
Institute of Computer Science
Department of Mathematics and Computer Science

Summer Term 2023 | 31.05.2023
Barry Linnert

Algorithms and Programming IV
MPI Group Communication and
MPI-2

2

Objectives of Today‘s Lecture

• Introduction to MPI group communication
• Introduction to MPI-2

ALP IV: Concepts o Non-sequential and Distributed Programming Summer Term 2023

3

MPI GROUP COMMUNICATION
Concepts of Non-sequential and Distributed Programming

ALP IV: Concepts o Non-sequential and Distributed Programming Summer Term 2023

4

Machine Model

ALP IV: Concepts o Non-sequential and Distributed Programming Summer Term 2023

5

Machine and Execution Model

ALP IV: Concepts o Non-sequential and Distributed Programming Summer Term 2023

6ALP IV: Concepts o Non-sequential and Distributed Programming Summer Term 2023

Parallel Application

node
1

node
2

node
3

node
4

node
5

node
n

Connection network

Program libraries (e.g. communication, synchronization,..)

Middleware (e.g. administration, scheduling,..)

lok.BS lok.BS lok.BS lok.BS lok.BS lok.BSDistributed operating system

7

MPI_Bcast
int MPI_Bcast (void *buffer,

int count,

MPI_Datatype datatype,

int root,

MPI_Comm comm);

− (Blocking) broadcast operation to send (root == my_rank) or receive
(root != my_rank) a message to all participating processes of the

communicator comm.
− The broadcast message must be received by all processes with MPI_Bcast().
− In case several messages were sent the sequence of these will be preserved.

ALP IV: Concepts o Non-sequential and Distributed Programming Summer Term 2023

8

MPI_Bcast
− buffer – pointer to the buffer in which the message to be sent is located,
− count – number of elements of type datatype to be sent,
− datatype – type of elements to be sent, all elements of a message must have

the same type,
− root – rank of the sending process,
− comm – communicator that describes the group of processes that can

exchange messages.

ALP IV: Concepts o Non-sequential and Distributed Programming Summer Term 2023

9

MPI_Reduce
int MPI_Reduce (void *sendbuf, void *recvbuf,

int count,

MPI_Datatype datatype,

MPI_Op op,

int root,

MPI_Comm comm);

− Merging the content of different messages in a global reduction operation
(accumulation operation) op to be stored in a single value in recvbuf.

− All processes of the of the communicator comm have to send messages for the
reduce operation.

− The root process root must provide the receive buffer recvbuf.
ALP IV: Concepts o Non-sequential and Distributed Programming Summer Term 2023

10

MPI_Reduce
− sendbuf – pointer to the buffer in which the message to be sent is located
− recvbuf – pointer to the buffer in which the messages are stored when

received.
− count – number of elements of type datatype to be sent
− datatype – type of elements to be sent, all elements of a message must have

the same type
− op – reduction operation
− root – rank of the receiving process
− comm – communicator that describes the group of processes that can

exchange messages

ALP IV: Concepts o Non-sequential and Distributed Programming Summer Term 2023

11

MPI_Reduce – Operations

ALP IV: Concepts o Non-sequential and Distributed Programming Summer Term 2023

MPI_Reduce operations Description

MPI_MAX Returns the maximum element

MPI_MIN Returns the minimum element

MPI_SUM Sums the elements

MPI_PROD Multiplies all elements

MPI_LAND Performs a logical and across the elements

MPI_BAND Performs a bitwise and across the bits of the elements

MPI_LOR Performs a logical or across the elements

MPI_BOR Performs a bitwise or across the bits of the elements

MPI_LXOR Performs a logical exclusive or across the elements

MPI_BXOR Performs a bitw. exclusive or across the bits of the elements

MPI_MAXLOC Returns the max. value and the rank of the proc. that owns it

MPI_MINLOC Returns the min. value and the rank of the proc. that owns it

12

MPI_Op_create
int MPI_Op_create (MPI_User_function *function,

int commute,

MPI_Op *op);

− To define a special reduce operation to be used with MPI_Reduce().

