
Institute of Computer Science
Department of Mathematics and Computer Science

Summer Term 2023 | 05.06.2023
Barry Linnert

Algorithms and Programming IV
Design and Implementation of
Parallel Applications

2

Objectives of Today‘s Lecture

• Matrix multiplication
• Sieve of Eratosthenes

ALP IV: Concepts of Non-sequential and Distributed Programming Summer Term 2023

3

DESIGN AND IMPLEMENTATION OF
PARALLEL APPLICATIONS

Concepts of Non-sequential and Distributed Programming

ALP IV: Concepts of Non-sequential and Distributed Programming Summer Term 2023

4

Machine Model

ALP IV: Concepts of Non-sequential and Distributed Programming Summer Term 2023

5

Machine and Execution Model

ALP IV: Concepts of Non-sequential and Distributed Programming Summer Term 2023

6

MPI and MPI-2
• With MPI and MPI-2 the foundation to

design and implement parallel programs
using message passing is given.

• Thus, the design methodology by Ian Foster
is applicable.

• The functions coming with the MPI-2
standard extension can be used additionally
to design parallel programs with dynamic
runtime behavior, such as:
− Ocean Land Atmosphere Model

− http://olam-soil.org

ALP IV: Concepts of Non-sequential and Distributed Programming Summer Term 2023

Claudio Schepke

7

Evaluation of Parallel Applications
• Let be

T(1) the execution time on one processor
T(p) the execution time on a p processor system

• The gain by parallel computing is expressed by
S(p) := T(1) / T(p) Speed-up

• Normalizing the Speed-up by dividing by the number p of processors is defined as
the efficiency:
E(p) := S(p) / p Efficiency

ALP IV: Concepts of Non-sequential and Distributed Programming Summer Term 2023

8

Amdahl's Law
• Parallel programs also contain sequential parts.
• Splitting the execution time into a sequential and a parallelizable part yields:

T(1) = Ts + Tp

• Let f := Ts/ (Ts + Tp) , (0 ≤ f ≤ 1) be the sequential fraction of the program. Then
we get for the execution time:

(Amdahl's law)

ALP IV: Concepts of Non-sequential and Distributed Programming Summer Term 2023

p
T

T
p
TfTfpT p

s +=
−

+=
)1()1()1()(

9

Amdahl's Law II

ALP IV: Concepts of Non-sequential and Distributed Programming Summer Term 2023

1 1

2

3

4

number of processors

number of processors

ZeitT (1) T (4) Zeit00

Tp = (1-f) T (1) Ts = f T (1)

Tp = (1-f) T (1)

Ts = f T (1)

10

Foster's Design Methodology

ALP IV: Concepts of Non-sequential and Distributed Programming Summer Term 2023

11

Task/Channel (Programming) Model
• The Task/Channel (Programming) Model serves as foundation for Forster‘s design

methodology.
• A Task of the task/channel model is a part of the application with its own address

space (process).
• Tasks can exchange data via messages using channels.
• A channel is a message queue connecting two specific tasks.
• If a task wants to receive a message, the task waits until the message is received

(is blocked).
• Messages are sent immediately by the sender. The sender does not wait until the

message is received.
• Thus, the task/channel model implements synchronous receive and asynchronous

sending.
ALP IV: Concepts of Non-sequential and Distributed Programming Summer Term 2023

12

EXAMPLE: MATRIX MULTIPLICATION
Concepts of Non-sequential and Distributed Programming

