
[12] 1 / 43Lutz Prechelt, prechelt@inf.fu-berlin.de

Course "Softwaretechnik"
Book Chapter 8

Lutz Prechelt, Bernd Bruegge, Allen H. Dutoit

Freie Universität Berlin, Institut für Informatik
http://www.inf.fu-berlin.de/inst/ag-se/

Object Design: Reuse and Patterns II

• Proxy
• Command
• Observer
• Strategy

• Abstract Factory
• Builder

[12] 2 / 43Lutz Prechelt, prechelt@inf.fu-berlin.de

Wo sind wir?: Taxonomie
"Die Welt der Softwaretechnik"

Welt der Problemstellungen:

• Produkt (Komplexitätsprob.)
• Anforderungen (Problemraum)
• Entwurf (Lösungsraum)

• Prozess (psycho-soziale P.)
• Kognitive Beschränkungen
• Mängel der Urteilskraft
• Kommunikation, Koordination
• Gruppendynamik
• Verborgene Ziele
• Fehler

Welt der Lösungsansätze:

• Technische Ansätze ("hart")
• Abstraktion
• Wiederverwendung
• Automatisierung

• Methodische Ansätze ("weich")
• Anforderungsermittlung
• Entwurf
• Qualitätssicherung
• Projektmanagement

[12] 3 / 43Lutz Prechelt, prechelt@inf.fu-berlin.de

Wo sind wir?:
Entwurf

• Einsicht: Man sollte vor dem Kodieren über eine günstige
Struktur der Software nachdenken
• und diese als Koordinationsgrundlage schriftlich festhalten

• Prinzipien:
• Trennung von Belangen
• Architektur: Globale Struktur festlegen (Grobentwurf), insbes.

für das Erreichen der nichtfunktionalen Anforderungen
• Modularisierung: Trennung von Belangen durch

Modularisierung, Kombination der Teile durch Schnittstellen
(information hiding, Lokalität)

• Wiederverwendung: Erfinde Architekturen und Entwurfsmuster
nicht immer wieder neu

• Dokumentation: Halte sowohl Schnittstellen als auch zu Grunde
liegende Entwurfsentscheidungen und deren Begründungen fest

[12] 4 / 43Lutz Prechelt, prechelt@inf.fu-berlin.de

Outline of the lecture

• Review of design pattern concepts
• What is a design pattern?
• Modifiable designs

• More patterns:
• Abstract Factory: Provide manufacturer independence
• Builder: Hide a complex creation process
• Proxy: Provide transparency
• Command: Encapsulate control flow
• Observer: Provide publisher/subscribe mechanism
• Strategy: Support family of algorithms,

separate policy from mechanism

[12] 5 / 43Lutz Prechelt, prechelt@inf.fu-berlin.de

Review: design pattern

A design pattern is…
• …a template solution to a recurring design problem

• Consider them before re-inventing the wheel
• …reusable design knowledge

• Higher level than classes or common data structures
• Lower level than application frameworks

• …an example of good design
• Learning to design starts by studying other designs

• …generalized from existing systems
• i.e., realistic (rather than armchair philosophy)

• …powerful shared vocabulary for designers

The patterns we consider here focus on modifiable designs

[12] 6 / 43Lutz Prechelt, prechelt@inf.fu-berlin.de

Modifiable designs

A modifiable design enables…
• …an iterative and incremental development cycle

• concurrent development
• risk management
• flexibility to change

• …to minimize the introduction of new problems when fixing
old ones

• …to deliver more functionality after initial delivery

What makes a design modifiable?
• Encapsulated design decisions

• Clear dependencies
• Explicit assumptions

• Low coupling and high cohesion

[12] 7 / 43Lutz Prechelt, prechelt@inf.fu-berlin.de

On to more patterns!

• Structural Pattern (Strukturmuster)
• Proxy Stellvertreter

• Creational Patterns (Erzeugungsmuster)
• Abstract Factory Abstrakte Fabrik
• Builder Erbauer

• Behavioral Patterns (Verhaltensmuster)
• Command Kommando
• Observer Beobachter
• Strategy Strategie

[12] 8 / 43Lutz Prechelt, prechelt@inf.fu-berlin.de

Proxy Pattern: motivation

• I want to access an image-
intensive webpage
• but am connected only via a

slow mobile phone
connection: 9600 bit/s

• Can my browser help?

