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Our Topics Today
• Recap

• Remote Object invocation

• Components of RMI

• Implementation of RMI

• Java RMI
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Remote Call Variantes
Remote procedure call (RPC)
• A procedure is called (typically part of a module) for procedural languages (e.g., 

Modula, C)
• Also for heterogeneous infrastructures, e.g. Distributed Computing Environment 

(DCE)

Remote object invocation (ROI)
• For object-oriented languages (e.g., Java, C++, C#), where an operation/method 

of an object is called.
• In Java it is called Remote Method Invocation (RMI) and in C#  ".NET Remoting"
• Also for heterogeneous infrastructures, e.g. CORBA. 
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Commonalities of ROI and RPC
• Support of programming languages with interfaces.

• Both are typically constructed on top of the request-reply protocol, offering several 
call semantics (exactly once, at most once, and at least once).

• Offer a similar level of transparency, which means local and remote calls employ 
the same syntax, but remote interfaces expose the distributed nature, for example, 
by supporting remote exceptions.
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REMOTE OBJECT INVOCATION
Remote method invocation
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Remote and Local Method Invocation

Remote object reference: Other objects can invoke the methods of a remote object 
if they have access to its remote object reference. 
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Remote Object Reference

The remote object reference is an identifier for a remote object that is valid 
throughout the distributed system. It is passed in the invocation message to specify 
which object is to be invoked.

Internet 
address port number time object number interface of 

remote object

32 bits 32 bits 32 bits 32 bits
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Remote and Local Method Invocation

Remote object reference: Other objects can invoke the methods of a remote object 
if they have access to its remote object reference. 

Remote interface: Every remote object has a remote interface that specifies which of 
its methods can be invoked remotely. 
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A Remote Object and its Remote Interface
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Instantiation of Remote Objects
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Instantiation of Remote Objects
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Exceptions 
• Any remote invocation may fail for reasons related to the invoked object being in a 

different process or computer from the invoker. 

• Remote method invocation should be able to raise exceptions such as timeouts. 
Exceptions provide a clean way to deal with error conditions without complicating 
the code. 

• In Java, for example, predefined exceptions are listed here:
https://docs.oracle.com/en/java/javase/17/docs/specs/rmi/exceptions.html
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RMI COMPONENTS
Remote method invocation
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Process of Remote Method Invocation
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Remote Reference Module/Servant
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RMI Software
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Java Distributed Garbage Collection Algorithm 
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RMI IMPLEMENTATION
Remote Method Invocation 
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Abstraction Layers in the RMI Implementation
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Abstraction Layers in the RMI Implementation
1. Stub and Skeleton Layer: Intercepts method calls made by the client to the interface 

reference variable and redirects these calls to a remote RMI service
2. Remote Reference Layer: Interpret and manage references made from clients to the 

remote service objects
3. Transport Layer: Is based on TCP/IP connections between machines in a network. 

Provides basic connectivity.
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Separation of Concerns
RMI architecture is based on one important principle: the definition of behavior and 
the implementation of that behavior are separate concepts. 

RMI allows the code that defines the behavior and the code that implements the 
behavior to remain separate and to run on separate JVMs.
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Server and Client Programs
Server program

− Contains classes for the dispatcher and skeletons, together with the implementations of 
the classes of all of the servants

− Contains a initialization section (responsible for creating and initializing at least one of the 
servants to be hosted by the server)

− Generally allocates a separate thread for the execution of each remote invocation -> 
designer of the remote object implementation must allow concurrent executions

Client program
− Contain the classes of the proxies for all of the remote objects that it will invoke
− Require a means of obtaining a remote object reference for at least one of the remote 

objects held by the server -> binder
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Naming Remote Objects

RMI includes a simple service called the RMI Registry, rmiregistry. 

The RMI Registry runs on each machine that hosts remote service objects and 
accepts queries for services, by default on port 1099.

How does a client find a RMI remote service? 
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Naming Remote Objects (cont.)
Server program Client program

Creates a remote service 
by creating a local object

Export object to RMI 

Register object in the 
RMI Registry

Queries  RMI Registry by 
method lookup()

rmi://<host_name>[:<name_service_port>]/<service_name> 
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Stub and Skeleton Layer
RMI uses the Proxy design pattern

− The stub class is the proxy
− The remote service implementation class is the RealSubject

The Skeleton is a helper class. 
− Carries on a conversation with the stub
− Reads the parameters for the method call → makes the call to the remote service 

implementation object → accepts the return value →  writes the return value back to the 
stub
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Remote Reference Layer
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Transport Layer
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• The Transport Layer makes the connection between JVMs. 
All connections are stream-based network connections that 
use TCP/IP.

