
Institute of Computer Science
Department of Mathematics and Computer Science

Summer Term 2023 | 21.06.2023
Claudia Müller-Birn, Barry Linnert

Algorithms and Programming IV

From IPC to RPC

2

Our topics today
Interprocess Communication
• Multicast Communication

Remote Invocation
• Remote Procedure Call
• External Data Representation and Marshalling

ALP IV: Concepts of Non-Sequential and Distributed Programming | Summer Term 2023

3

RECAP

ALP IV: Concepts of Non-Sequential and Distributed Programming | Summer Term 2023

4

Recap: Architectural Model

ALP IV: Concepts of Non-Sequential and Distributed Programming | Summer Term 2023

Architectural elements

Communicating
entities

Communication paradigm Roles and res-
ponsibilities

Placement

Processes

Objects

Components

Web Services

Architectural
styles

Client-server

Peer-to-peer

Multiple server

Proxy/Cache

Mobile code

Inter-process communication

Remote
invocation

Indirect
communication

UDP
sockets

TCP
sockets

Multi-
cast

Architectural styles

5

Architectural Styles in Distributed Systems
• Layered architectures
• Service-oriented architectures
• Publish-subscribe architectures

ALP IV: Concepts of Non-Sequential and Distributed Programming | Summer Term 2023

6

Interprocess Communication
Interprocess Communication (IPC) mechanisms provide a low-level support to enable
processes from different address spaces to connect and exchange information.

ALP IV: Concepts of Non-Sequential and Distributed Programming | Summer Term 2023

process p process q

Communication channel

send

Outgoing message buffer Incoming message buffer

receivem

A process is an object of the operating system through which applications gain secure access to
computer resources. Individual processes are isolated from each other for this purpose.

IPC is based on the exchange of
messages (= bit sequences).

A message is sent by
the one process (the
sender).

It is received by another
process (the receiver).

7

Layers ISO Model vs. TCP/IP Model

Application

Presentation

Session

Transport

Physical

Network

Data link

Internet

Network Access

Transport (UDP, TCP)

Application

ALP IV: Concepts of Non-Sequential and Distributed Programming | Summer Term 2023

8

Possiblities to Communicate
• Connectionless 1:1

UDP (unicast, datagram communication)

• Connection-oriented 1:1
TCP (unicast, stream communication)

• Connectionless 1:n
Multicast

ALP IV: Concepts of Non-Sequential and Distributed Programming | Summer Term 2023

9

MULTICAST COMMUNICATION
Interprocess Communication

ALP IV: Concepts of Non-Sequential and Distributed Programming | Summer Term 2023

10

Multicast Communication
Efficient group communication has become important in applications such as video
conferencing or joint editing of documents.

The standard solution is called multicast and provides 1-to-n communication:
• The application only needs to manage one connection per group.
• The resources in the network are used more efficiently.

ALP IV: Concepts of Non-Sequential and Distributed Programming | Summer Term 2023

11

Using Multicast for building Distributed Systems
• Fault tolerance based on replicated services

• Discovering services in spontaneous networking

• Better performance through replicated data

• Propagation of event notifications

ALP IV: Concepts of Non-Sequential and Distributed Programming | Summer Term 2023

12

Multicast Sockets

2. Participants join group

3. Particpants receive
messages from sender

4. Partcipants leave group and
release socket

1. Participants bind socket
bindbindbind

224.x.x.x
bindbindjoingroup

bindbindsend /
receive

224.x.x.x

bindbindleavegroup /
close

ALP IV: Concepts of Non-Sequential and Distributed Programming | Summer Term 2023

13

IP Multicast
• Is built on top of the Internet Protocol (IP) and allow the sender to transmit a single

IP packet to a set of computers that form a multicast group.

• Multicast group is specified by a Class D Internet Address. Every IP datagram
whose destination address starts with "1110" (in IPv4) is an IP Multicast datagram.