• Solution idea:
• In place of each image,

display only a placeholder at
first

• Only after clicking on an
image, this image will be
downloaded

[12] 9 / 43Lutz Prechelt, prechelt@inf.fu-berlin.de

Proxy Pattern (Stellvertreter)

Also known as Surrogate

• Problem:
I need access to a certain object but I cannot (or do not
want to) access it directly

• Solution idea:
Provide a replacement object (with the same interface as the
original object) that performs the access for me

• http://c2.com/cgi/wiki?ProxyPattern

[12] 10 / 43Lutz Prechelt, prechelt@inf.fu-berlin.de

Proxy Pattern

• Interface inheritance is used to specify the interface shared by
Proxy and RealSubject

• Delegation is used to catch and forward any accesses to the
RealSubject (if and when desired)
• Client accesses Proxy only

• Proxy patterns can be implemented with a Java interface

Subject

Request()

RealSubject

Request()

Proxy

Request()

realSubject

[12] 11 / 43Lutz Prechelt, prechelt@inf.fu-berlin.de

Proxy applications

• Remote Proxy: Local representative for a remote object
• Provides location transparency

• Client need not know where the object lives
• Provides access transparency

• Client need not know the access mechanisms
• May provide caching of information

• Decorator: Invisibly add some functionality
• e.g. add a scrollbar to a text pane so it can fit in less space

• Virtual Proxy: Stand-in object
• When creating the object is expensive ( browser images above)

• Protection Proxy: Access control object
• Proxy object encapsulates the access rules
• Different proxies can be used for different clients

[12] 12 / 43Lutz Prechelt, prechelt@inf.fu-berlin.de

Towards a pattern taxonomy

• Structural Patterns ("Strukturmuster")
• Adapters, Bridges, Facades, and Proxies are variations on a

single theme:
• They reduce the coupling between two or more classes
• They introduce abstract classes to enable future extensions
• They encapsulate complex structures

• Behavioral Patterns ("Verhaltensmuster")
• Here we are concerned with algorithms and the assignment of

responsibilies between objects: Who does what?
• Behavioral patterns allow us to characterize complex control

flows that are difficult to follow at runtime
• Creational Patterns ("Erzeugungsmuster")

• Here we our goal is to provide an abstraction for a (possibly
complex) instantiation process

• We want to make the system independent from the way its
objects are created, composed, and represented

[12] 13 / 43Lutz Prechelt, prechelt@inf.fu-berlin.de

A pattern taxonomy

Abstract
Factory

Builder
Pattern

Pattern

Structural
Pattern Behavioral

Pattern

Creational
Pattern

Adapter Bridge Facade Proxy

Observer StrategyCommand

[12] 14 / 43Lutz Prechelt, prechelt@inf.fu-berlin.de

Command Pattern: motivation

• You want to build a user interface
• including menus

• You want to make the user interface reusable across many
applications and reconfigurable within each
• You cannot hard-code the meanings of the menus for the various

applications
• A Menu object should be just a container for MenuEntry objects

• So the operation called by the application when a menu entry is
selected must be the same for any MenuEntry

• Such a menu can be implemented with
the Command Pattern
• MenuEntries are (or contain) Command objects

[12] 15 / 43Lutz Prechelt, prechelt@inf.fu-berlin.de

Command example: menu entries

MenuApplication Command

execute()

Document

open()
close()
cut()
copy()
paste()

execute()

document.paste()

PasteCommand

execute()

Executer

MenuEntry

command.execute()

In a real application, the pattern would look a little different. How?

[12] 16 / 43Lutz Prechelt, prechelt@inf.fu-berlin.de

Command Pattern (Kommando)

Also known as Action or Transaction

• Problem: We need to handle actions just like data
• move them around, store them, copy them, pass them as

parameters, etc.

