
Institute of Computer Science
Department of Mathematics and Computer Science

Summer Term 2023 | 24.05.2023
Barry Linnert

Algorithms and Programming IV
Parallel Programming with
Message Passing



2

Objectives of Today‘s Lecture

• Parallel programming with message passing
• Foster's Design Methodology

ALP IV: Concepts of Non-sequential and Distributed Programming Summer Term 2023



3

PARALLEL PROGRAMMING WITH 
MESSAGE PASSING

Concepts of Non-sequential and Distributed Programming

ALP IV: Concepts of Non-sequential and Distributed Programming Summer Term 2023



4

Machine and 
Execution model

ALP IV: Concepts of Non-sequential and Distributed Programming Summer Term 2023

Instruction Pointer

Instruction Pointer

Instruction Pointer

Instruction Pointer
Instruction Pointer

Instruction Pointer

Instruction Pointer

Operating system



5

Programming with Shared Memory
• Using the execution and machine model we can identify different levels of parallel 

processing:
− Processor level

− Pipelining
− multiple processing units

− Compiler level
− Out-of-Order-Execution
− Parallel loops

− Thread level
− OpenMP

− Loop and functional parallelization
− Pthreads

− Functional parallelization 
ALP IV: Concepts of Non-sequential and Distributed Programming Summer Term 2023

Implicit parallel processing

Explicit parallel processing

�



6

Implicit Parallel Processing (with Shared Memory)
• The goal of implicit parallel processing is to maximize the usage of the existing 

computing units.

• The parallel execution of (parts) of the program is transparent to the program and 
therefore to the programmer and user.

• The unit responsible for the parallelization (compiler, processor) detects data 
independent parts of the program.

• Usually the parts are – with respect to the whole program – fine granular, such as 
blocks of few operations or even on level of micro-instruction.

• As the thread or process is executed without constrains the parallel executions 
works within the same address space. Thus, implicit parallel processing is 
performed on systems with shared memory.

ALP IV: Concepts of Non-sequential and Distributed Programming Summer Term 2023



7

Explicit Parallel Processing with Shared Memory
• The goal of explicit parallel processing is to reduce the response time (execution 

and waiting time) of a specific program by using as much resources as possible.
• The parts of the program to be processed in parallel are to be identified by the 

programmer and has to encapsulate to be recognized by the execution system as 
unit to be executed separately.

• The encapsulation of the units to be processed in parallel usually have an 
expression at the level of the programming language.

• As it is easier (with respect to other approaches) to exchange intermediate results 
using shared data the corresponding variables are stored in shared memory 
address space. 

• The identification and protection of critical sections has to be performed by the 
programmer her-/himself.

ALP IV: Concepts of Non-sequential and Distributed Programming Summer Term 2023



8

Extension of the Machine and Execution Model
• With explicit parallel processing the 

amount of parallelization – amount of 
computing units used by the program –
can be controlled more effective. 

• Larger systems with more CPUs may 
be used by these programs.

• If the architectures provide more than 
one unit of main memory and the 
access (times) to the address depends 
on the CPU performing the access this 
architecture is called NUMA – non-
uniform memory access.

ALP IV: Concepts of Non-sequential and Distributed Programming Summer Term 2023



9

PRAM Model
• The PRAM Model is a programming model for programs using shared memory 

based on UMA or NUMA architectures.
• PRAM stands for Parallel Random Access Machine.
• The PRAM model is an extension to the RAM model, which is known as the von 

Neumann architecture.
• The model consists of a set of independent random access machines each 

operate on a single processor and coordinate themselves via shared memory.

• It is also used to evaluate the performance of a parallel program.
• To evaluate the performance of the program the performance values for the 

computing units (CPUs) and the overhead for memory access is incorporated.

ALP IV: Concepts of Non-sequential and Distributed Programming Summer Term 2023



10

Parallel Computing
• If the programs are complex and the amount of resources needed to obtain 

reasonable response times more than one machine may have to work for the 
program.

• Systems coupled to provide resources for the execution of a parallel program are 
called parallel computers.