ALP IV: Concepts o Non-sequential and Distributed Programming Summer Term 2023

13

MPI_Op_create
− function – pointer to the function to be applied to the corresponding operation,
− commute – specifies whether the operation is commutative (commute = 1)

or not (commute = 0),
− op – data type of the operation to be applied.

ALP IV: Concepts o Non-sequential and Distributed Programming Summer Term 2023

14

Extended MPI Datatypes

ALP IV: Concepts o Non-sequential and Distributed Programming Summer Term 2023

MPI datentyp Combination of C datentypes

MPI_FLOAT_INT (float, int)

MPI_DOUBLE_INT (double, int)

MPI_LONG_INT (long, int)

MPI_SHORT_INT (short, int)

MPI_LONG_DOUBLE_INT (long double, int)

MPI_2INT (int, int)

15

MPI_Type_create_struct
int MPI_Type_create_struct (

int count,

int array_of_blocklengths[],

const MPI_Aint array_of_displacements[],

const MPI_Datatype array_of_types[],

MPI_Datatype *new_type);

− Generation of a new structured data type as a combination of MPI basic types.

ALP IV: Concepts o Non-sequential and Distributed Programming Summer Term 2023

16

MPI_Type_create_struct
− count – number of elements in the following arrays,
− array_of_blocklengths

– specifies the number of elements in each block,
− array_of_displacements

– specifies the number of bytes to move each block,
− array_of_types

– specifies the MPI type of the elements of each block,
− new_type – new data type.

ALP IV: Concepts o Non-sequential and Distributed Programming Summer Term 2023

17

MPI_Type_contiguous
int MPI_Type_contiguous (

int count,

MPI_Datatype old_type,

MPI_Datatype *new_type);

− Creates a contiguous datatype out of an existing datatype.

ALP IV: Concepts o Non-sequential and Distributed Programming Summer Term 2023

18

MPI_Type_commit
int MPI_Type_commit (

MPI_Datatype *data_type);

− Commits a datatype to be used by the MPI environment.

ALP IV: Concepts o Non-sequential and Distributed Programming Summer Term 2023

19ALP IV: Concepts o Non-sequential and Distributed Programming Summer Term 2023

// https://www.open-mpi.org/doc/v1.8/man3/MPI_Op_create.3.php

typedef struct {
double real,imag;

} Complex;

// the user-defined function
void myProd(Complex *in, Complex *inout,

int *len, MPI_Datatype *dptr)
{

int i;
Complex c;

for (i=0; i< *len; ++i) {
c.real = inout->real*in->real –

inout->imag*in->imag;
c.imag = inout->real*in->imag +

inout->imag*in->real;
*inout = c;
in++; inout++;

}
}

// and, to call it...
...
// each proc has an array of 100 Compl.
Complex a[100], answer[100];
MPI_Op myOp;
MPI_Datatype ctype;

// At this point, the answer, which
// consists of 100 Complexes,
// resides on root source code: 12-00.c

20ALP IV: Concepts o Non-sequential and Distributed Programming Summer Term 2023

// https://www.open-mpi.org/doc/v1.8/man3/MPI_Op_create.3.php

typedef struct {
double real,imag;

} Complex;

// the user-defined function
void myProd(Complex *in, Complex *inout,

int *len, MPI_Datatype *dptr)
{

int i;
Complex c;

for (i=0; i< *len; ++i) {
c.real = inout->real*in->real –

inout->imag*in->imag;
c.imag = inout->real*in->imag +

inout->imag*in->real;
*inout = c;
in++; inout++;

}
}

// and, to call it...
...
// each proc has an array of 100 Compl.
Complex a[100], answer[100];
MPI_Op myOp;
MPI_Datatype ctype;

// define type Complex for MPI
MPI_Type_contiguous(2, MPI_DOUBLE,

&ctype);

// At this point, the answer, which
// consists of 100 Complexes,
// resides on root source code: 12-00.c

21ALP IV: Concepts o Non-sequential and Distributed Programming Summer Term 2023

// https://www.open-mpi.org/doc/v1.8/man3/MPI_Op_create.3.php

typedef struct {
double real,imag;

} Complex;