• IP packets can be multicast on a local and wider network. In order to limit the
distance of operation, the sender can specify the number of routers that can be
passed (i.e. time to live, or TTL)

• Multicast addresses can be permanent (e.g. 224.0.1.1 is reserved for the Network
Time Protocol (NTP))

ALP IV: Concepts of Non-Sequential and Distributed Programming | Summer Term 2023

14

Java API: java.net.MulticastSocket

public class MulticastSocket extends DatagramSocket {
public MulticastSocket()...
public MulticastSocket(int port)...
// create socket and select port number explicitely or implicitely

public void joinGroup(InetAddress mcastaddr) throws ...
// join group under the address mcastaddr
public void leaveGroup(InetAddress mcastaddr) throws ...
// leave group
public void setTimeToLive(int ttl) ...
// define Time to Live – default is 1 !

}

Please note: send, receive, ... are inherited from class DatagramSocket

ALP IV: Concepts of Non-Sequential and Distributed Programming | Summer Term 2023

15

Issue of Multicast
• A significant issue in applying multicast was setting up reliable communication

paths for information dissemination, which involved a huge management effort.

• With the advent of peer-to-peer technology, and, notably structured overlay
management, it became easier to set up communication paths.

• As peer-to-peer solutions are typically deployed at the application layer, various
application-level multicasting techniques have been introduced. – we talk about it
J

ALP IV: Concepts of Non-Sequential and Distributed Programming | Summer Term 2023

16

Observations
Observation 1:
Message-based interaction between processes over sockets in distributed software is
cumbersome, untyped, error-prone.

Observation 2:
The service-oriented question/answer pattern is similar to the call-based interaction
pattern between procedures, methods, ... for non-distributed software.

Conclusion:
Design a question/answer message pair as a programming-language call – and thus,
develop distributed software similar to a non-distributed software!

ALP IV: Concepts of Non-Sequential and Distributed Programming | Summer Term 2023

17

Middleware Layers

Applications, services

Remote Procedure Calls

Underlying inter-process communication

UDP and TCP

Middleware
layers

ALP IV: Concepts of Non-Sequential and Distributed Programming | Summer Term 2023

18

REMOTE PROCEDURE CALL
From IPC to RPC

ALP IV: Concepts of Non-Sequential and Distributed Programming | Summer Term 2023

19

Control Flow and Data Flow
Local call:
• Provide arguments (stack)
• Jump to called code
• Provide results (stack)
• Return to caller

Remote call:
• Pack arguments in message
• Message from client to service provider
• Provider provides results
• Pack results in response
• Response from provider to client

 processcode

code

data

Computer 1 Network Computer 2

processprocess
code

code

data data

ALP IV: Concepts of Non-Sequential and Distributed Programming | Summer Term 2023

20

Defining a Remote Call

Implementation:
• The caller sends a message as a client that identifies the called party and contains

the arguments to be passed.
• The called party replies as a service provider with a message containing the

results to be transferred.
Attention:
• There is only one question/answer message pair, not a more extended dialog, as it

is possible over TCP connections.

A call is implemented as a remote call if another process executes the called
process in another address space - and possibly in another computer - than that of
the caller.

ALP IV: Concepts of Non-Sequential and Distributed Programming | Summer Term 2023

21

Issues that are important to understand the concept

The style of programming promoted by RPC – programming with interfaces.

The call semantics associated with RPC.

The key issue of transparency and how it relates to remote procedure calls.

ALP IV: Concepts of Non-Sequential and Distributed Programming | Summer Term 2023

22

Issues that are important to understand the concept

The style of programming promoted by RPC – programming with interfaces.

The call semantics associated with RPC.

The key issue of transparency and how it relates to remote procedure calls.

ALP IV: Concepts of Non-Sequential and Distributed Programming | Summer Term 2023

23

Programming with Interfaces
• Modern programming languages provide a means of organizing a program as a

set of modules that can communicate with one another.

• Communication between modules can be by means of procedure calls between
modules or by direct access to the variables in another module

• In order to control possible interactions between modules, an interface is defined
for each module which specifies the procedures and variables that can be
assessed.

ALP IV: Concepts of Non-Sequential and Distributed Programming | Summer Term 2023

24

Advantages of using Interfaces in Distributed Systems
• Modular programming allows programmers to be concerned only with the

abstraction offered by the service interface and they need not be aware of
implementation details.

• Extrapolating to (potentially heterogeneous) distributed systems, programmers
also do not need to know the programming language or underlying platform used
to implement the services.

• Approach provides the natural support for software evolution in that
implementations can change as long as the interface (the external view) remains
the same.

