
Institute of Computer Science
Department of Mathematics and Computer Science

Summer Term 2023 | 19.06.2023
Claudia Müller-Birn, Barry Linnert

Algorithms and Programming IV
Communication Paradigms in
Distributed Systems

2

Our topics today
Recap

Architectural Styles
Layered architectures
Service-oriented architectures
Publish-subscribe architectures

Communication Paradigms
Interprocess Communication

− API for Internet Protocols
− UDP Datagram Communication
− TCP Stream Communication

ALP IV: Concepts of Non-Sequential and Distributed Programming | Summer Term 2023

3

RECAP

ALP IV: Concepts of Non-Sequential and Distributed Programming | Summer Term 2023

4

Recap: Distributed System Model

ALP IV: Concepts of Non-Sequential and Distributed Programming | Summer Term 2023

Application 1 Application 2

5

A CLASSIFICATION OF DISTRIBUTED
SYSTEMS

ALP IV: Concepts of Non-Sequential and Distributed Programming | Summer Term 2023

6

Recap: Architectural Model

ALP IV: Concepts of Non-Sequential and Distributed Programming | Summer Term 2023

Architectural elements

Communicating
entities

Communication paradigm Roles and res-
ponsibilities

Placement

Processes

Objects

Components

Web Services

Architectural
styles

Client-server

Peer-to-peer

Multiple server

Proxy/Cache

Mobile code

Inter-process communication

Remote
invocation

Indirect
communication

UDP
sockets

TCP
sockets

Multi-
cast

Architectural Styles

7

ARCHITECTURAL STYLES
Communication Paradigms in Distributed Systems

ALP IV: Concepts of Non-Sequential and Distributed Programming | Summer Term 2023

8

Basic Idea
A style is formulated in terms of
• (replaceable) components with well-defined interfaces
• the way that components are connected to each other
• the data exchanged between components
• how these components and connectors are jointly configured into a system.

Connector
• A mechanism that mediates communication, coordination, or cooperation among

components. Example: facilities for (remote) procedure call, messaging, or
streaming.

ALP IV: Concepts of Non-Sequential and Distributed Programming | Summer Term 2023

9

Architectural Styles in Distributed Systems
• Layered architectures
• Service-oriented architectures
• Publish-subscribe architectures

ALP IV: Concepts of Non-Sequential and Distributed Programming | Summer Term 2023

10

Layered architecture - Different layered organizations

Tanenbaum & van Steen. Distributed Systems. Principles and Paradigms. 2023.
ALP IV: Concepts of Non-Sequential and Distributed Programming | Summer Term 2023

11
Tanenbaum & van Steen. Distributed Systems. Principles and Paradigms. 2023.

Example: Communication Protocols

ALP IV: Concepts of Non-Sequential and Distributed Programming | Summer Term 2023

12

Application Layering
Traditional three-layered view
• The application-interface layer contains units for interfacing to users or external

applications
• The processing layer contains the functions of an application, i.e., without

specific data
• The data layer contains the data that a client wants to manipulate through the

application components

Observation: This layering is found in many distributed information systems, using
traditional database technology and accompanying applications.

Tanenbaum & van Steen. Distributed Systems. Principles and Paradigms. 2023.
ALP IV: Concepts of Non-Sequential and Distributed Programming | Summer Term 2023

13

Example: A Simple Search Engine

ALP IV: Concepts of Non-Sequential and Distributed Programming | Summer Term 2023
Tanenbaum & van Steen. Distributed Systems. Principles and Paradigms. 2007.

14

Service-oriented Architectures
• A layered architectural style‘s significant drawback is the often strong dependency

between different layers.
• Such direct dependencies have led to an architectural style reflecting a more loose

organization into a collection of separate, independent entities.
• Each entity encapsulates a service (can be called services, objects, or

microservices).
• Each service is executed as a separate process (or thread).

ALP IV: Concepts of Non-Sequential and Distributed Programming | Summer Term 2023
Tanenbaum & van Steen. Distributed Systems. Principles and Paradigms. 2023.

15

Object-based style
Essence
Components are objects, connected to each other through procedure calls. Objects
may be placed on different machines; calls can thus execute across a network.

ALP IV: Concepts of Non-Sequential and Distributed Programming | Summer Term 2023

Encapsulation
Objects are said to encapsulate data and offer methods on that data without
revealing the internal implementation.

