
Institute of Computer Science
Department of Mathematics and Computer Science

Summer Term 2023 | 26.06.2023
Claudia Müller-Birn, Barry Linnert

Algorithms and Programming IV
Remote Method Invocation

2

Middleware Layers

Applications, services

Remote Procedure Calls

Interprocess communication

UDP and TCP

Middleware
layers

ALP IV: Concepts of Non-Sequential and Distributed Programming | Summer Term 2023

3

Our Topics Today
• Recap

• Remote Object invocation

• Components of RMI

• Implementation of RMI

• Java RMI

ALP IV: Concepts of Non-Sequential and Distributed Programming | Summer Term 2023

4

Remote Call Variantes
Remote procedure call (RPC)
• A procedure is called (typically part of a module) for procedural languages (e.g.,

Modula, C)
• Also for heterogeneous infrastructures, e.g. Distributed Computing Environment

(DCE)

Remote object invocation (ROI)
• For object-oriented languages (e.g., Java, C++, C#), where an operation/method

of an object is called.
• In Java it is called Remote Method Invocation (RMI) and in C# ".NET Remoting"
• Also for heterogeneous infrastructures, e.g. CORBA.

ALP IV: Concepts of Non-Sequential and Distributed Programming | Summer Term 2023

5

Commonalities of ROI and RPC
• Support of programming languages with interfaces.

• Both are typically constructed on top of the request-reply protocol, offering several
call semantics (exactly once, at most once, and at least once).

• Offer a similar level of transparency, which means local and remote calls employ
the same syntax, but remote interfaces expose the distributed nature, for example,
by supporting remote exceptions.

ALP IV: Concepts of Non-Sequential and Distributed Programming | Summer Term 2023

6

REMOTE OBJECT INVOCATION
Remote method invocation

ALP IV: Concepts of Non-Sequential and Distributed Programming | Summer Term 2023

7

Remote and Local Method Invocation

Remote object reference: Other objects can invoke the methods of a remote object
if they have access to its remote object reference.

invocation invocation
remote

invocation
remote

local
local

local
invocation

invocation
A B

C

D

E

F

ALP IV: Concepts of Non-Sequential and Distributed Programming | Summer Term 2023

8

Remote Object Reference

The remote object reference is an identifier for a remote object that is valid
throughout the distributed system. It is passed in the invocation message to specify
which object is to be invoked.

Internet
address port number time object number interface of

remote object

32 bits 32 bits 32 bits 32 bits

ALP IV: Concepts of Non-Sequential and Distributed Programming | Summer Term 2023

9

Remote and Local Method Invocation

Remote object reference: Other objects can invoke the methods of a remote object
if they have access to its remote object reference.

Remote interface: Every remote object has a remote interface that specifies which of
its methods can be invoked remotely.

invocation invocation
remote

invocation
remote

local
local

local
invocation

invocation
A B

C

D

E

F

ALP IV: Concepts of Non-Sequential and Distributed Programming | Summer Term 2023

10

A Remote Object and its Remote Interface

interface
remote

m1
m2
m3

m4
m5
m6

Data

implementation

remoteobject

{ of methods

ALP IV: Concepts of Non-Sequential and Distributed Programming | Summer Term 2023

11

Instantiation of Remote Objects

invocation invocation
remote

invocation
remote

local
local

local
invocation

invocation
A B

C

D

E

F

ALP IV: Concepts of Non-Sequential and Distributed Programming | Summer Term 2023

12

Instantiation of Remote Objects

invocation
remote

invocation

remote

C M
K

L

N

instantiate instantiate

invocation invocation
remote

invocation
remote

local
local

local
invocation

invocation
A B

C

D

E

F

ALP IV: Concepts of Non-Sequential and Distributed Programming | Summer Term 2023

13

Exceptions
• Any remote invocation may fail for reasons related to the invoked object being in a

different process or computer from the invoker.

• Remote method invocation should be able to raise exceptions such as timeouts.
Exceptions provide a clean way to deal with error conditions without complicating
the code.

• In Java, for example, predefined exceptions are listed here:
https://docs.oracle.com/en/java/javase/17/docs/specs/rmi/exceptions.html

ALP IV: Concepts of Non-Sequential and Distributed Programming | Summer Term 2023

https://docs.oracle.com/en/java/javase/17/docs/specs/rmi/exceptions.html

14

RMI COMPONENTS
Remote method invocation

ALP IV: Concepts of Non-Sequential and Distributed Programming | Summer Term 2023

15

Process of Remote Method Invocation

client

object A

Stub
(proxy for B)

server

remote
object B

remote reference
module

communication
module

remote reference
module

servant

ALP IV: Concepts of Non-Sequential and Distributed Programming | Summer Term 2023

Skeleton &
dispatcher

for B’s class

16

Remote Reference Module/Servant

client

object A
proxy
for B

server

remote
object B

Skeleton &
dispatcher
for B’s class

remote reference
module

communication
module

remote reference
module

request

reply

servant

ALP IV: Concepts of Non-Sequential and Distributed Programming | Summer Term 2023