ALP IV: Concepts of Non-sequential and Distributed Programming Summer Term 2023

13

Matrix Multiplication

ALP IV: Concepts of Non-sequential and Distributed Programming Summer Term 2023

𝐴𝐴11 𝐴𝐴12 𝐴𝐴13
𝐴𝐴21 𝐴𝐴22 𝐴𝐴23

�
𝐵𝐵11 𝐵𝐵12
𝐵𝐵21 𝐵𝐵22
𝐵𝐵31 𝐵𝐵32

= 𝐴𝐴11 � 𝐵𝐵11 + 𝐴𝐴12 � 𝐵𝐵21 + 𝐴𝐴13 � 𝐵𝐵31 𝐴𝐴11 � 𝐵𝐵12 + 𝐴𝐴12 � 𝐵𝐵22 + 𝐴𝐴13 � 𝐵𝐵32
𝐴𝐴21 � 𝐵𝐵11 + 𝐴𝐴22 � 𝐵𝐵21 + 𝐴𝐴23 � 𝐵𝐵31 𝐴𝐴21 � 𝐵𝐵12 + 𝐴𝐴22 � 𝐵𝐵22 + 𝐴𝐴23 � 𝐵𝐵32

14ALP IV: Concepts of Non-sequential and Distributed Programming Summer Term 2023
source code: 13-00.c

// sequential program matrix mult.
// Rauber, Ruenger: Parallele und vert. Prg.

#include <stdio.h>

double MA[100][100], MB[100][100];
double MC[100][100];
int i, row, col, size = 100;

void read_input ()
{

int j;

for (i = 0; i < 100; i++)
for (j = 0; j < 100; j++)
MA[i][j] = (double)(i + j) + 1.0;

for (i = 0; i < 100; i++)
for (j = 0; j < 100; j++)
MB[i][j] = (double)(i + j) + 1.0;

}

void write_output ()
{

int j;

for (i = 0; i < 100; i++)
for (j = 0; j < 100; j++)
printf ("%f ", MC[i][j]);

printf ("\n");
}

int main () {
read_input (); // MA, MB

...

write_output (); // MC

return 0;
}

15ALP IV: Concepts of Non-sequential and Distributed Programming Summer Term 2023

// sequential program matrix mult.
// Rauber, Ruenger: Parallele und vert. Prg.

#include <stdio.h>

double MA[100][100], MB[100][100];
double MC[100][100];
int i, row, col, size = 100;

void read_input ()
{

...
}

void write_output ()
{

...
}

int main () {
read_input (); // MA, MB

for (row = 0; row < size; row++) {
for (col = 0; col < size; col++)
MC[row][col] = 0.0;

}

for (row = 0; row < size; row++) {
for (col = 0; col < size; col++)
for (i = 0; i < size; i++)
MC[row][col] += MA[row][i] *
MB[i][col];

}

write_output (); // MC
return 0;

}

source code: 13-00.c

16

Matrix Multiplication – Partitioning
• Which (preferably independent) tasks (elements of work) can be identified?

• The calculation of every element of the target matrix can be performed
independently of all other calculations.

ALP IV: Concepts of Non-sequential and Distributed Programming Summer Term 2023

𝐴𝐴11 𝐴𝐴12 𝐴𝐴13
𝐴𝐴21 𝐴𝐴22 𝐴𝐴23

�
𝐵𝐵11 𝐵𝐵12
𝐵𝐵21 𝐵𝐵22
𝐵𝐵31 𝐵𝐵32

= 𝐴𝐴11 � 𝐵𝐵11 + 𝐴𝐴12 � 𝐵𝐵21 + 𝐴𝐴13 � 𝐵𝐵31 𝐴𝐴11 � 𝐵𝐵12 + 𝐴𝐴12 � 𝐵𝐵22 + 𝐴𝐴13 � 𝐵𝐵32
𝐴𝐴21 � 𝐵𝐵11 + 𝐴𝐴22 � 𝐵𝐵21 + 𝐴𝐴23 � 𝐵𝐵31 𝐴𝐴21 � 𝐵𝐵12 + 𝐴𝐴22 � 𝐵𝐵22 + 𝐴𝐴23 � 𝐵𝐵32

17

Matrix Multiplication – Communication
• What is the data that has to be transferred (from which task to which other task)?
• Which transfer of data depends on which other activities (calculation,

communication)?