• The single machines forming the parallel computer are called nodes (of the parallel 
computer). Usually the nodes are connected by network interfaces and links. 

• Thus, the ability to access addresses in main memory depends on the node the 
thread is running on. Usually, there is no comprehensive memory access 
implemented.

• Data needed to be exchanged between threads running on different nodes has to 
be transmitted explicitly – using message passing.

ALP IV: Concepts of Non-sequential and Distributed Programming Summer Term 2023



11

Architecture of a Parallel Computer

ALP IV: Concepts of Non-sequential and Distributed Programming Summer Term 2023



12

Examples

ALP IV: Concepts of Non-sequential and Distributed Programming Summer Term 2023

www.hlrn.de

www.ornl.gov



13ALP IV: Concepts of Non-sequential and Distributed Programming Summer Term 2023

parallel application

node
1

node
2

node
3

node
4

node
5

node
n

connection network

Program libraries (e.g. communication, synchronization,..)

Middleware (e.g. administration, scheduling,..)

loc.BS loc.BS loc.BS loc.BS loc.BS loc.BSDistributed operating system



14

Programming with Shared Memory
vs. Message Passing
• The division of the program or problem space (data to be processed) is to be 

modeled in order to build a parallel program.
• The threads working the parallel program have to be synchronized when 

accessing or changing shared data.
• The performance of the program depends primarily on the extent of the parallel 

areas of the program.

ALP IV: Concepts of Non-sequential and Distributed Programming Summer Term 2023

Programming with shared memory:
• Exchange of data is done implicitly 

by using shared variables.
• Access to shared variables is 

usually as fast as to local/private 
variables.

Programming with message passing:
• Exchange of data takes place explicitly 

by sending and receiving the data 
(variable contents).

• Access to shared data requires explicit 
and slow message passing.



15

Example: Matrix Multiplication

𝐴𝐴11 𝐴𝐴12 𝐴𝐴13
𝐴𝐴21 𝐴𝐴22 𝐴𝐴23

�
𝐵𝐵11 𝐵𝐵12
𝐵𝐵21 𝐵𝐵22
𝐵𝐵31 𝐵𝐵32

= 𝐴𝐴11 � 𝐵𝐵11 + 𝐴𝐴12 � 𝐵𝐵21 + 𝐴𝐴13 � 𝐵𝐵31 𝐴𝐴11 � 𝐵𝐵12 + 𝐴𝐴12 � 𝐵𝐵22 + 𝐴𝐴13 � 𝐵𝐵32
𝐴𝐴21 � 𝐵𝐵11 + 𝐴𝐴22 � 𝐵𝐵21 + 𝐴𝐴23 � 𝐵𝐵31 𝐴𝐴21 � 𝐵𝐵12 + 𝐴𝐴22 � 𝐵𝐵22 + 𝐴𝐴23 � 𝐵𝐵32

ALP IV: Concepts of Non-sequential and Distributed Programming Summer Term 2023



16

Example: Raytracing

ALP IV: Concepts of Non-sequential and Distributed Programming Summer Term 2023

Photo realistic presentation using sophisticated illumination modules

Rendering (interior architecture) Rendering (Movie: Titanic)



17

Foster's Design Methodology
• Ian Foster

− He is director at the Argonne National Laboratory and professor in 
the department of computer science at the University of Chicago.

− He is – together with Carl Kesselman and Steve Tuecke –
inventor of the term Grid Computing to connect different 
supercomputers to build a transparent resource for high 
performance computing (HPC) applications.

• Foster described an approach to model and design parallel 
applications to be run on supercomputers. It’s called Foster's
Design Methodology.