// the user-defined function
void myProd(Complex *in, Complex *inout,

int *len, MPI_Datatype *dptr)
{

int i;
Complex c;

for (i=0; i< *len; ++i) {
c.real = inout->real*in->real –

inout->imag*in->imag;
c.imag = inout->real*in->imag +

inout->imag*in->real;
*inout = c;
in++; inout++;

}
}

// and, to call it...
...
// each proc has an array of 100 Compl.
Complex a[100], answer[100];
MPI_Op myOp;
MPI_Datatype ctype;

// define type Complex for MPI
MPI_Type_contiguous(2, MPI_DOUBLE,

&ctype);
MPI_Type_commit(&ctype);

// At this point, the answer, which
// consists of 100 Complexes,
// resides on root source code: 12-00.c

22ALP IV: Concepts o Non-sequential and Distributed Programming Summer Term 2023

// https://www.open-mpi.org/doc/v1.8/man3/MPI_Op_create.3.php

typedef struct {
double real,imag;

} Complex;

// the user-defined function
void myProd(Complex *in, Complex *inout,

int *len, MPI_Datatype *dptr)
{

int i;
Complex c;

for (i=0; i< *len; ++i) {
c.real = inout->real*in->real –

inout->imag*in->imag;
c.imag = inout->real*in->imag +

inout->imag*in->real;
*inout = c;
in++; inout++;

}
}

// and, to call it...
...
// each proc has an array of 100 Compl.
Complex a[100], answer[100];
MPI_Op myOp;
MPI_Datatype ctype;

// define type Complex for MPI
MPI_Type_contiguous(2, MPI_DOUBLE,

&ctype);
MPI_Type_commit(&ctype);

// create the complex-product user-op
MPI_Op_create(myProd, True, &myOp);

// At this point, the answer, which
// consists of 100 Complexes,
// resides on root source code: 12-00.c

23ALP IV: Concepts o Non-sequential and Distributed Programming Summer Term 2023

// https://www.open-mpi.org/doc/v1.8/man3/MPI_Op_create.3.php

typedef struct {
double real,imag;

} Complex;

// the user-defined function
void myProd(Complex *in, Complex *inout,

int *len, MPI_Datatype *dptr)
{

int i;
Complex c;

for (i=0; i< *len; ++i) {
c.real = inout->real*in->real –

inout->imag*in->imag;
c.imag = inout->real*in->imag +

inout->imag*in->real;
*inout = c;
in++; inout++;

}
}

// and, to call it...
...
// each proc has an array of 100 Compl.
Complex a[100], answer[100];
MPI_Op myOp;
MPI_Datatype ctype;

// define type Complex for MPI
MPI_Type_contiguous(2, MPI_DOUBLE,

&ctype);
MPI_Type_commit(&ctype);

// create the complex-product user-op
MPI_Op_create(myProd, True, &myOp);

MPI_Reduce(a, answer, 100, ctype,
myOp, root, comm);

// At this point, the answer, which
// consists of 100 Complexes,
// resides on root source code: 12-00.c

24ALP IV: Concepts o Non-sequential and Distributed Programming Summer Term 2023

// https://www.open-mpi.org/doc/v1.8/man3/MPI_Op_create.3.php

typedef struct {
double real,imag;

} Complex;

// the user-defined function
void myProd(Complex *in, Complex *inout,

int *len, MPI_Datatype *dptr)
{

int i;
Complex c;

for (i=0; i< *len; ++i) {
c.real = inout->real*in->real –

inout->imag*in->imag;
c.imag = inout->real*in->imag +

inout->imag*in->real;
*inout = c;
in++; inout++;

}
}

// and, to call it...
...
// each proc has an array of 100 Compl.
Complex a[100], answer[100];
MPI_Op myOp;
MPI_Datatype ctype;

// define type Complex for MPI
MPI_Type_contiguous(2, MPI_DOUBLE,

&ctype);
MPI_Type_commit(&ctype);

// create the complex-product user-op
MPI_Op_create(myProd, True, &myOp);

MPI_Reduce(a, answer, 100, ctype,
myOp, root, comm);

// At this point, the answer, which
// consists of 100 Complexes,
// resides on root source code: 12-00.c

25

MPI_Gather
int MPI_Gather (void *sendbuf,

int sendcount,

MPI_Datatype sendtype,

void *recvbuf,

int recvcount,

MPI_Datatype recvtype,

int root,

MPI_Comm comm);

− Gathers together values from a group of processes of the communicator comm
(without reduction operation).