• As the root task is responsible for initialization of the data, it has to provide the
data to all other tasks.

• Thus, from the root task, one row of the output matrix A and one column of the
output matrix B have to be transferred to a task.

• After the calculation, the results of the different tasks must be transferred back to
the root task.

ALP IV: Concepts of Non-sequential and Distributed Programming Summer Term 2023

18

Matrix Multiplication – Agglomeration
• Which tasks can be combined as long as the number of available processors is

(much) smaller than the number of combined tasks (now processes)?
• How can the aggregation of the tasks be used to reduce communication between

the processes?

• For the agglomeration of the tasks the calculation part is not important, because all
calculations are independent.

• There is no data dependency in calculating the results.
• When the data is distributed, the data that is relevant for the specific task may also

be needed by other tasks:
− all elements of the row of the initial matrix A
− all elements of the column of the initial matrix B

ALP IV: Concepts of Non-sequential and Distributed Programming Summer Term 2023

19

Matrix Multiplication – Agglomeration II
• Tasks using the same data should be combined to form a process.
• Thus, the calculations of the elements of a row (or column) of matrix A may be

combined.

• All elements of the initial matrix B must be transferred for the calculations.

ALP IV: Concepts of Non-sequential and Distributed Programming Summer Term 2023

20

Matrix Multiplication – Agglomeration III
• In order to reduce the data to be transferred (especially with uneven matrixes) the

parts of the matrix representing the results can be shaped to form square.
• Thus, only a part of the second matrix B is to be transferred.

ALP IV: Concepts of Non-sequential and Distributed Programming Summer Term 2023

21

Matrix Multiplication – Mapping
• Which combined tasks (processes) should be assigned to which processor?

• How can communication costs between the processes can be reduced?
− There is only communication from the root process to the others processes and back.
− There is no further communication between the processes.
− Thus, the root process should be located to reduce the communication costs to all of the

other processes involved. There are no further requirements coming with the
communication.

• Are there any requirements coming with the distribution of (calculation) load?
− If the agglomeration produces as many pooled tasks as there are processors available

and the corresponding processes all do the same work (no sparsely populated matrices),
the load is balanced.

ALP IV: Concepts of Non-sequential and Distributed Programming Summer Term 2023

22ALP IV: Concepts of Non-sequential and Distributed Programming Summer Term 2023

// simple parallel matrix mult
// https://stackoverflow.com/questions/
// 41575243/matrix-multiplication-using-
// mpi-scatter-and-mpi-gather

#include <stdio.h>
#include <math.h>
#include <sys/time.h>
#include <stdlib.h>
#include <stddef.h>
#include "mpi.h"
#define N 4

void print_results (char *prompt,
int a[N][N]){

int i, j;
printf ("\n\n%s\n", prompt);
for (i = 0; i < N; i++) {
for (j = 0; j < N; j++)
printf(" %d", a[i][j]);

printf ("\n");
}
printf ("\n\n");

}

int main(int argc, char *argv[]) {
int i, j, k, rank, size, tag = 99;
int blksz, sum = 0;
int a[N][N]={...};
int b[N][N]={...};
int c[N][N];
int aa[N],cc[N];

// init MPI

//scatter rows of first matrix

//broadcast second matrix to all procs

//perform vector multiplication

// finalizing MPI
}

source code: 13-01.c

23ALP IV: Concepts of Non-sequential and Distributed Programming Summer Term 2023

// simple parallel matrix mult
// https://stackoverflow.com/questions/
// 41575243/matrix-multiplication-using-
// mpi-scatter-and-mpi-gather

#include <stdio.h>
#include <math.h>
#include <sys/time.h>
#include <stdlib.h>
#include <stddef.h>
#include "mpi.h"
#define N 4

void print_results (char *prompt,
int a[N][N]){

int i, j;
printf ("\n\n%s\n", prompt);
for (i = 0; i < N; i++) {
for (j = 0; j < N; j++)
printf(" %d", a[i][j]);

printf ("\n");
}
printf ("\n\n");

}

int main(int argc, char *argv[]) {
...