ALP IV: Concepts of Non-sequential and Distributed Programming Summer Term 2023

datasysys.cs.iit.edu



18

Task/Channel (Programming) Model
• The Task/Channel (Programming) Model serves as foundation for Forster‘s design 

methodology. 
• A Task of the task/channel model is a part of the application with its own address 

space (process).
• Tasks can exchange data via messages using channels.
• A channel is a message queue connecting two specific tasks.
• If a task wants to receive a message, the task waits until the message is received 

(is blocked).
• Messages are sent immediately by the sender. The sender does not wait until the 

message is received.
• Thus, the task/channel model implements synchronous receive and asynchronous 

sending.
ALP IV: Concepts of Non-sequential and Distributed Programming Summer Term 2023



19

Foster's Design Methodology

• The design methodology by Foster is a four-step process consisting of:
1. Partitioning
2. Communication
3. Agglomeration
4. Mapping (Assignment)

ALP IV: Concepts of Non-sequential and Distributed Programming Summer Term 2023



20

Partitioning
• The first step deals with the division of the problem space.
• The goal is to identify as many independent pieces of the program or data as 

possible.
• Thus, we can use domain and data decomposition or functional decomposition.
• Domain and data decomposition is up to identify data that can be processed 

independently.
• Functional decomposition focuses on identification of computational functions that 

can be processed independently. 
• Partitioning is usually performed in a recursive top-down process.
• Often a complete decomposition is not possible, so there has to be made a trade-

off between the amount of tasks to be created and the communication cost.

ALP IV: Concepts of Non-sequential and Distributed Programming Summer Term 2023



21

Partitioning II
• The best designs satisfy the following attributes:

− There are many more independent tasks identified than there are processors in the 
system.

− The number of redundant calculations and redundant data structures (variables) has been 
minimized.

− The tasks (primitive tasks) should have approximately the same size or processing effort.
− The number of tasks should grow at the same rate as the problem size.

ALP IV: Concepts of Non-sequential and Distributed Programming Summer Term 2023



22

Communication
• After splitting the problem space into pieces the relations between the tasks have 

to be considered. 
• Thus, the data exchange between the tasks is modeled using the channels and 

the appropriate properties of the channels. 
• The message passing to transmit data from one specific task to another specific 

task is called local communication. 
• The sending of messages from one task to all of the other tasks or of a significant 

amount of tasks is called global communication.
• The total amount of local and global communication (for a task) determines the 

communication overhead (of the specific task).

ALP IV: Concepts of Non-sequential and Distributed Programming Summer Term 2023



23

Communication II
• The requirements for this step are:

− The communication efforts of the respective tasks should be (almost) equally distributed.
− Each task communicates only with a small number of other tasks (neighbours).
− Tasks can perform their communication concurrently. This means, different tasks 

communicate independently of each other.
− Tasks can perform their computations concurrently. Different tasks perform their 

calculations independently of each other.
− There are no permanent data-level dependencies between tasks.

ALP IV: Concepts of Non-sequential and Distributed Programming Summer Term 2023



24

Agglomeration
• As the amount of tasks exceeds the number of processors tasks have be 

combined or grouped together to be assigned to a specific processor.
• The amount of combined tasks should correspond to the number of processors 

available.
• The combination of tasks should reduce the amount of communication between 

tasks as the tasks to be combined uses shared memory to provide shared data.
• Thus, the agglomeration should increase locality of data usage. 
• With combination of the tasks the effort of task creation (process creation) is 

reduced, too.

ALP IV: Concepts of Non-sequential and Distributed Programming Summer Term 2023



25

Agglomeration II
• The requirements for the step of agglomeration are:

− The combination of the tasks has led to a higher locality of the parallel program.
− There is less communication effort across all tasks with respect to the communication 

before the agglomeration.
− If there is additional work to do because a task was combined with two different sets of 

tasks, the replicated computation should need less time than the communication it 
replaces.

− The amount of data combined into common variables is small enough that the program is 
able to scale as the problem space increases.

− The combined tasks are (still) similar in terms of calculation and communication effort.
− The number of tasks should (still) grow at the same rate as the problem size.
− If changes to the parallel program has to be made the cost for this programming has to be 

reasonable.
ALP IV: Concepts of Non-sequential and Distributed Programming Summer Term 2023



26

Mapping
• The combined tasks have to be assigned to specific processors of the parallel 

computer.
• This is called mapping.
• The mapping should lead to a maximum of utilization of the single processor.
• If there are (still) more tasks available the mapping will lead to an assignment with 

more than one tasks to be mapped to a specific processor. 
• The mapping of more than one task to a processor should not lead to a significant 

increase in an unbalance of computational load.