ALP IV: Concepts of Non-Sequential and Distributed Programming | Summer Term 2020

25

Issues that are important to understand the concept

The style of programming promoted by RPC – programming with interfaces.

The call semantics associated with RPC.

The key issue of transparency and how it relates to remote procedure calls.

ALP IV: Concepts of Non-Sequential and Distributed Programming | Summer Term 2023

26

Basic Client–Server Model
Characteristics:
• There are processes offering services

(servers)
• There are processes that use services

(clients)
• Clients and servers can be on different

machines
• Clients follow request/reply model with respect

to using services

ALP IV: Concepts of Non-Sequential and Distributed Programming | Summer Term 2020

Provide service
Reply

Wait

27

RPC Call Semantics

Fault tolerance measures Call
semantics

Retransmit request
message

Duplicate
filtering

Re-execute procedure
or retransmit reply

No

Yes

Yes

Not applicable

No

Yes

Not applicable

Re-execute procedure

Retransmit reply At-most-once

At-least-once

Maybe

ALP IV: Concepts of Non-Sequential and Distributed Programming | Summer Term 2020

28

RPC Call Semantics (cont.)
Maybe semantics
• RPC may be executed once or not at all, it means that faults are not tolerated
• Can suffer from omission and crash failures

At-least-once semantics
• Invoker receives either a result, in which case the procedure was executed at least

once, or an exception informing that no result was received
• Can suffer from crash failures and arbitrary failures

At-most-once semantics
• Caller receives either a result, then the procedure was executed once, or an

exception that no results has been received
ALP IV: Concepts of Non-Sequential and Distributed Programming | Summer Term 2020

29

Issues that are important to understand the concept

The style of programming promoted by RPC – programming with interfaces.

The call semantics associated with RPC.

The key issue of transparency and how it relates to remote procedure calls.

ALP IV: Concepts of Non-Sequential and Distributed Programming | Summer Term 2023

30

Distribution Transparency

Distribution Transparency has several facets:
• Access Transparency
• Location Transparency
• Migration Transparency
• Replication Transparency

Goal of a good remote access system
is the attainment of the highest possible degree of

Distribution Transparency.

ALP IV: Concepts of Non-Sequential and Distributed Programming | Summer Term 2023

31

BASIC CONCEPT
Remote Procedure Call

ALP IV: Concepts of Non-Sequential and Distributed Programming | Summer Term 2023

32

Basic RPC operation
Observations
• Application developers are familiar with simple procedure model
• Well-engineered procedures operate in isolation (black box)
• There is no fundamental reason not to execute procedures on separate machine

ALP IV: Concepts of Non-Sequential and Distributed Programming | Summer Term 2020

Call local procedure
and return results

Call remote
procedure

Return
from call

Client

Request Reply
Server

Time

Wait for result

Conclusion
Communication between caller &
callee can be hidden by using
procedure-call mechanism.

33

Basic RPC Operation

ALP IV: Concepts of Non-Sequential and Distributed Programming | Summer Term 2023

Implementation
of doit

Client OS Server OS

Client machine Server machine

Client process Server process
1. Client call to

procedure

2. Stub builds
message

5. Stub unpacks
message

6. Stub makes
local call to “doit”

3. Message is sent
across the network

4. Server OS
hands message
to server stub

Server stub
Client stubr = doit(a,b) r = doit(a,b)

proc: “doit”
type1: val(a)
type2: val(b)

proc: “doit”
type1: val(a)
type2: val(b)

proc: “doit”
type1: val(a)
type2: val(b)

34

Network

Remote Call Service

Transport ServiceTransport Service

Remote Call Service

Hardware

Operating system

From library

Client Stub ModuleClient

D
is
pa
t
ch
er

Server Stub

Call do.it(arg)
Remote Call: Functional Hierarchy

ALP IV: Concepts of Non-Sequential and Distributed Programming | Summer Term 2020

35

Consideration
The function of the client stub is to take its parameters, pack them into a message,
and send them to the server stub.

Why is it not to simple as it at first appears?

ALP IV: Concepts of Non-Sequential and Distributed Programming | Summer Term 2023

36

What is the Challenge?
Messages consist of sequences of bytes.