• Solution idea: Package different actions into objects with a
fixed interface

[12] 17 / 43Lutz Prechelt, prechelt@inf.fu-berlin.de

Command Pattern

• Client creates a ConcreteCommand and binds it with a
Receiver

• Client hands the ConcreteCommand over to the Invoker which
stores it

• The Invoker has the responsibility to perform the command
("execute" or "undo")

Command

execute()

Receiver

action()

Client

Invoker

ConcreteCommand

execute()

binds

[12] 18 / 43Lutz Prechelt, prechelt@inf.fu-berlin.de

Command Pattern applicability

• "Encapsulate a request as an object, thereby letting you…
• parameterize clients with different requests,
• queue requests,
• log requests,
• support undoable operations."

• Can be used for:
• Generic Undo mechanisms

• Upon 'execute', the command object stores all information required
for the 'undo' operation, e.g. the data deleted by the 'execute'

• Database transaction buffering

[12] 19 / 43Lutz Prechelt, prechelt@inf.fu-berlin.de

Observer Pattern (Beobachter)

Also known as Publish/Subscribe pattern

• Problem:
Whenever one particular object changes state,
several dependent objects must be modified
• The number and identity of the dependent objects is not known

statically

• Solution idea:
All dependents provide the same notification interface and
register with the state object
• All state objects (called subjects) provide the same registration

interface

[12] 20 / 43Lutz Prechelt, prechelt@inf.fu-berlin.de

Observer Pattern example

Spreadsheet

a=50%
b=30%
c=20%

a
30
30

10
20
10

b c

10

60
50
80

X
Y
Z

Pie graphBar graph

a b c

State object

Y

Y

Y

[12] 21 / 43Lutz Prechelt, prechelt@inf.fu-berlin.de

Observer Pattern example

9DesignPatterns2.ppt

Observers Subject

[12] 22 / 43Lutz Prechelt, prechelt@inf.fu-berlin.de

Observer Pattern (continued)

• The Subject represents the actual state,
the Observers represent different views of the state

• Observer can be implemented as a Java interface
• Subject is a superclass, not usually an interface

• needs to manage the list of Observers and perform notification

Observer
update()

Subject
attach(observer)
detach(observer)

notify()

ConcreteSubject

subjectState
getState()

setState(newState)

ConcreteObserver
observerState

update()

observers

subject

*

[12] 23 / 43Lutz Prechelt, prechelt@inf.fu-berlin.de

Sequence diagram for scenario:
change filename to "foo"

getState()

update()

update()

:aListView:anInfoView:aFile

setState("foo")

notify()

Attach() Attach()

"foo"

Subject goes through all its
observers and calls update() on

them. Asking for the new
state is decoupled from

the notification.

What is
unrealistic
about this
model?

[12] 24 / 43Lutz Prechelt, prechelt@inf.fu-berlin.de

Observer Pattern
implementation in Java

package java.util;
public class Observable<T> { // subject superclass

public void addObserver(Observer<T> o) {…}
public void deleteObserver(Observer<T> o) {…}
public boolean hasChanged() {…}
public void setChanged() {…}
public void notifyObservers() {…}
public void notifyObservers(T arg) {…}

}
public interface Observer<T> { // observer interface

public void update(Observable<T> o, T arg);
}

[12] 25 / 43Lutz Prechelt, prechelt@inf.fu-berlin.de

Observer Pattern example

package mypackage; // a subject
public class File extends Observable<String> {

…
public void setFilename(String filename) {

…
if (!this.filename.equals(filename)){

…
setChanged();

}
…
notifyObservers(filename);

}
public String getFilename() {…}

}

[12] 26 / 43Lutz Prechelt, prechelt@inf.fu-berlin.de

A pattern taxonomy

Pattern

Structural
Pattern Behavioral

Pattern

Creational
Pattern

Adapter Bridge Facade Proxy

Observer Strategy
Abstract
Factory

Builder
PatternCommand Strategy

[12] 27 / 43Lutz Prechelt, prechelt@inf.fu-berlin.de

Strategy Pattern (Strategie)

Also known as Policy pattern

• Problem:
There are multiple ways of doing something.
We want to add, use, and exchange them freely (perhaps
even dynamically), depending on context:
• Different algorithms for identical results (e.g. sorting)
• Different variants of equivalent results (e.g. codecs, file formats)
• Different purposes (e.g. access control policies)

• Solution idea:
Dynamically associate an object whose interface is
the same for all variants.