ALP IV: Concepts of Non-sequential and Distributed Programming Summer Term 2023



27

Mapping II
• The requirements for the last step of the design methodology are :

− The machine and execution model has to be considered sufficiently.
− Thus, the amount of processors available for the parallel program is used.
− The available allocation strategies – static or dynamic – have to be considered and 

evaluated. 
− If a dynamic allocation strategy has been chosen, the manager – within the program or of 

the management systems – should not become the bottleneck for performance.
− If a static assignment has been chosen, about 10 tasks should be mapped to a processor.

ALP IV: Concepts of Non-sequential and Distributed Programming Summer Term 2023



28

Foster's Design Methodology

ALP IV: Concepts of Non-sequential and Distributed Programming Summer Term 2023



29

Consideration of Time Sequences
• Foster's approach considers time sequences or dependencies only as a summary 

of communication efforts.
• Often intermediate results form the basis for the next processing steps.
• The exchange of intermediate results thus has a synchronization aspect in 

addition to the aspect of providing shared data.

• Modelling the time sequence (program runtime behavior) during programming can 
be a great challenge:
− The processing of the tasks of the program also depend on the input data.
− The influence of the time sequences to the overall program runtime behavior depends on 

all (previous) steps of execution. 

ALP IV: Concepts of Non-sequential and Distributed Programming Summer Term 2023



30

BSP Model
• To model the program runtime behavior at time of programming the BSP model 

was introduced. 
• BSP stands for bulk synchronous parallel.
• It is a well used programming model for parallel applications and can be used to 

evaluate the performance of the parallel program as well. 
• The computational work is split into super steps.
• A super step consists of calculation in parallel for all of the participating processes 

and the interchange of the intermediate results between all of these processes.
• For the synchronization of calculation and of the transmission a barrier 

synchronization is performed. This barrier ends the super step and afterwards the 
next super step starts.

• The synchronization ensures that every process always works on valid data. 
ALP IV: Concepts of Non-sequential and Distributed Programming Summer Term 2023



31

BSP Model
• To model the performance of the parallel program the sequence of super steps 

and the execution time for the super steps is used.
• The communication costs are modeled via broadcast communication and barrier 

synchronization.

• The performance of the parallel program depends heavily on the balanced 
distribution of computational work between all of the processes.

• The synchronization part (with broadcast communication) may lead to overload 
situations at the network level temporary.

ALP IV: Concepts of Non-sequential and Distributed Programming Summer Term 2023



33

NEXT EVENT
Concepts of Non-sequential and Distributed Programming

ALP IV: Concepts of Non-sequential and Distributed Programming Summer Term 2023



Institute of Computer Science
Department of Mathematics and Computer Science

APL IV: Concepts of Non-sequential and Distributed 
Programming (Summer Term 2023)

MPI


	Algorithms and Programming IV�Parallel Programming with�Message Passing
	Objectives of Today‘s Lecture
	Parallel programming with message Passing
	Machine and �Execution model
	Programming with Shared Memory
	Implicit Parallel Processing (with Shared Memory)
	Explicit Parallel Processing with Shared Memory
	Extension of the Machine and Execution Model
	PRAM Model
	Parallel Computing
	Architecture of a Parallel Computer
	Examples
	Foliennummer 13
	Programming with Shared Memory�vs. Message Passing
	Example: Matrix Multiplication
	Example: Raytracing
	Foster's Design Methodology
	Task/Channel (Programming) Model
	Foster's Design Methodology
	Partitioning
	Partitioning II
	Communication
	Communication II
	Agglomeration
	Agglomeration II
	Mapping
	Mapping II
	Foster's Design Methodology
	Consideration of Time Sequences
	BSP Model
	BSP Model
	Next event
	MPI