// init MPI
MPI_Init(&argc, &argv);
MPI_Comm_size(MPI_COMM_WORLD, &size);
MPI_Comm_rank(MPI_COMM_WORLD, &rank);

//scatter rows of first matrix

//broadcast second matrix to all procs

//perform vector multiplication

// finalizing MPI
MPI_Barrier(MPI_COMM_WORLD);
MPI_Finalize();
if (rank == 0)
print_results("C = ", c);

}
source code: 13-01.c

24ALP IV: Concepts of Non-sequential and Distributed Programming Summer Term 2023

// simple parallel matrix mult
// https://stackoverflow.com/questions/
// 41575243/matrix-multiplication-using-
// mpi-scatter-and-mpi-gather

#include <stdio.h>
#include <math.h>
#include <sys/time.h>
#include <stdlib.h>
#include <stddef.h>
#include "mpi.h"
#define N 4

void print_results (char *prompt,
int a[N][N]){

int i, j;
printf ("\n\n%s\n", prompt);
for (i = 0; i < N; i++) {
for (j = 0; j < N; j++)
printf(" %d", a[i][j]);

printf ("\n");
}
printf ("\n\n");

}

int main(int argc, char *argv[]) {
...

// init MPI

//scatter rows of first matrix
MPI_Scatter(a, N*N/size, MPI_INT, aa,

N*N/size, MPI_INT,0,MPI_COMM_WORLD);

//broadcast second matrix to all procs
MPI_Bcast(b, N*N, MPI_INT, 0,

MPI_COMM_WORLD);

MPI_Barrier(MPI_COMM_WORLD);

//perform vector multiplication

// finalizing MPI
}

source code: 13-01.c

25ALP IV: Concepts of Non-sequential and Distributed Programming Summer Term 2023

// simple parallel matrix mult
// https://stackoverflow.com/questions/
// 41575243/matrix-multiplication-using-
// mpi-scatter-and-mpi-gather

#include <stdio.h>
#include <math.h>
#include <sys/time.h>
#include <stdlib.h>
#include <stddef.h>
#include "mpi.h"
#define N 4

void print_results (char *prompt,
int a[N][N]){

int i, j;
printf ("\n\n%s\n", prompt);
for (i = 0; i < N; i++) {
for (j = 0; j < N; j++)
printf(" %d", a[i][j]);

printf ("\n");
}
printf ("\n\n");

}

int main(int argc, char *argv[]) {
...

// init MPI

//scatter rows of first matrix

//broadcast second matrix to all procs

//perform vector multiplication
for (i = 0; i < N; i++) {
for (j = 0; j < N; j++)
sum = sum + aa[j] * b[j][i];

cc[i] = sum;
sum = 0;

}
MPI_Gather(cc, N*N/size, MPI_INT, c,
N*N/size, MPI_INT, 0, MPI_COMM_WORLD);

// finalizing MPI
} source code: 13-01.c

26

Matrix Multiplication – Optimization
• Are there any

requirements or
approaches that
may lead to
optimizations?

• Caches!

ALP IV: Concepts of Non-sequential and Distributed Programming Summer Term 2023

27

EXAMPLE: SIEVE OF ERATOSTHENES
Concepts of Non-sequential and Distributed Programming

ALP IV: Concepts of Non-sequential and Distributed Programming Summer Term 2023

28

Sieve of Eratosthenes
• Eratosthenes of Cyrene (276/273 - 194 b.c.[e.])
• The sieve of Eratosthenes is an algorithm to determine

all prime numbers up to a certain maximum by exclusion.

• Algorithm:
1. Sort all numbers from 2 to the maximum n in a list and mark them as unmarked.
2. Take the first (unmarked) number (2 for the first iteration) as key k.
3. Repeat until k2 > n

I. Mark all multiples of k between k2 and n,
II. Find the smallest unmarked number greater than k and take it as the new key k.