16

RESTful architectures
Essence
View a distributed system as a collection of resources, individually managed by
components. Resources may be added, removed, retrieved, and modified by
(remote) applications.
1. Resources are identified through a single naming scheme
2. All services offer the same interface
3. Messages sent to or from a service are fully self-described
4. After executing an operation at a service, that component forgets everything about the caller

Basic operations

ALP IV: Concepts of Non-Sequential and Distributed Programming | Summer Term 2023

Operation Description

PUT Create a new resource

GET Retrieve the state of a resource in some representation

DELETE Delete a resource

POST Modify a resource by transferring a new state

17

Example: Amazon’s Simple Storage Service
Essence
• Objects (i.e., files) are placed into buckets (i.e., directories). Buckets cannot be

placed into buckets. Operations on ObjectName in bucket BucketName require the
following identifier:

 http://BucketName.s3.amazonaws.com/ObjectName

Typical operations (all operations are carried out by sending HTTP requests):
• Create a bucket/object: PUT, along with the URI
• Listing objects: GET on a bucket name
• Reading an object: GET on a full URI

ALP IV: Concepts of Non-Sequential and Distributed Programming | Summer Term 2023

18

On interfaces
Issue
• Many people like RESTful approaches because the interface to a service is so

simple. The catch is that much needs to be done in the parameter space.

Amazon S3 SOAP interface

ALP IV: Concepts of Non-Sequential and Distributed Programming | Summer Term 2023

19

Insert: Simple Object Access Protocol (SOAP)
SOAP is designed to enable both client-server and asynchronous interaction over the
Internet. It defines a scheme for using XML to represent the contents of request and
reply messages and a scheme for the communication of documents.

It is used for information exchange and RPC, usually (but not necessarily) over
HTTP.

(Very) basic SOAP
architecture:

ALP IV: Concepts of Non-Sequential and Distributed Programming | Summer Term 2023

20

On interfaces (cont.)
Simplifications
• Assume an interface bucket offering an operation create, requiring an input string

such as mybucket, for creating a bucket “mybucket.”

ALP IV: Concepts of Non-Sequential and Distributed Programming | Summer Term 2023

SOAP
import bucket
bucket.create("mybucket")

RESTful
PUT "https://mybucket.s3.amazonsws.com/"

Conclusions
• Are there any to draw?

21

Publish-Subscribe Architectures
Temporal and referential coupling

ALP IV: Concepts of Non-Sequential and Distributed Programming | Summer Term 2023

Temporally coupled Temporally decoupled

Referentially coupled Direct Mailbox
Referentially decoupled Event-based Shared data space

Event-based: communicating parties need to be both online Shared data space: data to communicate can be stored

23

Recap: Architectural Model

ALP IV: Concepts of Non-Sequential and Distributed Programming | Summer Term 2020

Architectural elements

Communicating
entities

Communication paradigm Roles and res-
ponsibilities

Placement

Processes

Objects

Components

Web Services

Architectural
styles

Client-server

Peer-to-peer

Multiple server

Proxy/Cache

Mobile code

Inter-process communication

Remote
invocation

Indirect
communication

UDP
sockets

TCP
sockets

Multi-
cast

Architectural Styles

24

COMMUNICATION PARADIGM
Architectural elements

ALP IV: Concepts of Non-Sequential and Distributed Programming | Summer Term 2023

25

An Architectural Model of Distributed Systems

ALP IV: Concepts of Non-Sequential and Distributed Programming | Summer Term 2023

Architectural elements

Communicating
entities

Communication paradigm Roles and res-
ponsibilities

Placement

How do they
communicate, or, more
specifically, what
communication
paradigm is used?

26

Types of Communication Paradigms

Interprocess communication

Remote invocation

Indirect communication

ALP IV: Concepts of Non-Sequential and Distributed Programming | Summer Term 2023

27

Types of Communication Paradigms

ALP IV: Concepts of Non-Sequential and Distributed Programming | Summer Term 2023

Architectural elements

Communicating
entities

Communication paradigm Roles and res-
ponsibilities

Placement

Processes

Objects

Components

Web Services

Architectural
styles

Client-server

Peer-to-peer

Multiple server

Proxy/Cache

Mobile code

Interprocess communication

Remote
invocation

Indirect
communication

UDP
sockets

TCP
sockets

Multi-
cast

28

INTERPROCESS COMMUNICATION
Communication Paradigm

ALP IV: Concepts of Non-Sequential and Distributed Programming | Summer Term 2023

29

Interprocess Communication
Interprocess Communication (IPC) mechanisms provide a low-level support to enable
processes from different address spaces to connect and exchange information.

A process is an object of the operating system through which applications gain
secure access to computer resources. Individual processes are isolated from each
other for this purpose.

IPC is based on the exchange of messages (= bit sequences).
− A message is sent by the one process (the sender).
− It is received by another process (the receiver).