17

RMI Software

client

object A
proxy
for B

server

remote
object B

Skeleton &
dispatcher
for B’s class

remote reference
module

communication
module

remote reference
module

request

reply

servant

Skeleton &
dispatcher

for B’s class

ALP IV: Concepts of Non-Sequential and Distributed Programming | Summer Term 2023

18

Java Distributed Garbage Collection Algorithm

client

object A
proxy
for B

server

remote
object B

Skeleton &
dispatcher
for B’s class

remote reference
module

communication
module

remote reference
module

request

reply

servant

ALP IV: Concepts of Non-Sequential and Distributed Programming | Summer Term 2023

19

RMI IMPLEMENTATION
Remote Method Invocation

ALP IV: Concepts of Non-Sequential and Distributed Programming | Summer Term 2023

20

Abstraction Layers in the RMI Implementation

Remote Reference Layer Remote Reference Layer

Stubs & Skeletons

Client Program

Stubs & Skeletons

Server Program

Transport Layer

RMI
system

ALP IV: Concepts of Non-Sequential and Distributed Programming | Summer Term 2023

21

Abstraction Layers in the RMI Implementation
1. Stub and Skeleton Layer: Intercepts method calls made by the client to the interface

reference variable and redirects these calls to a remote RMI service
2. Remote Reference Layer: Interpret and manage references made from clients to the

remote service objects
3. Transport Layer: Is based on TCP/IP connections between machines in a network.

Provides basic connectivity.

Remote Reference Layer Remote Reference Layer

Stubs & Skeletons

Client Program

Stubs & Skeletons

Server Program

Transport Layer

RMI
system

ALP IV: Concepts of Non-Sequential and Distributed Programming | Summer Term 2023

22

Separation of Concerns
RMI architecture is based on one important principle: the definition of behavior and
the implementation of that behavior are separate concepts.

RMI allows the code that defines the behavior and the code that implements the
behavior to remain separate and to run on separate JVMs.

Interface

Client program

Implementation

Server program

RMI
system

ALP IV: Concepts of Non-Sequential and Distributed Programming | Summer Term 2023

23

Implementation of the Interface

Service Proxy

Client

Service
Implementation

Server

«Interface»
Service

RMI
“Magic”

ALP IV: Concepts of Non-Sequential and Distributed Programming | Summer Term 2023

24

Server and Client Programs
Server program

− Contains classes for the dispatcher and skeletons, together with the implementations of
the classes of all of the servants

− Contains a initialization section (responsible for creating and initializing at least one of the
servants to be hosted by the server)

− Generally allocates a separate thread for the execution of each remote invocation ->
designer of the remote object implementation must allow concurrent executions

Client program
− Contain the classes of the proxies for all of the remote objects that it will invoke
− Require a means of obtaining a remote object reference for at least one of the remote

objects held by the server -> binder

ALP IV: Concepts of Non-Sequential and Distributed Programming | Summer Term 2023

25

Naming Remote Objects

RMI includes a simple service called the RMI Registry, rmiregistry.

The RMI Registry runs on each machine that hosts remote service objects and
accepts queries for services, by default on port 1099.

How does a client find a RMI remote service?

ALP IV: Concepts of Non-Sequential and Distributed Programming | Summer Term 2023

26

Naming Remote Objects (cont.)
Server program Client program

Creates a remote service
by creating a local object

Export object to RMI

Register object in the
RMI Registry

Queries RMI Registry by
method lookup()

rmi://<host_name>[:<name_service_port>]/<service_name>

ALP IV: Concepts of Non-Sequential and Distributed Programming | Summer Term 2023

27

Stub and Skeleton Layer

Remote Reference Layer Remote Reference Layer

Stubs & Skeletons

Client Program

Stubs & Skeletons

Server Program

Transport Layer

RMI
system

ALP IV: Concepts of Non-Sequential and Distributed Programming | Summer Term 2023

28

Stub and Skeleton Layer
RMI uses the Proxy design pattern

− The stub class is the proxy
− The remote service implementation class is the RealSubject

The Skeleton is a helper class.
− Carries on a conversation with the stub
− Reads the parameters for the method call → makes the call to the remote service

implementation object → accepts the return value → writes the return value back to the
stub

ALP IV: Concepts of Non-Sequential and Distributed Programming | Summer Term 2023

29

Remote Reference Layer

ALP IV: Concepts of Non-Sequential and Distributed Programming | Summer Term 2023

Remote Reference Layer Remote Reference Layer

Stubs & Skeletons

Client Program

Stubs & Skeletons

Server Program

Transport Layer

• Defines and supports the invocation semantics of the RMI connection.
• Provides a RemoteRef object that represents the link to the remote service

implementation object.

RMI
system

30

Transport Layer

ALP IV: Concepts of Non-Sequential and Distributed Programming | Summer Term 2023

Remote Reference Layer Remote Reference Layer

Stubs & Skeletons

Client Program

Stubs & Skeletons

Server Program

Transport Layer

RMI
system

• The Transport Layer makes the connection between JVMs.
All connections are stream-based network connections that
use TCP/IP.

• On top of TCP/IP, RMI uses a wire level protocol called Java
Remote Method Protocol (JRMP). JRMP is a proprietary,
stream-based protocol.