[12] 28 / 43Lutz Prechelt, prechelt@inf.fu-berlin.de

Strategy Pattern

Strategy

AlgorithmInterface()

Context

ContextInterface()

ConcreteStrategyC

AlgorithmInterface()

ConcreteStrategyB

AlgorithmInterface()

ConcreteStrategyA

AlgorithmInterface()

Rules

Rules may decide which Strategy is best in the current Context

[12] 29 / 43Lutz Prechelt, prechelt@inf.fu-berlin.de

Applying a Strategy Pattern
in a database application

Strategy
Sort()

Database

Search()
Sort()

Strategy

BubbleSort

Sort()

QuickSort

Sort()

MergeSort

Sort()

[12] 30 / 43Lutz Prechelt, prechelt@inf.fu-berlin.de

A pattern taxonomy

Pattern

Structural
Pattern Behavioral

Pattern

Creational
Pattern

Adapter Bridge Facade Proxy

Observer Strategy
Abstract
Factory

Builder
PatternCommand

Abstract
Factory

[12] 31 / 43Lutz Prechelt, prechelt@inf.fu-berlin.de

Abstract Factory: motivation

2 Examples:
• Consider a user interface toolkit that supports multiple Look-

and-Feel standards such as KDE, Windows or Mac OS X
• How can you write a single user interface and make it portable

across the different window managers?  Bridge Pattern
• When using the Bridge pattern, how do we switch between

implementations?

• Consider a facility management system for an intelligent
house that supports different control systems such as
Siemens Instabus, Johnson & Control Metasys or Zumtobel’s
proprietary standard
• How can you write a single control system that is independent of

the manufacturer?

[12] 32 / 43Lutz Prechelt, prechelt@inf.fu-berlin.de

Abstract Factory Pattern

Also known as Kit pattern
• Problem:

• We create many objects from a family of related classes
• There are several implementation variants of that family
• But for any one program run, all objects created must be from

the same family variant
• We want to create objects without caring which family variant is

currently active
• Solution idea:

• For each family member, all variants share the same interface
• We create objects by calling a factory method, not a constructor
• The factory methods are grouped in a factory class
• There is an abstract interface for the factory class
• and one implementation of the factory class per family variant

• Note how complex this description is!

[12] 33 / 43Lutz Prechelt, prechelt@inf.fu-berlin.de

Abstract Factory

AbstractFactory

CreateProductA
CreateProductB

CreateProductA
CreateProductB

AbstractProductA

ProductA1 ProductA2

AbstractProductB

ProductB1 ProductB2

ConcreteFactory1

CreateProductA
CreateProductB

ConcreteFactory2

Client

Initiation Assocation:
Class ConcreteFactory2 initiates the

associated classes ProductB2 and ProductA2

[12] 34 / 43Lutz Prechelt, prechelt@inf.fu-berlin.de

Applicability
for Abstract Factory Pattern

• Manufacturer Independence:
• A system should be configured with one family of products,

where one has a choice from many different families
• You want to provide a class library for a customer ("facility

management library"), but you don’t want to reveal what
particular product you are using

• Used in many places in the Java API for instance with XML libs

• Constraints on related products
• A family of related products is designed to be used together

and you need to enforce this constraint
• Independence from Initialization or Representation:

• The system should be independent of how its products are
created, composed or represented

• Cope with upcoming change:
• You use one particular product family, but you expect that the

underlying technology will change soon

[12] 35 / 43Lutz Prechelt, prechelt@inf.fu-berlin.de

Example: A Facility Management System
for the Intelligent Workplace

IntelligentWorkplace

InitLightSystem
InitBlindSystem
InitACSystem

InitLightSystem
InitBlindSystem
InitACSystem

Lights

InstabusLight
Controller

ZumbobelLight
Controller

Blinds

InstabusBlind
Controller

ZumtobelBlind
Controller

SiemensFactory

InitLightSystem
InitBlindsystem
InitACSystem

ZumtobelFactory

Facility
Mgt

System

Often used together with a Bridge

[12] 36 / 43Lutz Prechelt, prechelt@inf.fu-berlin.de

Builder Pattern: Motivation

• Conversion of documents
• Some software companies make their money by introducing

new formats, forcing users to upgrades
• But you don’t want to upgrade your software every time there is

an update of the format for Word documents
• Idea: A reader for RTF format

• Convert RTF to many text formats (Framemaker 4.0,
Framemaker 5.0, Framemaker 5.5, LaTeX, HTML, SGML,
WordPerfect 3.5, WordPerfect 7.0, ….)

