
Institute of Computer Science
Department of Mathematics and Computer Science

Summer Term 2023 | 07.06.2023
Barry Linnert

Algorithms and Programming IV
Design and Implementation of 
Parallel Applications II



2

Objectives of Today‘s Lecture

• N-body simulation
• Sorting

ALP IV: Concepts of Non-sequential and Distributed Programming Summer Term 2023



3

DESIGN AND IMPLEMENTATION OF 
PARALLEL APPLICATIONS

Concepts of Non-sequential and Distributed Programming

ALP IV: Concepts of Non-sequential and Distributed Programming Summer Term 2023



4

Machine Model

ALP IV: Concepts of Non-sequential and Distributed Programming Summer Term 2023



5

Machine and Execution Model

ALP IV: Concepts of Non-sequential and Distributed Programming Summer Term 2023



6

MPI and MPI-2
• With MPI and MPI-2 the foundation to 

design and implement parallel programs 
using message passing is given.

• Thus, the design methodology by Ian Foster 
is applicable. 

• The functions coming with the MPI-2 
standard extension can be used additionally 
to design parallel programs with dynamic 
runtime behavior, such as:
− Ocean Land Atmosphere Model

− http://olam-soil.org

ALP IV: Concepts of Non-sequential and Distributed Programming Summer Term 2023

Claudio Schepke



7

Foster's Design Methodology

ALP IV: Concepts of Non-sequential and Distributed Programming Summer Term 2023



8

Task/Channel (Programming) Model
• The Task/Channel (Programming) Model serves as foundation for Forster‘s design 

methodology. 
• A Task of the task/channel model is a part of the application with its own address 

space (process).
• Tasks can exchange data via messages using channels.
• A channel is a message queue connecting two specific tasks.
• If a task wants to receive a message, the task waits until the message is received 

(is blocked).
• Messages are sent immediately by the sender. The sender does not wait until the 

message is received.
• Thus, the task/channel model implements synchronous receive and asynchronous 

sending.
ALP IV: Concepts of Non-sequential and Distributed Programming Summer Term 2023



9

EXAMPLE: N-BODY SIMULATION
Concepts of Non-sequential and Distributed Programming

ALP IV: Concepts of Non-sequential and Distributed Programming Summer Term 2023



10

N-Body Simulation
• An N-body simulation is a simulation of 

physical or astronomical processes. 
• It simulates mass points in space (our 

example is using a two dimension 
space only). 

ALP IV: Concepts of Non-sequential and Distributed Programming Summer Term 2023

• The mass points have a mass but no size.
• The mass points have a position (current) and are moving and attract each other 

according to the gravitational constant.

• Extensions may include merging of colliding mass points, volume based masses 
(with diameter), attenuation of the space.



11

N-Body Simulation – Algorithm

• Each step of the simulation has to perform following tasks for every mass point:
• The motion vector for the mass point is calculated with respect to every other 

mass point (position and distance).
• The new position of the mass point is determined based on the motion vector and 

the time resolution of the simulation step.
• The result of the calculation is stored to be used in the next step of the simulation.

ALP IV: Concepts of Non-sequential and Distributed Programming Summer Term 2023



12

N-Body Simulation – Partitioning 
• Which (preferably independent) tasks (elements of work) can be identified?

• The tasks of a single step of the simulation depend on the data of the mass points. 
• Thus, function based decompositions will come with a reasonable amount of 

overhead.

• The domain-/data-based decomposition is much more promising:
− The amount of tasks scales with the amount of mass points.
− Usually there are much more mass points to be processed as processors to be used.

• Thus, a tasks combines the functions to be executed on a single mass point in 
order to calculate and store the new position.

ALP IV: Concepts of Non-sequential and Distributed Programming Summer Term 2023



13

N-Body Simulation – Communication
• What is the data that has to be transferred (from which task to which other task)?
• Which transfer of data depends on which other activities (calculation, 

communication)?

• Every task has to provided with the position and mass of all (other) mass points.
• The new position of the specific mass point has to be transmitted to all other tasks 

to be used in the next step of simulation.

ALP IV: Concepts of Non-sequential and Distributed Programming Summer Term 2023



14

N-Body Simulation – Agglomeration
• Which tasks can be combined as long as the number of available processors is 

(much) smaller than the number of combined tasks (now processes)?
• How can the aggregation of the tasks be used to reduce communication between 

the processes?

• As the communication is uniformly distributed (all tasks send the new position of 
the mass point to all other tasks), the distribution of load should be crucial for the 
combination of the tasks.

• The mass points should be uniformly distributed between the processes to be 
formed. 

• The combination of tasks will reduce the communication costs as well.

ALP IV: Concepts of Non-sequential and Distributed Programming Summer Term 2023



15

N-Body Simulation – Mapping
• Which combined tasks (processes) should be assigned to which processor?

• How can communication costs between the processes can be reduced?
− As there is an all-to-all communication the mapping of the specific process in relation to 

others will not have an impact on the communication cost.
− (Thus, the nodes of the parallel computer running the N-body simulation should be in the 

neighborhood regarding the network topology. For this and more about management of 
parallel computers you may take the course Cluster Computing.)