4. The unmarked numbers are prime numbers.

ALP IV: Concepts of Non-sequential and Distributed Programming Summer Term 2023

wikipedia.org

29

Sieve of Eratosthenes

ALP IV: Concepts of Non-sequential and Distributed Programming Summer Term 2023

30

Sieve of Eratosthenes – Partitioning
• Which (preferably independent) tasks (elements of work) can be identified?

• The algorithm invites a loop with some complex operations of processing.
• Thus, start with the operations to process on the key k.
• This is called function-based decomposition:

− Determination of the multiple of the key k.
− Scrolling through the list.
− Marking the corresponding number.

• Is this partitioning reasonable? What about the cost-benefit ratio?
− Coordination of all tasks after each step for all multiples of all keys is needed.
− That comes with significant overhead.

ALP IV: Concepts of Non-sequential and Distributed Programming Summer Term 2023

31

Sieve of Eratosthenes – Partitioning II

• The other approach would be a domain- or data-based decomposition:
− Processing all operations of the loop for a given value of the key k.

• Cost-benefit ratio?
− Transfer of the multiple of k after marking is needed or
− at the least after marking all of the multiples of the key k.
− In order to prevent processing marked keys, the processes have to be synchronized after

the processing of a key k.

• As the domain-based decomposition approach leads to a higher amount of tasks
this approach is used for further consideration.

ALP IV: Concepts of Non-sequential and Distributed Programming Summer Term 2023

32

Sieve of Eratosthenes – Communication
• What is the data that has to be transferred (from which task to which other task)?
• Which transfer of data depends on which other activities (calculation,

communication)?

• From the root task the list of unmarked numbers must be transferred to all tasks.
• Transfer of the value of the multiples of the key k from all to all other tasks.
• Gathering of the unmarked numbers from all tasks to the root task.

ALP IV: Concepts of Non-sequential and Distributed Programming Summer Term 2023

33

Sieve of Eratosthenes – Agglomeration
• Which tasks can be combined as long as the number of available processors is

(much) smaller than the number of combined tasks (now processes)?
• How can the aggregation of the tasks be used to reduce communication between

the processes?

• Combination of all calculations for a key k.
− Reduce the communication as all of the multiples of the key k are transferred.
− BUT: The determination of new keys k depend on the result of marking the multiples of a

previous handled key. Thus, receiving a value too late may lead to additional handling of
an otherwise marked multiple of a key k.

ALP IV: Concepts of Non-sequential and Distributed Programming Summer Term 2023

34

Sieve of Eratosthenes – Agglomeration II

• Combination of block of tasks processing different keys (block data
decomposition).

• Reduces the communication costs heavily, at the cost of redundant calculation.

ALP IV: Concepts of Non-sequential and Distributed Programming Summer Term 2023

35

Sieve of Eratosthenes – Mapping
• Which combined tasks (processes) should be assigned to which processor?

• How can communication costs between the processes can be reduced?
− There is communication from the root process to the others processes and back to

distribute the data and gather the results.
− Thus, the root process should be located to reduce the communication costs to all of the

other processes involved.
− Depending on the approach and level of agglomeration there is communication from all to

all processes transferring the intermediate results. This communication is not to be
influenced by the mapping decision.

• Are there any requirements coming with the distribution of (calculation) load?
− If the agglomeration produces as many combined tasks as there are processors available

and the corresponding processes all do the same work (effort of marking the multiples),
the load is balanced.

ALP IV: Concepts of Non-sequential and Distributed Programming Summer Term 2023

36ALP IV: Concepts of Non-sequential and Distributed Programming Summer Term 2023

// Sieve of Erastosthenes
// Quinn: Par. Prg. in C with MPI + OMP
#include <mpi.h>
#include <math.h>
#include <stdio.h>
#include "MyMPI.h"

#define MIN (a, b) ((a)<(b) ? (a) : (b))

int main (int argc, char *argv[]){
int count, first, global_count,
high_value, i, id, index,
low_value, n, p, proc0_size, prime,
size;

double elapsed_time;
char *marked;
...
// Start the timer
...
// Fig. out proc's share of the array
...
// Bail out if all the primes used for
// sieving are not all held by proc 0
...