Some Interoperability problems
− Big-endian, little-endian byte ordering
− Character encodings (ASCII, UTF-8, Unicode)

So, we must either:
− Have both sides agree on an external representation or
− transmit in the sender’s format along with an indication of the format used. The receiver

converts to its form.

ALP IV: Concepts of Non-Sequential and Distributed Programming | Summer Term 2023

37

EXTERNAL DATA REPRESENTATION
AND MARSHALLING

Remote Procedure Calls

ALP IV: Concepts of Non-Sequential and Distributed Programming | Summer Term 2023

38

External Data Representation and Marshalling
External data representation
• An agreed standard for the representation of data structures and primitive values.

Marshalling
• The process of taking a collection of data

structures into an external data representation
type appropriate for transmission in a
message.

Unmarshalling
• The converse of this process is unmarshalling, which

involves reformatting the transferred data upon arrival
to recreate the original data structures at the destination. http://www.breti.org/tech/files/b400feb80f01f69e5cafca5160be5d65-67.html

ALP IV: Concepts of Non-Sequential and Distributed Programming | Summer Term 2023

39

Approaches for External Data Representation

XML (Extensible Markup Language)

Protocol buffer (protobuf)

JSON (JavaScript Object Notation)

Java’s object serialization

ALP IV: Concepts of Non-Sequential and Distributed Programming | Summer Term 2023

40

Java Object Serialization
public class Person implements Serializable {

private String name;

private String place;
private int year;

public Person(String aName, String aPlace, int aYear) {

name = aName;
place = aPlace;

year = aYear;
}

// followed by methods for accessing the instance variables

}

ALP IV: Concepts of Non-Sequential and Distributed Programming | Summer Term 2023

A class implements the Serializable
interface (which is provided in the java.io
package) has the effect of allowing its
instances to be serialized.

42

Extensible Markup Language (XML)
• XML is a markup language that was defined by the World Wide Web Consortium

(W3C) for general use for writing structured documents for the Web.

• XML data items are tagged with ‘markup’ strings. The tags are used to describe
the logical structure of the data and to associate attribute-value pairs with logical
structures. For a specification of XML, see the pages on XML provided by W3C
[www.w3.org VI].

• XML is used to enable clients to communicate with web services and for defining
the interfaces and other properties of web services.

ALP IV: Concepts of Non-Sequential and Distributed Programming | Summer Term 2023

43

Example: XML definition with namespace

ALP IV: Concepts of Non-Sequential and Distributed Programming | Summer Term 2023

<person pers:id="123456789" xmlns:pers = "http://www.nonsense.net/person">
<pers:name> Smith </pers:name>

<pers:place> London </pers:place >
<pers:year> 1984 </pers:year>

<!-- a comment -->

</person>

44

Example: XML schema

ALP IV: Concepts of Non-Sequential and Distributed Programming | Summer Term 2023

<xsd:schema xmlns:xsd = URL of XML schema definitions >
<xsd:element name= "person" type ="personType" />

<xsd:complexType name="personType">
<xsd:sequence>

<xsd:element name = "name" type="xs:string"/>

<xsd:element name = "place" type="xs:string"/>
<xsd:element name = "year" type="xs:positiveInteger"/>

</xsd:sequence>
<xsd:attribute name= "id" type = "xs:positiveInteger"/>

</xsd:complexType>

</xsd:schema>

45

Google Protocol Buffer
• Google Protocol Buffer (protobuf) is a common serialization format for storing and

interchanging all kinds of structured information. It serves as a basis for a remote
procedure call (RPC) system that is used for nearly all inter-machine
communication at Google.

• The goal of Protocol Buffer is to provide a language- and platform-neutral way to
specify and serialize data, it has been released as open source.

• Protobuf is 3-10 times smaller than an XML and 10-100 times faster than an XML.

http://code.google.com/apis/protocolbuffers

ALP IV: Concepts of Non-Sequential and Distributed Programming | Summer Term 2023

http://code.google.com/apis/protocolbuffers/docs/overview.html

46

JSON (JavaScript Object Notation)
• JavaScript Object Notation (JSON) is a language-independent data format.

• It was derived from JavaScript, but many modern programming languages include
code to generate and parse JSON-format data.