31

Generation of Classes for
Proxies, Dispatcher and Skeleton
Classes for proxies, dispatcher and skeleton are generated automatically by an
interface compiler.

Java RMI contains a set of methods offered by a remote object defined as a Java
interface that is implemented within the class of the remote object.

Java RMI compiler generates the proxy, dispatcher and skeleton classes from the
class remote object.

ALP IV: Concepts of Non-Sequential and Distributed Programming | Summer Term 2023

32

Abstraction Layers in the RMI Implementation

Remote Reference Layer Remote Reference Layer

Stubs & Skeletons

Client Program

Stubs & Skeletons

Server Program

Transport Layer

RMI
system

ALP IV: Concepts of Non-Sequential and Distributed Programming | Summer Term 2023

33

JAVA JMI

ALP IV: Concepts of Non-Sequential and Distributed Programming | Summer Term 2023

34

How to implement a RMI Java application

• Define the remote interface
• Develop the implementation class (remote object)
• Develop the server program
• Develop the client program
• Compile the application
• Execute the application

ALP IV: Concepts of Non-Sequential and Distributed Programming | Summer Term 2023

35

Defining the Remote Interface
import java.rmi.Remote;

import java.rmi.RemoteException;

// Creating Remote interface for our application

public interface Hello extends Remote {

 void printMsg()

 throws RemoteException;

}

ALP IV: Concepts of Non-Sequential and Distributed Programming | Summer Term 2023

36

Developing the Implementation Class (Remote Object)

// Implementing the remote interface

public class ImplExample implements Hello {

// Implementing the interface method

 public void printMsg() {

 System.out.println("This is an example RMI program.");
 }

 }

ALP IV: Concepts of Non-Sequential and Distributed Programming | Summer Term 2023

37

Developing the Server Program
import java.rmi.registry.Registry;

import java.rmi.registry.LocateRegistry;

import java.rmi.RemoteException;

import java.rmi.server.UnicastRemoteObject;

public class Server extends ImplExample {

 public Server() {}

 public static void main(String args[]) {

 try {

 // Instantiating the implementation class
 ImplExample obj = new ImplExample();

…

ALP IV: Concepts of Non-Sequential and Distributed Programming | Summer Term 2023

38

Developing the Server Program (cont.)
// Exporting the object of implementation class

 // (here we are exporting the remote object to the stub)
Hello stub = (Hello) UnicastRemoteObject.exportObject(obj, 0);

 // Binding the remote object (stub) in the registry
Registry registry = LocateRegistry.getRegistry();

 registry.bind("Hello", stub);
System.err.println("Server ready");

 } catch (Exception e) {

 System.err.println("Server exception: " + e.toString());
e.printStackTrace();

} } }

ALP IV: Concepts of Non-Sequential and Distributed Programming | Summer Term 2023

39

Developing the Client Program
import java.rmi.registry.LocateRegistry;

import java.rmi.registry.Registry;

public class Client {

 private Client() {}

 public static void main(String[] args) {

 try {

 // Getting the registry

 Registry registry = LocateRegistry.getRegistry(null);

 // Looking up the registry for the remote object
 Hello stub = (Hello) registry.lookup("Hello");

ALP IV: Concepts of Non-Sequential and Distributed Programming | Summer Term 2023

40

Developing the Client Program (cont.)
 // Calling the remote method using the obtained object
 stub.printMsg();

 // System.out.println("Remote method invoked");

 } catch (Exception e) {
 System.err.println("Client exception: " +
 e.toString());

 e.printStackTrace();

 } } }

ALP IV: Concepts of Non-Sequential and Distributed Programming | Summer Term 2023

41

Compile Application
Open the folder where you have stored all the programs and
compile all the Java files:

ALP IV: Concepts of Non-Sequential and Distributed Programming | Summer Term 2023

C:\rmi_example>javac *.java

42

Execute Application
Step 1 − Start the rmi registry using the following command.

Step 2 − Run the server class file.

Step 3 − Run the client class.

ALP IV: Concepts of Non-Sequential and Distributed Programming | Summer Term 2023

C:\rmi_example>start rmiregistry

C:\rmi_example>java Server
Server ready
_

C:\rmi_example>java client

43

Verification

ALP IV: Concepts of Non-Sequential and Distributed Programming | Summer Term 2023

C:\rmi_example>java Server
Server ready
This is an example RMI program.

44

Summary
• The Remote Method Invocation (RMI) is a highly useful API provided in Java that

facilitates communication between two separate Java Virtual Machines (JVMs). It
allows an object to invoke a method on an object residing in another address
space.

• It provides a secure way for applications to communicate with each other. It
achieves this functionality using concepts Stub (Client calling object) and Skeleton
(Remote object residing on the server).

• RMI is used to build distributed applications by minimizing the complexity of the
application in a distributed architecture.

ALP IV: Concepts of Non-Sequential and Distributed Programming | Summer Term 2023

Institute of Computer Science
Department of Mathematics and Computer Science

Summer Term 2023 | 28.06.2023
Claudia Müller-Birn, Barry Linnert

Algorithms and Programming IV
Peer-to-peer computing and
networking