− The elements are stored in order of the numbers of the processes involved.
ALP IV: Concepts o Non-sequential and Distributed Programming Summer Term 2023

26

MPI_Gather
− sendbuf – pointer to the buffer in which the message to be sent is located,
− sendcount – number of elements of type datatype to be sent,
− sendtype – type of elements to be sent,
− recvbuf – pointer to the buffer in which the messages are stored when

received,
− recvcount – number of elements of type datatype to be received,
− recvtype – type of elements to be sent, all elements of a message must have

the same type,
− root – rank of the receiving process,
− comm – communicator that describes the group of processes that can

exchange messages.

ALP IV: Concepts o Non-sequential and Distributed Programming Summer Term 2023

27

MPI_Gatherv
int MPI_Gatherv (void *sendbuf, int sendcount,

MPI_Datatype sendtype,

void *recvbuf, const int recvcounts[],

const int displs[],

MPI_Datatype recvtype,

int root,

MPI_Comm comm);

− Gathers together values out of messages with different size from a group of
processes of the communicator comm.

− The root process specifies the number (recvcounts) and position of the storage
within the receive buffer (displs).

ALP IV: Concepts o Non-sequential and Distributed Programming Summer Term 2023

28

MPI_Scatter
int MPI_Scatter (void *sendbuf, int sendcount,

MPI_Datatype sendtype,

void *recvbuf,

int recvcount,

MPI_Datatype recvtype,

int root,

MPI_Comm comm);

− Distribution of individual data (same size) by messages to all the processes of
the communicator comm.

− The data is distributed and sent according to the numbers of the target
processes.

ALP IV: Concepts o Non-sequential and Distributed Programming Summer Term 2023

29

MPI_Scatter
− sendbuf – pointer to the buffer containing the data to be sent,
− sendcount – number of elements of type datatype to be sent,
− sendtype – type of elements to be sent,
− recvbuf – pointer to the buffer in which the message is stored when received,
− recvcount – number of elements of type datatype to be received,
− recvtype – type of elements to be sent, all elements of a message must have

the same type,
− root – rank of the receiving process,
− comm – communicator that describes the group of processes that can

exchange messages.

ALP IV: Concepts o Non-sequential and Distributed Programming Summer Term 2023

30

MPI_Scatterv
int MPI_Scatterv (void *sendbuf,

const int sendcounts[],

const int displs[],

MPI_Datatype sendtype,

void *recvbuf,

int recvcount,

MPI_Datatype recvtype,

int root,

MPI_Comm comm);

− Distribution of individual data of different sizes by messages to all the processes
of the communicator comm.

ALP IV: Concepts o Non-sequential and Distributed Programming Summer Term 2023

31

MPI_Allgather
int MPI_Allgather (void *sendbuf,

int sendcount,

MPI_Datatype sendtype,

void *recvbuf,

int recvcount,

MPI_Datatype recvtype,

MPI_Comm comm);

− Gathers together data from messages from all processes of the communicator
comm and distribute it to all involved processes.

− The elements are stored in the order of the numbers of the processes involved.

ALP IV: Concepts o Non-sequential and Distributed Programming Summer Term 2023

32

MPI_Allgather
− sendbuf – pointer to the buffer containing the data to be sent,
− sendcount – number of elements of type datatype to be sent,
− sendtype – type of elements to be sent,
− recvbuf – pointer to the buffer in which the message is stored when received,
− recvcount – number of elements of type datatype to be received,
− recvtype – type of elements to be sent, all elements of a message must have

the same type,
− comm – communicator that describes the group of processes that can

exchange messages.

ALP IV: Concepts o Non-sequential and Distributed Programming Summer Term 2023

33

MPI_Allgatherv
int MPI_Allgatherv (void *sendbuf,

int sendcount,

MPI_Datatype sendtype,

void *recvbuf,

const int recvcounts[],

const int displs[],

MPI_Datatype recvtype,

MPI_Comm comm);

− Gathering of individual messages from all processes of the communicator comm
(without reduction operation) and distribution to all involved processes.