• Example:

ALP IV: Concepts of Non-Sequential and Distributed Programming | Summer Term 2023

{
"firstName": "John",

“lastName": "Smith",
“birthyear”: “1984”,

"address": {"city": "New York", "state": "NY},

}

47

Comparison of Data-Serialization Formats

ALP IV: Concepts of Non-Sequential and Distributed Programming | Summer Term 2023

Standardized Binary Human-
Readable

Standard-API

Java Yes Yes No Yes

XML Yes Partial Yes Yes

protobuf No Yes Partial For example, C++,
Java, C#, Python,
Ruby, C, PHP, R

JSON Yes No Yes Partial
(JSON-LD)

Source: https://en.wikipedia.org/wiki/Comparison_of_data-serialization_formats

https://en.wikipedia.org/wiki/Comparison_of_data-serialization_formats

48

APPLICATION CASE: WHITEBOARD

ALP IV: Concepts of Non-Sequential and Distributed Programming | Summer Term 2023

Photo by Kaleidico on Unsplash

https://unsplash.com/@kaleidico?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText
https://unsplash.com/s/photos/whiteboard?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText

49

Collaborative Whiteboard
We aim to create a prototype for a "collaborative whiteboard“ which allows for the
following activities:
• Select a shape (available shapes: triangle, rectangle, circle)
• Place shape on the drawing area
• Delete the shape of the drawing area
• Retrieve shapes from the drawing area

ALP IV: Concepts of Non-Sequential and Distributed Programming | Summer Term 2023

50

SimpleServer

ALP IV: Concepts of Non-Sequential and Distributed Programming | Summer Term 2023

public class SimpleServer {

private ServerSocket serverListen;
private WhiteBoard whiteBoard;

public SimpleServer(int port) throws IOException {
this.serverListen = new ServerSocket(port);
this.whiteBoard = new WhiteBoard();

}
public void startServer() throws IOException{

while (true) {
System.out.println("Server is Listening......");
Socket socket=serverListen.accept();
new WhiteBoardHandler(socket, this.whiteBoard).startCommunicationHandler();
System.out.println("Connection closed");

}
}

. . .
https://github.com/FUB-HCC/WhiteBoard-Implementation-Examples/tree/master/RPCExampleSimple

https://github.com/FUB-HCC/WhiteBoard-Implementation-Examples/tree/master/RPCExampleSimple

51

SimpleServer (cont.)

ALP IV: Concepts of Non-Sequential and Distributed Programming | Summer Term 2023

. . .

public static void main(String[] args) throws IOException{
SimpleServer server = new SimpleServer(12345);
try {

server.startServer();
} catch (Exception e) {

System.err.println("Server couldn't be started");
e.printStackTrace();
System.exit(1);

}

}
}

https://github.com/FUB-HCC/WhiteBoard-Implementation-Examples/tree/master/RPCExampleSimple

https://github.com/FUB-HCC/WhiteBoard-Implementation-Examples/tree/master/RPCExampleSimple

52

Client

ALP IV: Concepts of Non-Sequential and Distributed Programming | Summer Term 2023

public class Client {

static final int PORT = 12345;
static final String HOST = "127.0.0.1";

public static void main(String[] args) {

BufferedReader bufferReader = new BufferedReader(new InputStreamReader(System.in));
Socket socket = null;

try {
socket = new Socket(HOST, PORT); // connect to the server on port 6066 localhost

. . .
try {
BufferedReader in = new BufferedReader(new InputStreamReader(socket.getInputStream()));
PrintStream out = new PrintStream(socket.getOutputStream());
System.out.println("write Commands here: ");
System.out.println(in.readLine());

. . .
https://github.com/FUB-HCC/WhiteBoard-Implementation-Examples/tree/master/RPCExampleSimple

https://github.com/FUB-HCC/WhiteBoard-Implementation-Examples/tree/master/RPCExampleSimple

53

Recap: Architectural Model

ALP IV: Concepts of Non-Sequential and Distributed Programming | Summer Term 2023

Architectural elements

Communicating
entities

Communication paradigm Roles and res-
ponsibilities

Placement

Processes

Objects

Components

Web Services

Architectural
styles

Client-server

Peer-to-peer

Multiple server

Proxy/Cache

Mobile code

Inter-process communication

Remote
invocation

Indirect
communication

UDP
sockets

TCP
sockets

Multi-
cast

Architectural patterns