ALP IV: Concepts of Non-Sequential and Distributed Programming | Summer Term 2023

30

Motivation for IPC

ALP IV: Concepts of Non-Sequential and Distributed Programming | Summer Term 2023

process p process q

Communication channel

send

Outgoing message buffer Incoming message buffer

receivem

31

Protocols
• Protocol refers to a set of rules and formats to be used for communication

between processes in order to perform a given task.

Specification of the sequence of
messages that must be

exchanged.

Specification of the format of the
data in the messages.

ALP IV: Concepts of Non-Sequential and Distributed Programming | Summer Term 2023

32

Protocol layers in the ISO Open Systems Interconnection
(OSI) model

Application

Transport

Physical

Message sent Message received

Sender Recipient

Network

Data link

Presentation

Session

Communication medium

ALP IV: Concepts of Non-Sequential and Distributed Programming | Summer Term 2023

Connection-oriented communication: sending and receiving processes synchronize
at every message = send and receive are blocking operation
Connectionless communication: send and receive operations are non-blocking

34

Layers ISO Model vs. TCP/IP Model

Application

Presentation

Session

Transport

Physical

Network

Data link

Internet

Network Access

Transport

Application

ALP IV: Concepts of Non-Sequential and Distributed Programming | Summer Term 2023

35

TCP/IP Model

Internet

Network Access

Transport

ApplicationHTTP DNS SNMP

IP (IPv4 / IPv6)

TCP UDP

Ethernet

ALP IV: Concepts of Non-Sequential and Distributed Programming | Summer Term 2023

36

UDP vs. TCP
UDP (User Datagram Protocol)
• UDP differs from the IP service only in the additional specification of the ports: a

message is sent as a datagram through the network without the arrival at the
destination port being guaranteed (connectionless service).

TCP (Transmission Control Protocol)
• TCP establishes a virtual connection between a client port and a provider port and

thus two opposing, reliable, sequence-true (FIFO) byte streams (connection-
oriented service).

ALP IV: Concepts of Non-Sequential and Distributed Programming | Summer Term 2023

38

Sockets
On approach to realize interprocess communication consists of transmitting a
message between a socket in one process to a socket in another process.

message

agreed portany port socketsocket

Internet address = 138.37.88.249Internet address = 138.37.94.248

other ports
client server

ALP IV: Concepts of Non-Sequential and Distributed Programming | Summer Term 2023

Coulouris, Dollimore, Kindberg: Distributed Systems: Concepts and Design. 2011.

40

API FOR INTERNET PROTOCOLS
Interprocess communication

ALP IV: Concepts of Non-Sequential and Distributed Programming | Summer Term 2023

41

Java API: package java.net
Java provides class InetAddress that represents Internet addresses.

Method static InetAddress getByName(String host)

Can throw an UnknownHostException
Example

System.out.println(InetAddress.getByName("www.fu-berlin.de"));

www.fu-berlin.de/160.45.170.10

System.out.println(InetAddress.getByName("localhost"));

localhost/127.0.0.1

System.out.println(InetAddress.getLocalHost());

wing.local/192.168.183.35

Slide adapted from Peter Löhr/Robert Tolksdorf
http://download.oracle.com/javase/6/docs/api/java/net/InetAddress.html

ALP IV: Concepts of Non-Sequential and Distributed Programming | Summer Term 2023

42

UDP DATAGRAM COMMUNICATION
API for Internet protocols

ALP IV: Concepts of Non-Sequential and Distributed Programming | Summer Term 2023

43

UDP Sockets
bind1. Client creates socket bound

to a local port

bind2. Server binds its socket to a
server port

4. Ports and sockets are
closed close close

3. Client/Server send and receive
datagrams send receive

Slide adapted from Peter Löhr/Robert Tolksdorf
ALP IV: Concepts of Non-Sequential and Distributed Programming | Summer Term 2023

46

Using UDP for Applications
Advantage of UDP datagrams is that they do not suffer from overheads associated
with guaranteed message delivery.

