one player to be registered */

players
*

matches

*

*
tournaments

players
*

Match

Player Tournament

*

In this diagram, can M be among a Tournament's Matches
without being among that Tournament's Players' Matches?

Yes. So we specify:



[13]    26 / 37Lutz Prechelt, prechelt@inf.fu-berlin.de

OCL in practice: general comments

Rules of thumb:
• Preconditions can often be expressed quite easily

• Invariants as well

• Postconditions are usually difficult to express in OCL
• but even incomplete specifications can be useful
• In that case, add a comment describing the rest

• It is often useful to introduce predicate methods in a class for 
simplifying the OCL expressions
• see examples above



[13]    27 / 37Lutz Prechelt, prechelt@inf.fu-berlin.de

OCL in practice: today

• OCL can be used to generate code which checks the behavior 
of classes at run time
• Such implementations today often do not handle quantifiers

• because their operationalization is often not practical
• Similar mechanisms are available for Java by means of 

preprocessors
• e.g. JContract
• The constraints are expressed using Javadoc tags
• The preprocessor inserts appropriate code

• A simpler mechanism is built into the Eiffel language
• keywords require, ensure, invariant

• Plain Java uses assert expressions in the code instead



[13]    28 / 37Lutz Prechelt, prechelt@inf.fu-berlin.de

OCL in practice: future

• In the future, more and more compilers will be able to check 
the consistency of code and OCL specifications
• so no runtime checks are required
• May often even be capable of checking quantified expressions

• by applying formal verification
• Will not be able to check all kinds of OCL specification, but many

• Consequence: 
Start using OCL as soon as possible in your daily work



[13]    29 / 37Lutz Prechelt, prechelt@inf.fu-berlin.de

Model-to-implementation mapping

• Some aspects of detailed UML design models can be mapped 
into implementations schematically
• More and more often, this is done automatically by tools 

(Model-driven architecture, MDA)
• Examples:

• Mapping associations to code
• Mapping contract violations to exceptions
• Mapping classes and associations to rDBMS database tables

(Object-relational mapping, ORM) 

• Let us look at association mapping as an example



[13]    30 / 37Lutz Prechelt, prechelt@inf.fu-berlin.de

Realization of a 
unidirectional, one-to-one association

AccountAdvertiser 11

Object design model before transformation

Source code after transformation
public class Advertiser {

protected Account account;
public Advertiser() {

account = new Account();
}
public Account getAccount() {

return account;
}

}

create a setAccount()
if the Account object
is pre-existing 

for bidirectional
associations 
do likewise
in Account:



[13]    31 / 37Lutz Prechelt, prechelt@inf.fu-berlin.de

Bidirectional one-to-one association

public class Advertiser {
/* account is initialized in
* constructor, never modified.
*/

protected Account account;
public Advertiser() {
account = new Account(this);

}
public Account getAccount() {

return account;
}

}

AccountAdvertiser 11
Object design model before transformation

Source code after transformation
public class Account {

/* owner is initialized in
* constructor, never modified.
*/

protected Advertiser owner;

public Account(
Advertiser owner) {

this.owner = owner;
}
public Advertiser getOwner() {

return owner;
}

}

Does this work as intended?  What can go wrong?



[13]    32 / 37Lutz Prechelt, prechelt@inf.fu-berlin.de

Bidirectional, one-to-many association

public class Advertiser {
protected Set accounts = new HashSet();
public void addAccount(Account a) {

accounts.add(a);
if (a.getOwner() != this)

a.setOwner(this);
}
public void removeAccount(Account a) {

accounts.remove(a);
if (a.getOwner() == this)

a.setOwner(null);
}

}

public class Account {
protected Advertiser owner = null;
public void setOwner(Advertiser

newOwner) {
Advertiser oldOwner = owner;
owner = null;  // cancel previous owner
if (oldOwner != null)

oldOwner.removeAccount(this);
owner = newOwner;
if (newOwner != null)

newOwner.addAccount(this);
}
public Advertiser getOwner() {

return owner;
}

}

Advertiser Account1 *

Object design model before transformation

Source code after transformation

(beware of infinite recursion!)



[13]    33 / 37Lutz Prechelt, prechelt@inf.fu-berlin.de

Bidirectional, 
many-to-many association

public class Tournament {
protected List players;
public Tournament() {

players = new ArrayList();
}
public void addPlayer(Player p) {
if (!players.contains(p)) {

players.add(p);
p.addTournament(this);

}
}

}

public class Player {
protected List tournaments;
public Player() {
tournaments = new ArrayList();
}
public void addTournament(

Tournament t) {
if (!tournaments.contains(t)) {

tournaments.add(t);
t.addPlayer(this);

}
}

}

Tournament Player* *

Source code after transformation

{ordered}

Object design model before transformation

(beware of infinite recursion!)



[13]    34 / 37Lutz Prechelt, prechelt@inf.fu-berlin.de

Bidirectional qualified association (2)

public class League {
protected Map players;

public void addPlayer
(String nickName, Player p) {

if (!players.
containsKey(nickName)) {

players.put(nickName, p);
p.addLeague(nickName, this);

}
}

}

public class Player {
protected Map leagues;

public void addLeague 
(String nickName, League l) {

if (!leagues.
containsKey(l)) {

leagues.put(l, nickName);
l.addPlayer(nickName,this);

}
}

}

Source code after forward engineering:

PlayernickName 0..1*League



[13]    35 / 37Lutz Prechelt, prechelt@inf.fu-berlin.de

Transformation of an association class

Tournament Player
* *

Object design model before transformation

Object design model after transformation:
A class and two binary associations

Statistics

+getAverageStat(name)
+getTotalStat(name)
+updateStats(match)

Tournament Player
1 1

* *

Statistics

+getAverageStat(name)
+getTotalStat(name)
+updateStats(match)



[13]    36 / 37Lutz Prechelt, prechelt@inf.fu-berlin.de

Summary

• During object design (and only then) we specify visibility

• Contracts are constraints on a class that enable class users, 
implementers, and extenders to share the same assumptions 
about the class ("Design by contract")
• Constraints are boolean expressions on model elements

• OCL is a language that allows us to express constraints 
• OCL (object constraint language) is part of the UML world

• Complicated constraints involving more than one class, 
attribute or operation can be expressed with 3 basic 
navigation types

• Various types of models can be mapped to code 
systematically



[13]    37 / 37Lutz Prechelt, prechelt@inf.fu-berlin.de

Thank you!