• On top of TCP/IP, RMI uses a wire level protocol called Java 
Remote Method Protocol (JRMP). JRMP is a proprietary, 
stream-based protocol.



31

Generation of Classes for 
Proxies, Dispatcher and Skeleton
Classes for proxies, dispatcher and skeleton are generated automatically by an 
interface compiler.

Java RMI contains a set of methods offered by a remote object defined as a Java 
interface that is implemented within the class of the remote object.

Java RMI compiler generates the proxy, dispatcher and skeleton classes from the 
class remote object. 
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Abstraction Layers in the RMI Implementation
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JAVA JMI
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How to implement a RMI Java application

•     Define the remote interface
•     Develop the implementation class (remote object)
•     Develop the server program
•     Develop the client program
•     Compile the application
•     Execute the application
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Defining the Remote Interface
import java.rmi.Remote; 

import java.rmi.RemoteException; 

 

// Creating Remote interface for our application 

public interface Hello extends Remote {     

 void printMsg() 

           throws RemoteException;  

} 
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Developing the Implementation Class (Remote Object)

// Implementing the remote interface

public class ImplExample implements Hello {

        

// Implementing the interface method    

 public void printMsg() {        

    System.out.println("This is an example RMI program.");     
 }  

 }
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Developing the Server Program
import java.rmi.registry.Registry; 

import java.rmi.registry.LocateRegistry; 

import java.rmi.RemoteException; 

import java.rmi.server.UnicastRemoteObject; 

public class Server extends ImplExample {    

 public Server() {}    

 public static void main(String args[]) {       

  try {          

  // Instantiating the implementation class          
  ImplExample obj = new ImplExample();

… 
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Developing the Server Program (cont.)
// Exporting the object of implementation class           

 // (here we are exporting the remote object to the stub)          
Hello stub = (Hello) UnicastRemoteObject.exportObject(obj, 0);                    

 // Binding the remote object (stub) in the registry          
Registry registry = LocateRegistry.getRegistry();                   

 registry.bind("Hello", stub);           
System.err.println("Server ready");       

     } catch (Exception e) {          

 System.err.println("Server exception: " + e.toString());          
e.printStackTrace();       

}    } }
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Developing the Client Program
import java.rmi.registry.LocateRegistry; 

import java.rmi.registry.Registry;  

public class Client {     

 private Client() {}     

 public static void main(String[] args) {        

    try {           

  // Getting the registry          

  Registry registry = LocateRegistry.getRegistry(null);              

  

  // Looking up the registry for the remote object          
 Hello stub = (Hello) registry.lookup("Hello"); 
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Developing the Client Program (cont.)
 // Calling the remote method using the obtained object          
 stub.printMsg();                   

  // System.out.println("Remote method invoked");

       

  } catch (Exception e) {           
            System.err.println("Client exception: " + 
    e.toString());          

      e.printStackTrace();       

 }    } }
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Compile Application
Open the folder where you have stored all the programs and 
compile all the Java files:

ALP IV: Concepts of Non-Sequential and Distributed Programming | Summer Term 2023

C:\rmi_example>javac *.java



42

Execute Application
Step 1 − Start the rmi registry using the following command.

Step 2 − Run the server class file.

Step 3 − Run the client class.

ALP IV: Concepts of Non-Sequential and Distributed Programming | Summer Term 2023
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C:\rmi_example>java Server
Server ready
_

C:\rmi_example>java client
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Verification
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C:\rmi_example>java Server
Server ready
This is an example RMI program.
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Summary 
• The Remote Method Invocation (RMI) is a highly useful API provided in Java that 

facilitates communication between two separate Java Virtual Machines (JVMs). It 
allows an object to invoke a method on an object residing in another address 
space.

• It provides a secure way for applications to communicate with each other. It 
achieves this functionality using concepts Stub (Client calling object) and Skeleton 
(Remote object residing on the server).

• RMI is used to build distributed applications by minimizing the complexity of the 
application in a distributed architecture.
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