ALP IV: Concepts o Non-sequential and Distributed Programming Summer Term 2023

34

MPI_Allreduce
int MPI_Allreduce (void *sendbuf,

void *recvbuf,

int count,

MPI_Datatype datatype,

MPI_Op op,

MPI_Comm comm);

− Merging the content of different messages in a global reduction operation
(accumulation operation) op and distributes the result back to all processes of
the communicator comm.

ALP IV: Concepts o Non-sequential and Distributed Programming Summer Term 2023

35

MPI_Allreduce
− sendbuf – pointer to the buffer containing the data to be sent,
− recvbuf – pointer to the buffer in which the message is stored when received,
− count – number of elements of type datatype to be received,
− datatype – type of elements to be sent, all elements of a message must have

the same type,
− op – reduction operation,
− comm – communicator that describes the group of processes that can

exchange messages.

ALP IV: Concepts o Non-sequential and Distributed Programming Summer Term 2023

36ALP IV: Concepts o Non-sequential and Distributed Programming Summer Term 2023

// part of simple MPI program with MPI_Allreduce
// to multiply a matrix and a vector
// Rauber, Ruenger: Parallele und vert. Prg.

int m, local_m, n, p;
float a[MAX_N][MAX_LOC_M], local_b[MAX_LOC_M];
float c[MAX_N], sum[MAX_N];

local_m = m / p;
for (i = 0; i < n; i++) {

sum[i] = 0;
for (j = 0; j < local_m; j++)
sum[i] = sum[i] + a[i][j] * local_b[j];

}
MPI_Allreduce (sum, c, n, MPI_FLOAT, MPI_SUM, comm);

source code: 12-01.c

37

MPI_Alltoall
int MPI_Alltoall (void *sendbuf,

int sendcount,

MPI_Datatype sendtype,

void *recvbuf,

int recvcount,

MPI_Datatype recvtype,

MPI_Comm comm);

− Total exchange of (individual) messages of equal size of all processes of the
communicator comm (without reduction operation).

ALP IV: Concepts o Non-sequential and Distributed Programming Summer Term 2023

38

MPI_Alltoall
− sendbuf – pointer to the buffer containing the data to be sent,
− sendcount – number of elements of type datatype to be sent,
− sendtype – type of elements to be sent,
− recvbuf – pointer to the buffer in which the message is stored when received,
− recvcount – number of elements of type datatype to be received,
− recvtype – type of elements to be sent, all elements of a message must have

the same type,
− comm – communicator that describes the group of processes that can

exchange messages.

ALP IV: Concepts o Non-sequential and Distributed Programming Summer Term 2023

39

MPI_Alltoallv
int MPI_Alltoallv (void *sendbuf,

const int sendcounts[],

const int sdispls[],

MPI_Datatype sendtype,

void *recvbuf,

const int recvcounts[],

const int rdispls[],

MPI_Datatype recvtype,

MPI_Comm comm);

− Total exchange of (individual) messages with different size of all processes of
the communicator comm (without reduction operation).

ALP IV: Concepts o Non-sequential and Distributed Programming Summer Term 2023

40

MPI_Comm_group
int MPI_Comm_group (MPI_Comm comm,

MPI_Group *group);

− Returns all processes assigned to the communicator comm in the group data
structure group.

ALP IV: Concepts o Non-sequential and Distributed Programming Summer Term 2023

41

MPI_Group_union
int MPI_Group_union (MPI_Group group1,

MPI_Group group2,

MPI_Group *new_group);

− Merges the processes of the groups group1 and group2 into a group
new_group .

ALP IV: Concepts o Non-sequential and Distributed Programming Summer Term 2023

42

MPI_Group_intersection
int MPI_Group_intersection (MPI_Group group1,

MPI_Group group2,

MPI_Group *new_group);

− Produces a new group new_group as the intersection of the processes of the
groups group1 and group2.

ALP IV: Concepts o Non-sequential and Distributed Programming Summer Term 2023

43

MPI_Group_difference
int MPI_Group_difference (MPI_Group group1,

MPI_Group group2,

MPI_Group *new_group);

− Makes a new group new_group from the difference of the groups group1 and
group2.