Example 1: Domain Name System
• DNS primarily uses UDP on port number 53 to serve requests
• DNS queries consist of a single UDP request from the client followed by a single

UDP reply from the server

Example 2: VOIP
• No reason to re-transmit packets with bad speech data
• Speech data must be processed at the same rate as it is sent - there is no time to

retransmit packets with errors
ALP IV: Concepts of Non-Sequential and Distributed Programming | Summer Term 2023

47

JAVA API FOR UDP DIAGRAMS
UDP datagram communication

ALP IV: Concepts of Non-Sequential and Distributed Programming | Summer Term 2020

48

Java API for UDP diagrams
Datagram communication is provided by two classes
DatagramPacket and DatagramSocket

DatagramPacket

• Constructor that makes an instance out of an array of bytes comprising a message
• Constructor for use when receiving a message, message can be retrieved by the

method getData

DatagramSocket

• Constructor that takes port number as argument for use by processes
• No-argument constructor for choosing a free local port

ALP IV: Concepts of Non-Sequential and Distributed Programming | Summer Term 2023

49

Example: UDP Echo Server

ALP IV: Concepts of Non-Sequential and Distributed Programming | Summer Term 2023

import java.net.*;

class UDPServer {

public static void main(String args[]) throws Exception {

DatagramSocket serverSocket = new DatagramSocket(9876);

byte[] receiveData = new byte[1024];
byte[] sendData = new byte[1024];

...

Create
datagram

socket
at port 9876

50ALP IV: Concepts of Non-Sequential and Distributed Programming | Summer Term 2023

...
while (true) {

DatagramPacket receivePacket = new
DatagramPacket(receiveData,
receiveData.length);

serverSocket.receive(receivePacket);

String sentence = new String(receivePacket.getData());
InetAddress IPAddress = receivePacket.getAddress();
int port = receivePacket.getPort();

String capitalizedSentence = sentence.toUpperCase();

sendData = capitalizedSentence.getBytes();

DatagramPacket sendPacket = new DatagramPacket(sendData,
sendData.length, IPAddress, port);

serverSocket.send(sendPacket);
}

}
}

Create space for
new datagram

Receive datagram

Get IP addr port
#, of sender

Create datagram
to send to client

51

Example: Java Client (UDP)

ALP IV: Concepts of Non-Sequential and Distributed Programming | Summer Term 2023

import java.io.*;
import java.net.*;

class UDPClient {
public static void main(String args []) throws Exception {

BufferedReader inFromUser = new BufferedReader(new
InputStreamReader(System.in));

DatagramSocket clientSocket = new DatagramSocket();

InetAddress IPAddress =
InetAddress.getByName("localhost");

byte[] sendData = new byte[1024];
byte[] receiveData = new byte[1024];

String sentence = inFromUser.readLine();
. . .

Create input
stream

Create client
socket

Translate
host-name to

IP address
using DNS

52ALP IV: Concepts of Non-Sequential and Distributed Programming | Summer Term 2023

. . .
sendData = sentence.getBytes();
DatagramPacket sendPacket = new

DatagramPacket(sendData,
sendData.length, IPAddress, 9876);

clientSocket.send(sendPacket);

DatagramPacket receivePacket = new
DatagramPacket(receiveData,

receiveData.length);
clientSocket.receive(receivePacket);

String modifiedSentence = new
String(receivePacket.getData());

System.out.println("FROM SERVER: " + modifiedSentence);

clientSocket.close();
}

}

Create
datagram
with data-

to-send,
length, IP
addr, port

Send
datagram
to server

Read
datagram

from server

53

TCP STREAM COMMUNICATION
API for Internet protocols

ALP IV: Concepts of Non-Sequential and Distributed Programming | Summer Term 2023

54

TCP Sockets Communication
bind1. Server bind port

listen2. Server is ready and listening

acceptconnect
3. Server is waiting for request,

client sends request, server
accepts

read/write read/write4. Client and server are
connceted - bidirectional!

close close5. Connection is closed

ALP IV: Concepts of Non-Sequential and Distributed Programming | Summer Term 2023

59

Use of TCP for Applications
Many frequently used services run over TCP connections with reserved port
numbers.

• HTTP [RFC 2068]: The Hypertext Transfer Protocol is used for communication between
web browser and web server.

• FTP [RFC 959]: The File Transfer Protocol allows directories on a remote computer to be
browsed and files to be transferred from one computer to another over a connection.

• Telnet [RFC 854]: Telnet provides access by means of a terminal session to a remote
computer.

• SMTP [RFC 821]: The Simple Mail Transfer Protocol is used to send mail between
computer.

ALP IV: Concepts of Non-Sequential and Distributed Programming | Summer Term 2023

http://en.wikipedia.org/wiki/List_of_TCP_and_UDP_port_numbers
http://en.wikipedia.org/wiki/List_of_TCP_and_UDP_port_numbers

http://en.wikipedia.org/wiki/List_of_TCP_and_UDP_port_numbers

http://en.wikipedia.org/wiki/List_of_TCP_and_UDP_port_numbers
http://en.wikipedia.org/wiki/List_of_TCP_and_UDP_port_numbers

60

JAVA API FOR TCP
TCP Stream Communication

ALP IV: Concepts of Non-Sequential and Distributed Programming | Summer Term 2023

61

Java API for TCP streams
Java interface provides two classes ServerSocket and Socket

ServerSocket
− Class is intended to be used by server to create a socket at a server port for listening for

connect requests from clients.