• Problem: The number of conversions is open-ended

• Solution
• Configure the RTF Reader with a "builder" object.
• A Builder subclass specializes in converting to one known format.

• It has one method for each "build event" to be handled.
• New Builder classes can easily be added to deal with any new

format appearing on the market

[12] 37 / 43Lutz Prechelt, prechelt@inf.fu-berlin.de

Builder Pattern (Erbauer)

Construct()
Director

For all objects in Structure {
Builder->BuildPart()

}

BuildPart()

Builder

BuildPart()
GetResult()

ConcreteBuilderB Represen-
tation B

BuildPart()
GetResult()

ConcreteBuilderA

Represen-
tation A

[12] 38 / 43Lutz Prechelt, prechelt@inf.fu-berlin.de

Builder Pattern Example

Parse()

RTFReader

While (t = GetNextToken()) {
Switch t.Type {
CHAR: builder->ConvertCharacter(t.Char)
FONT: bulder->ConvertFontChg(t.Font)
PARA: builder->ConvertParagraph
}

}

ConvertCharacter()
ConvertFontChg()

ConvertParagraph()

TextConverter

ConvertCharacter()
ConvertFontChg()

ConvertParagraph()
GetASCIIText()

AsciiConverter

AsciiText

ConvertCharacter()
ConvertFontChg()

ConvertParagraph()
GetLaTeXText()

LatexConverter

LatexText

ConvertCharacter()
ConvertFontChg()

ConvertParagraph()
GetHTMLText()

HTMLConverter

HTMLText

Note: This
is simplified,
not a
realistic
design

[12] 39 / 43Lutz Prechelt, prechelt@inf.fu-berlin.de

When do you use the Builder Pattern?

• The creator of a complex product must not know which of
several different variant forms of the product is being built
• The production process must look exactly the same although the

products do not

• We need a simplified view of the creation process for a
complex product
• Creator should not need to know how the parts are put together

to make up the product

• The creation process must allow different descriptions for the
object that is constructed
• Different build processes can lead to the same product
• The Builder class API provides alternative abstractions

[12] 40 / 43Lutz Prechelt, prechelt@inf.fu-berlin.de

Comparison:
Abstract Factory vs. Builder

• Abstract Factory
• Focuses on product family

• The products can be simple ("light bulb") or complex ("engine")
• The creation process takes only one step

• The product is immediately returned

• Builder
• Creates only one type of product
• The creation process is complex: many separate steps

• and those steps can vary a lot

• Abstract Factory and Builder work well together for a family of
multiple complex products
• One or more of the factory methods may yield a Builder rather

than directly a product object

[12] 41 / 43Lutz Prechelt, prechelt@inf.fu-berlin.de

Summary

• Structural Patterns Adapter, Bridge, Façade, Proxy
• Focus: How objects are composed to form larger structures
• Problems solved:

• Provide flexibility and extensibility

• Behavioral Patterns Command, Observer, Strategy
• Focus: Algorithms and the assignment of responsibilities to

objects
• Problem solved:

• Reduce coupling to a particular algorithm

• Creational Patterns Abstract Factory, Builder
• Focus: Creation of complex objects
• Problems solved:

• Hide how complex objects are created and put together

[12] 42 / 43Lutz Prechelt, prechelt@inf.fu-berlin.de

Conclusion

Design patterns…

• provide reusable solution ideas for recurring problems
• lead to extensible models and code
• simplify talking about a design

• Because they provide powerful abstractions
• are examples of change-resistant design

• using interface inheritance and delegation
• apply the same principles to structure and to behavior

[12] 43 / 43Lutz Prechelt, prechelt@inf.fu-berlin.de

Thank you!