• Are there any requirements coming with the distribution of (calculation) load?
− If the agglomeration produces as many combined tasks as there are processors available 

and the corresponding processes all do the same work (effort of marking the multiples), 
the load is balanced.

ALP IV: Concepts of Non-sequential and Distributed Programming Summer Term 2023



16

N-Body Simulation – Programming Model

• The approach of the sequential algorithm is to be extended to provide every task 
with the new data about the mass points for the next step of simulation.

• Thus, there is a combination of calculating the new coordinates for the mass point 
and the communication of these new coordinates.

• The approach follows the BSP (bulk synchronous parallel) programming model.

ALP IV: Concepts of Non-sequential and Distributed Programming Summer Term 2023



17

EXAMPLE: SORTING
Concepts of Non-sequential and Distributed Programming

ALP IV: Concepts of Non-sequential and Distributed Programming Summer Term 2023



18

Sorting
• Quicksort is a well known sorting algorithm and was introduced by C. A. R. Hoare 

in 1962.
• Quicksort is a recursive algorithm and follows the divide-and-conquer approach.

• Algorithm:
− An element (pivot) from the sequence of elements is selected.
− All elements of the sequence are compared with the pivot element and reorganized into 

two areas during the comparison step (partitioning). The first area contains the elements 
that are smaller than the pivot element and the second area contains all elements that are 
larger or equal. At the end of the step, the pivot element is positioned between the two 
areas.

− After each partitioning, the Quicksort algorithm is executed recursively with both subareas 
(as long as the subareas contain more than one element).

ALP IV: Concepts of Non-sequential and Distributed Programming Summer Term 2023



19

Sorting – Quicksort 

ALP IV: Concepts of Non-sequential and Distributed Programming Summer Term 2023

Quinn: Par. Prg. in C with MPI + OMP



20

Quicksort – Partitioning
• Which (preferably independent) tasks (elements of work) can be identified?

• A function-based decomposition is not applicable here, as every step of the 
recursive algorithm depends on the other (at least of the determination of the pivot 
element).

• A static domain- or data-based decomposition is not possible, as the parts of the 
sequence of elements to be sorted are based on the determination of the pivot 
element at runtime.

• Thus, a combination of function-based and data-based decomposition is to be 
used.

ALP IV: Concepts of Non-sequential and Distributed Programming Summer Term 2023



21

Quicksort – Partitioning II

• For every recursion, the sub-lists (areas) of the sequence of elements are 
represented by different tasks.

• The sorting of the sub-lists at the lowest recursion level can be performed 
independently.
− The merging of the sub-lists requires synchronization again.

ALP IV: Concepts of Non-sequential and Distributed Programming Summer Term 2023



22

Quicksort – Communication
• What is the data that has to be transferred (from which task to which other task)?
• Which transfer of data depends on which other activities (calculation, 

communication)?

• The sub-lists must be transferred to the tasks (processes) that have been created. 
• After sorting, the sub-lists must be received and the combined (sub)list must be 

returned to the higher level.

ALP IV: Concepts of Non-sequential and Distributed Programming Summer Term 2023



23

Quicksort – Agglomeration 
• Which tasks can be combined as long as the number of available processors is 

(much) smaller than the number of combined tasks (now processes)?
• How can the aggregation of the tasks be used to reduce communication between 

the processes?

• The sorting can be performed independently by the tasks, but the combination of 
tasks working on different areas of the list of elements would come with additional 
communication costs.

• Thus, the combined tasks should work on the same sub-list (at higher level). 
• As the amount of sub-lists generated recursively depends on the choice of the 

pivot element a uniform load distribution cannot be guaranteed. 

ALP IV: Concepts of Non-sequential and Distributed Programming Summer Term 2023



24

Quicksort – Mapping
• Which combined tasks (processes) should be assigned to which processor?

• As processes may be created in order to process a sub-list these processes 
should be mapped near to the creating process to reduce communication costs for 
the transfer of the list to the new processes and for the transfer of the results back 
to the process dealing with higher level of recursion.

ALP IV: Concepts of Non-sequential and Distributed Programming Summer Term 2023



25

Example: Quicksort on 16 Processors

ALP IV: Concepts of Non-sequential and Distributed Programming Summer Term 2023



26

Example: Hyperquicksort
• B. Wagar in 1987 introduced a parallel Quicksort algorithm aimed at Hypercube 

architectures.
• The Hyperquicksort approach bases on a combination of partitioning and 

agglomeration with respect to load balancing.
− What about communication costs?

• Algorithm:
− Splitting the data in pieces corresponding to the number of processes to be used.
− Each process sorts the sub-list assigned to.
− Exchange of parts of the sorted sub-list between processes.
− Sorting the new sub-list.