ALP IV: Concepts o Non-sequential and Distributed Programming Summer Term 2023

44

MPI_Group_incl
int MPI_Group_incl (MPI_Group group,

int p,

const int ranks[],

MPI_Group *new_group);

− Creates a new group new_group from the processes of an existing group
group by taking only the p processes listed in ranks.

ALP IV: Concepts o Non-sequential and Distributed Programming Summer Term 2023

45

MPI_Group_excl
int MPI_Group_excl (MPI_Group group,

int p,

const int ranks[],

MPI_Group *new_group);

− Creates a new group new_group from the processes of an existing group
group by not adopting the p processes listed in ranks.

ALP IV: Concepts o Non-sequential and Distributed Programming Summer Term 2023

46

MPI_Group_compare
int MPI_Group_compare (MPI_Group group1,

MPI_Group group2,

int *res);

− Compares two groups and stores the result in res.
− For groups with the same processes in the same order MPI_IDENT is returned,

for groups with the same processes in different orders MPI_SIMILAR and for
different groups MPI_UNEQUAL.

ALP IV: Concepts o Non-sequential and Distributed Programming Summer Term 2023

47

MPI_Group_free
int MPI_Group_free (MPI_Group *group);

− Releases the data structure holding the group group.

ALP IV: Concepts o Non-sequential and Distributed Programming Summer Term 2023

48

MPI_Comm_create
int MPI_Comm_create (MPI_Comm comm,

MPI_Group group,

MPI_Comm new_comm);

− Creates a new communicator new_comm, which addresses the processes of the
group group, from the existing communicator comm.

ALP IV: Concepts o Non-sequential and Distributed Programming Summer Term 2023

49

MPI_Comm_compare
int MPI_Comm_compare (MPI_Comm comm1,

MPI_Comm comm2,

int *res);

− Compares the two communicators comm1 and comm2 and stores the result in
res.

− If comm1 and comm2 point to the same data structure, MPI_IDENT is returned. If
there are different communicators with the same processes in the same order
MPI_CONGRUENT is returned, if there are communicators with the same
processes in different orders MPI_SIMILAR and if there are different
communicators MPI_UNEQUAL is returned.

ALP IV: Concepts o Non-sequential and Distributed Programming Summer Term 2023

50

MPI_Comm_dup
int MPI_Comm_dup (MPI_Comm comm,

MPI_Comm new_comm);

− Creates a new communicator new_comm with the same processes in the same
order as the communicator comm.

ALP IV: Concepts o Non-sequential and Distributed Programming Summer Term 2023

51

MPI_Comm_split
int MPI_Comm_split (MPI_Comm comm,

int color,

int key,

MPI_Comm *new_comm);

− Split the processes of the communicator comm according to the values color in
the order key and return the communicator in which the corresponding process
is found.

− If a process has not set the value color, it will not be found in any of the
created communicators.

ALP IV: Concepts o Non-sequential and Distributed Programming Summer Term 2023

53

MPI_Comm_free
int MPI_Comm_free (MPI_Comm *comm);

− Releases the communicator comm after all message transmissions performed
with this communicator have been completed.

ALP IV: Concepts o Non-sequential and Distributed Programming Summer Term 2023

54

MPI_Wtime
double MPI_Wtime (void);

− Returns the time in seconds after a certain time. The elapsed processing time
can be determined from the difference between second calls.

ALP IV: Concepts o Non-sequential and Distributed Programming Summer Term 2023

55

MPI-2
Concepts of Non-sequential and Distributed Programming

ALP IV: Concepts o Non-sequential and Distributed Programming Summer Term 2023

56

MPI-2
• MPI-2 is an extension of the MPI standard.
• It introduces new functions to support

− memory transfers,
− dynamic process management,
− input/output operations.

• In particular, applications with very high
resource requirements will be programmed
with dynamic process generation and
dynamic runtime behavior.

ALP IV: Concepts o Non-sequential and Distributed Programming Summer Term 2023

Claudio Schepke

57

MPI_Comm_spawn
int MPI_Comm_spawn (const char *command,

char *argv[],

int maxprocs,

MPI_Info info,

int root,

MPI_Comm comm,

MPI_Comm *intercomm,

int array_of_errcodes[]);

− Creates a number of maxprocs new MPI processes that execute the command
program. The child processes still have to call MPI_Init() for execution.