// Allocate this
// proc's share
// of array

// do the work

// counting results

// Stop timer

// Print results

MPI_Finalize ();
return 0;}

source code: 13-02.c

37ALP IV: Concepts of Non-sequential and Distributed Programming Summer Term 2023

// Sieve of Erastosthenes
// Quinn: Par. Prg. in C with MPI + OMP
...

...

int main (int argc, char *argv[]){
...

MPI_Init (&argc, &argv);
// Start the timer
MPI_Barrier (MPI_COMM_WORLD);
elapsed_time = -MPI_Wtime ();

MPI_Comm_rank (MPI_COMM_WORLD, &id);
MPI_Comm_size (MPI_COMM_WORLD, &p);

// Fig. out proc's share of the array
...
// Bail out if all the primes used for
// sieving are not all held by proc 0
...

// Allocate this
// proc's share
// of array

// do the work

// counting results

// Stop timer

// Print results

MPI_Finalize ();
return 0;}

source code: 13-02.c

38ALP IV: Concepts of Non-sequential and Distributed Programming Summer Term 2023

// Sieve of Erastosthenes
// Quinn: Par. Prg. in C with MPI + OMP
...

...

int main (int argc, char *argv[]){
...

// Start the timer
...
n = atoi (argv[1]);

// Fig. out proc's share of the array
low_value = 2 + BLOCK_LOW (id, p, n-1);
high_value = 2 + BLOCK_HIGH (id, p,

n-1);
size = BLOCK_SIZE (id, p, n-1);

// Bail out if all the primes used for
// sieving are not all held by proc 0
...

// Allocate this
// proc's share
// of array

// do the work

// counting results

// Stop timer

// Print results

MPI_Finalize ();
return 0;}

source code: 13-02.c

39ALP IV: Concepts of Non-sequential and Distributed Programming Summer Term 2023

// Sieve of Erastosthenes
// Quinn: Par. Prg. in C with MPI + OMP
...

...

int main (int argc, char *argv[]){
...

// Start the timer
...
// Fig. out proc's share of the array
...
// Bail out if all the primes used for
// sieving are not all held by proc 0
proc0_size = (n-1)/p;
if ((2 + proc0_size) <

(int) sqrt ((double) n)) {
if (!id) printf ("Too many processes

\n");
MPI_Finalize ();
exit (1);

}

// Allocate this
// proc's share
// of array

// do the work

// counting results

// Stop timer

// Print results

MPI_Finalize ();
return 0;}

source code: 13-02.c

40ALP IV: Concepts of Non-sequential and Distributed Programming Summer Term 2023

// Sieve of Erastosthenes
// Quinn: Par. Prg. in C with MPI + OMP
...

...

int main (int argc, char *argv[]){
...

// Start the timer
...
// Fig. out proc's share of the array
...
// Bail out if all the primes used for
// sieving are not all held by proc 0
...

// Allocate this
// proc's share
// of array
marked = (char *) malloc (size);

if (marked == NULL) {
printf ("Cannot alloc memory \n");
MPI_Finalize ();
exit (1);

}

for (i = 0; i < size; i++)
marked[i] = 0;

if (!id) index = 0;
prime = 2;

// do the work
// counting results
// Stop timer
// Print results
MPI_Finalize ();
return 0;

} source code: 13-02.c

41ALP IV: Concepts of Non-sequential and Distributed Programming Summer Term 2023

// Sieve of Erastosthenes
// Quinn: Par. Prg. in C with MPI + OMP
...

...

int main (int argc, char *argv[]){
...