Socket

− Class is for use by a pair of processes with a connection
− The client uses a constructor to create a socket, specifying the DNS hostname and port of

a server

ALP IV: Concepts of Non-Sequential and Distributed Programming | Summer Term 2023

62

TCP Echo Server

ALP IV: Concepts of Non-Sequential and Distributed Programming | Summer Term 2023

public class EchoServer {
public static void main(String args[]) throws IOException {

ServerSocket listen = new ServerSocket(1234);

while (true) {

Socket socket = listen.accept();

BufferedReader in = new BufferedReader(new
InputStreamReader(socket.getInputStream()));

PrintStream out = new PrintStream(socket.getOutputStream());

. . .

Create
Server
Socket

Listens for a
connection and

accepts it.
Input-Stream

Output-Stream

63ALP IV: Concepts of Non-Sequential and Distributed Programming | Summer Term 2023

while (true) {

String message = in.readLine();

if (message == null) {
break;

}
String answer = message.replace('i', 'o’);
out.println(answer);

}
in.close();
out.close();

socket.close();
System.out.println("Socket closed.");

}}}

Read Input stream

Send Output stream

64

TCP Client

ALP IV: Concepts of Non-Sequential and Distributed Programming | Summer Term 2023

public class Client {

public static void main(String args[]) throws IOException {

Socket socket = new Socket("localhost", 1234);

PrintStream out = new PrintStream(socket.getOutputStream());

BufferedReader in = new BufferedReader(new
InputStreamReader(socket.getInputStream()));

BufferedReader keyboard = new BufferedReader(new
InputStreamReader(System.in));

. . .

Create Socket
And connect to

server

BufferedReader
reads

Keyboard Input

65ALP IV: Concepts of Non-Sequential and Distributed Programming | Summer Term 2023

while (true) {
String message = keyboard.readLine();

if (message == null)
break;

out.println(message);
String answer = in.readLine();
System.out.println("echo: " + answer);

}

in.close();
out.close();
socket.close();
}

}

Send text via
output stream

66

Notice!
However, the service echo is quite limited in that it cannot have several sessions at
the same time. If you want to use the service, you may have to wait until an active
user closes the session.

What might be a solution?

ALP IV: Concepts of Non-Sequential and Distributed Programming | Summer Term 2023

67

Example EchoServer Extended

ALP IV: Concepts of Non-Sequential and Distributed Programming | Summer Term 2023

public class EchoServerExtended extends Thread {
private Socket socket;
private BufferedReader in;
private PrintStream out;

public EchoServerExtended(Socket socket) throws IOException{
this.socket = socket;
this.in = new BufferedReader(new

InputStreamReader(socket.getInputStream()));
this.out = new PrintStream(socket.getOutputStream());

}

68

Summary…
Sockets only provide the basic mechanisms, there is still work to be done, for
example the implementation of more complex system models such as Request-Reply
(for client-server) or group communication.

Above all, however, the necessity of homogeneous data representation in
heterogeneous environments is a major issue.

These are the basic techniques for more complex middleware such as RPC, Java
RMI. We will talk about it next J

ALP IV: Concepts of Non-Sequential and Distributed Programming | Summer Term 2023

70

Open Topics in IPC – we discuss them in the next lecture
• External data representation and marshalling

• Multicast communication

• Network virtualization: Overlay networks

ALP IV: Concepts of Non-Sequential and Distributed Programming | Summer Term 2023

71

References
Main resources for this lecture:
• George Coulouris, Jean Dollimore, Tim Kindberg: Distributed Systems: Concepts

and Design. 5th edition, Addison Wesley, 2011.
• Andrew S. Tanenbaum and Marteen van Steen.Distributed Systems. Principles

and Paradigms.Pearson Prentice Hall, 2nd edition, 2007.
• Marteen van Steen and Andrew S. Tanenbaum. Distributed Systems. Principles

and Paradigms.Pearson Prentice Hall, 4th edition, 2023.

ALP IV: Concepts of Non-Sequential and Distributed Programming | Summer Term 2023

Institute of Computer Science
Department of Mathematics and Computer Science

Summer Term 2023 | 21.06.2023
Claudia Müller-Birn, Barry Linnert

Algorithms and Programming IV
Remote Invocation: Remote
Procedure Calls