ALP IV: Concepts of Non-sequential and Distributed Programming Summer Term 2023



27

Example: Hyperquicksort I

ALP IV: Concepts of Non-sequential and Distributed Programming Summer Term 2023



28

Example: Hyperquicksort II

ALP IV: Concepts of Non-sequential and Distributed Programming Summer Term 2023

• Splitting data regarding the amount of processes:



29

Example: Hyperquicksort III

ALP IV: Concepts of Non-sequential and Distributed Programming Summer Term 2023

• Distribution of data to the processes:



30

Example: Hyperquicksort IV

ALP IV: Concepts of Non-sequential and Distributed Programming Summer Term 2023

• Sorting of local data of the processes:



31

Example: Hyperquicksort V

ALP IV: Concepts of Non-sequential and Distributed Programming Summer Term 2023

• Determination of a pivot element:



32

Example: Hyperquicksort VI

ALP IV: Concepts of Non-sequential and Distributed Programming Summer Term 2023

• Communication of the pivot element to all other processes:



33

Example: Hyperquicksort VII

ALP IV: Concepts of Non-sequential and Distributed Programming Summer Term 2023

• Using the pivot element to split the local data into pieces:



34

Example: Hyperquicksort VIII

ALP IV: Concepts of Non-sequential and Distributed Programming Summer Term 2023

• Selection of sub-lists that can be exchanged:



35

Example: Hyperquicksort IX

ALP IV: Concepts of Non-sequential and Distributed Programming Summer Term 2023

• Exchange of sub-lists:



36

Example: Hyperquicksort X

ALP IV: Concepts of Non-sequential and Distributed Programming Summer Term 2023

• Merging the sub-lists:



37

Example: Hyperquicksort XI

ALP IV: Concepts of Non-sequential and Distributed Programming Summer Term 2023

• Sorting the local lists:



38

Example: Hyperquicksort XII

ALP IV: Concepts of Non-sequential and Distributed Programming Summer Term 2023

• Determination and communication of new pivot elements:



39

Example: Hyperquicksort XIII

ALP IV: Concepts of Non-sequential and Distributed Programming Summer Term 2023

• Splitting into sub-lists based on new pivot elements:



40

Example: Hyperquicksort XIV

ALP IV: Concepts of Non-sequential and Distributed Programming Summer Term 2023

• Exchange of sub-lists with other processes:



41

Example: Hyperquicksort XV

ALP IV: Concepts of Non-sequential and Distributed Programming Summer Term 2023

• Merging the sub-lists:



42

Example: Hyperquicksort XVI

ALP IV: Concepts of Non-sequential and Distributed Programming Summer Term 2023

• Sorting the lists:



43

Example: Hyperquicksort – Summary 
• Partitioning and agglomeration

− Partitioning is performed regarding the amount of processes to be used (agglomeration).

• Communication 
− Communication costs are reduced due to a high amount of local sorting.
− Communication effort: log p exchange operations

• Mapping
− The exchange of sub-lists is performed between separate groups of processes, reducing 

the communication costs by message congestion on the network.
− In the end there is a all-to-all communication. Thus, the overall-distance of the nodes used 

by the processes should be small. 
ALP IV: Concepts of Non-sequential and Distributed Programming Summer Term 2023



44

NEXT LECTURE
Concepts of Non-sequential and Distributed Programming

ALP IV: Concepts of Non-sequential and Distributed Programming Summer Term 2023



Institute of Computer Science
Department of Mathematics and Computer Science

APL IV: Concepts of Non-sequential and Distributed 
Programming (Summer Term 2023)

Design and Implementation of 
Parallel Applications III


	Algorithms and Programming IV�Design and Implementation of Parallel Applications II
	Objectives of Today‘s Lecture
	Design and implementation of parallel applications
	Machine Model
	Machine and Execution Model
	MPI and MPI-2
	Foster's Design Methodology
	Task/Channel (Programming) Model
	Example: N-Body simulation
	N-Body Simulation
	N-Body Simulation – Algorithm
	N-Body Simulation – Partitioning 
	N-Body Simulation – Communication
	N-Body Simulation – Agglomeration
	N-Body Simulation – Mapping
	N-Body Simulation – Programming Model
	Example: Sorting
	Sorting
	Sorting – Quicksort 
	Quicksort – Partitioning
	Quicksort – Partitioning II
	Quicksort – Communication
	Quicksort – Agglomeration 
	Quicksort – Mapping
	Example: Quicksort on 16 Processors
	Example: Hyperquicksort
	Example: Hyperquicksort I
	Example: Hyperquicksort II
	Example: Hyperquicksort III
	Example: Hyperquicksort IV
	Example: Hyperquicksort V
	Example: Hyperquicksort VI
	Example: Hyperquicksort VII
	Example: Hyperquicksort VIII
	Example: Hyperquicksort IX
	Example: Hyperquicksort X
	Example: Hyperquicksort XI
	Example: Hyperquicksort XII
	Example: Hyperquicksort XIII
	Example: Hyperquicksort XIV
	Example: Hyperquicksort XV
	Example: Hyperquicksort XVI
	Example: Hyperquicksort – Summary 
	Next lecture
	Design and Implementation of Parallel Applications III