ALP IV: Concepts o Non-sequential and Distributed Programming Summer Term 2023

58

MPI_Comm_spawn
• The parameters for MPI_Comm_spawn are:
− command – program executed by the child processes,
− argv – arguments passed to the child processes,
− maxprocs – number of child processes to be created,
− info – process information or MPI_INFO_NULL, to transfer the

administration to the runtime system,
− root – rank of the parent process,
− comm – communicator of the parent process,
− intercomm – communicator, the group of child processes,
− array_of_errcodes – error code per child process.

ALP IV: Concepts o Non-sequential and Distributed Programming Summer Term 2023

59

MPI_Comm_get_parent
int MPI_Comm_get_parent (MPI_Comm *parent);

− Returns the communicator of the parent process in parent.

ALP IV: Concepts o Non-sequential and Distributed Programming Summer Term 2023

60

MPI_Comm_spawn_multiple
int MPI_Comm_spawn_multiple (int count,

const char *commands[],

char **argv[],

int maxprocs[],

MPI_Info infos[],

int root,

MPI_Comm comm,

MPI_Comm *intercomm,

int array_of_errcodes[]);

− Starts count many command programs, each with maxprocs many processes.
− It creates one communicator for all child processes.

ALP IV: Concepts o Non-sequential and Distributed Programming Summer Term 2023

61

MPI_Comm_spawn_multiple
− count – number of programs to be started,
− command – program executed by the child processes,
− argv – arguments passed to the child processes,
− maxprocs – number of child processes to be created,
− info – process information or MPI_INFO_NULL, to transfer the

administration to the runtime system,
− root – rank of the parent process,
− comm – communicator of the parent process,
− intercomm – communicator, the group of child processes,
− array_of_errcodes – error code per child process.

ALP IV: Concepts o Non-sequential and Distributed Programming Summer Term 2023

62

NEXT LECTURE
Concepts of Non-sequential and Distributed Programming

ALP IV: Concepts o Non-sequential and Distributed Programming Summer Term 2023

Institute of Computer Science
Department of Mathematics and Computer Science

APL IV: Concepts of Non-sequential and Distributed
Programming (Summer Term 2023)

Design and Implementation of
Parallel Applications

	Algorithms and Programming IV�MPI Group Communication and�MPI-2
	Objectives of Today‘s Lecture
	MPI Group Communication
	Machine Model
	Machine and Execution Model
	Foliennummer 6
	MPI_Bcast
	MPI_Bcast
	MPI_Reduce
	MPI_Reduce
	MPI_Reduce – Operations
	MPI_Op_create
	MPI_Op_create
	Extended MPI Datatypes
	MPI_Type_create_struct
	MPI_Type_create_struct
	MPI_Type_contiguous
	MPI_Type_commit
	Foliennummer 19
	Foliennummer 20
	Foliennummer 21
	Foliennummer 22
	Foliennummer 23
	Foliennummer 24
	MPI_Gather
	MPI_Gather
	MPI_Gatherv
	MPI_Scatter
	MPI_Scatter
	MPI_Scatterv
	MPI_Allgather
	MPI_Allgather
	MPI_Allgatherv
	MPI_Allreduce
	MPI_Allreduce
	Foliennummer 36
	MPI_Alltoall
	MPI_Alltoall
	MPI_Alltoallv
	MPI_Comm_group
	MPI_Group_union
	MPI_Group_intersection
	MPI_Group_difference
	MPI_Group_incl
	MPI_Group_excl
	MPI_Group_compare
	MPI_Group_free
	MPI_Comm_create
	MPI_Comm_compare
	MPI_Comm_dup
	MPI_Comm_split
	MPI_Comm_free
	MPI_Wtime
	MPI-2
	MPI-2
	MPI_Comm_spawn
	MPI_Comm_spawn
	MPI_Comm_get_parent
	MPI_Comm_spawn_multiple
	MPI_Comm_spawn_multiple
	Next lecture
	Design and Implementation of Parallel Applications