// Start the timer
...
// Fig. out proc's share of the array
...
// Bail out if all the primes used for
// sieving are not all held by proc 0
...

...
// do the work
do {
if (prime * prime > low_value)
first = prime * prime - low_value;

else {
if (!(low_value % prime)) first=0;
else first = prime –

(low_value % prime);
}

for (i = first; i < size; i += prime)
marked[i] = 1;

// proc 0 gets the next prime for all
if (!id) {
while (marked[++index]);
prime = index + 2;

}
MPI_Bcast (&prime, 1, MPI_INT, 0,

MPI_COMM_WORLD);
} while (prime * prime <= n);
...

}
source code: 13-02.c

42ALP IV: Concepts of Non-sequential and Distributed Programming Summer Term 2023

// Sieve of Erastosthenes
// Quinn: Par. Prg. in C with MPI + OMP
...

...

int main (int argc, char *argv[]){
...

// Start the timer
...
// Fig. out proc's share of the array
...
// Bail out if all the primes used for
// sieving are not all held by proc 0
...

// Allocate this proc's share of array
// do the work
// counting results
count = 0;
for (i = 0; i < size; i++)
if (!marked[i]) count++;

MPI_Reduce (&count, &global_count, 1,
MPI_INT, MPI_SUM, 0,
MPI_COMM_WORLD);

// Stop timer
elapsed_time += MPI_Wtime ();

// Print results
if (!id) {
printf ("%d primes are less than or

equal to %d \n", global_count, n);
printf ("Total elapsed time: %10.6f

\n", elapsed_time);
}
MPI_Finalize ();
return 0;

} source code: 13-02.c

43

Sieve of Eratosthenes – Optimization

• In order to reduce the redundant work, the tasks can be combined is a round-
robin-like approach. So, the first keys are distributed over all of the processes
available and the chance the multiples are determined before the next amount of
keys are distributed is increased.

ALP IV: Concepts of Non-sequential and Distributed Programming Summer Term 2023

44

NEXT LECTURE
Concepts of Non-sequential and Distributed Programming

ALP IV: Concepts of Non-sequential and Distributed Programming Summer Term 2023

Institute of Computer Science
Department of Mathematics and Computer Science

APL IV: Concepts of Non-sequential and Distributed
Programming (Summer Term 2023)

Design and Implementation of
Parallel Applications II

	Algorithms and Programming IV�Design and Implementation of Parallel Applications
	Objectives of Today‘s Lecture
	Design and implementation of parallel applications
	Machine Model
	Machine and Execution Model
	MPI and MPI-2
	Evaluation of Parallel Applications
	Amdahl's Law
	Amdahl's Law II
	Foster's Design Methodology
	Task/Channel (Programming) Model
	Example: Matrix Multiplication
	Matrix Multiplication
	Foliennummer 14
	Foliennummer 15
	Matrix Multiplication – Partitioning
	Matrix Multiplication – Communication
	Matrix Multiplication – Agglomeration
	Matrix Multiplication – Agglomeration II
	Matrix Multiplication – Agglomeration III
	Matrix Multiplication – Mapping
	Foliennummer 22
	Foliennummer 23
	Foliennummer 24
	Foliennummer 25
	Matrix Multiplication – Optimization
	Example: Sieve of Eratosthenes
	Sieve of Eratosthenes
	Sieve of Eratosthenes
	Sieve of Eratosthenes – Partitioning
	Sieve of Eratosthenes – Partitioning II
	Sieve of Eratosthenes – Communication
	Sieve of Eratosthenes – Agglomeration
	Sieve of Eratosthenes – Agglomeration II
	Sieve of Eratosthenes – Mapping
	Foliennummer 36
	Foliennummer 37
	Foliennummer 38
	Foliennummer 39
	Foliennummer 40
	Foliennummer 41
	Foliennummer 42
	Sieve of Eratosthenes – Optimization
	Next lecture
	Design and Implementation of Parallel Applications II

