
Institute of Computer Science
Department of Mathematics and Computer Science

Summer Term 2023 | 22.05.2023
Barry Linnert

Algorithms and Programming IV
OpenMP

2

Objectives of Today‘s Lecture

• Introduction to OpenMP

ALP IV: Concepts of Non-sequential and Distributed Programming Summer Term 2023

3

OPENMP
Concepts of Non-sequential and Distributed Programming

ALP IV: Concepts of Non-sequential and Distributed Programming Summer Term 2023

4

Machine and
Execution Model

ALP IV: Concepts of Non-sequential and Distributed Programming Summer Term 2023

Instruction Pointer

Instruction Pointer

Instruction Pointer

Instruction Pointer
Instruction Pointer

Instruction Pointer

Instruction Pointer

Operating system

5

Requirements for programs
• The program should do what it has been programmed to do!

− Functional properties
− Scope of functions
− Correctness

• The program should follow certain rules for this purpose!
− Non-functional properties

− Performance
− Security
− …

ALP IV: Concepts of Non-sequential and Distributed Programming Summer Term 2023

6

OpenMP
• OpenMP was designed to support parallel programming.

• Wide range of parallel algorithms and parallel programs implements processing of
parts of data out of a common problem space.

• Thus, the same instruction are used on different parts of the problem represented
by shared data.

• Modern hardware architectures provide more than one execution unit that can
execute a thread by its own.

• OpenMP represents an application programming interface (API), compiler
extensions and operating system support to support multi-threaded shared-
memory programming on different hardware architectures.

ALP IV: Concepts of Non-sequential and Distributed Programming Summer Term 2023

7

OpenMP II
• The application programming interface implements support for parallel

programming, such as single program multiple data (SPMD) with one operation is
performed for different parts of the data.

• Thus, the effort for programming in parallel is reduced in comparison to
implementing a multi-threaded application using the operating system interface or
thread libraries.

• The API provides a higher abstraction level than POSIX threads (pthreads).

ALP IV: Concepts of Non-sequential and Distributed Programming Summer Term 2023

8

OpenMP III
• OpenMP is architecture and operating system independent.

• The API provides support for programming languages C/C++ and Fortran.

• The compiler has to support the API and maps the operations onto the specific
thread libraries of the operating system or the execution environment.

• In case the compiler does not support the OpenMP standard the OpenMP
directives (operations) are ignored and the program can be compiled without
usage of the OpenMP API.

• www.openmp.org

ALP IV: Concepts of Non-sequential and Distributed Programming Summer Term 2023

9

Example: Matrix Multiplication

𝐴𝐴11 𝐴𝐴12 𝐴𝐴13
𝐴𝐴21 𝐴𝐴22 𝐴𝐴23

�
𝐵𝐵11 𝐵𝐵12
𝐵𝐵21 𝐵𝐵22
𝐵𝐵31 𝐵𝐵32

= 𝐴𝐴11 � 𝐵𝐵11 + 𝐴𝐴12 � 𝐵𝐵21 + 𝐴𝐴13 � 𝐵𝐵31 𝐴𝐴11 � 𝐵𝐵12 + 𝐴𝐴12 � 𝐵𝐵22 + 𝐴𝐴13 � 𝐵𝐵32
𝐴𝐴21 � 𝐵𝐵11 + 𝐴𝐴22 � 𝐵𝐵21 + 𝐴𝐴23 � 𝐵𝐵31 𝐴𝐴21 � 𝐵𝐵12 + 𝐴𝐴22 � 𝐵𝐵22 + 𝐴𝐴23 � 𝐵𝐵32

ALP IV: Concepts of Non-sequential and Distributed Programming Summer Term 2023

10

Example: Matrix Multiplication

𝐴𝐴11 𝐴𝐴12 𝐴𝐴13
𝐴𝐴21 𝐴𝐴22 𝐴𝐴23

�
𝐵𝐵11 𝐵𝐵12
𝐵𝐵21 𝐵𝐵22
𝐵𝐵31 𝐵𝐵32

= 𝐴𝐴11 � 𝐵𝐵11 + 𝐴𝐴12 � 𝐵𝐵21 + 𝐴𝐴13 � 𝐵𝐵31 𝐴𝐴11 � 𝐵𝐵12 + 𝐴𝐴12 � 𝐵𝐵22 + 𝐴𝐴13 � 𝐵𝐵32
𝐴𝐴21 � 𝐵𝐵11 + 𝐴𝐴22 � 𝐵𝐵21 + 𝐴𝐴23 � 𝐵𝐵31 𝐴𝐴21 � 𝐵𝐵12 + 𝐴𝐴22 � 𝐵𝐵22 + 𝐴𝐴23 � 𝐵𝐵32

ALP IV: Concepts of Non-sequential and Distributed Programming Summer Term 2023

11

Example: Matrix Multiplication

𝐴𝐴11 𝐴𝐴12 𝐴𝐴13
𝐴𝐴21 𝐴𝐴22 𝐴𝐴23

�
𝐵𝐵11 𝐵𝐵12
𝐵𝐵21 𝐵𝐵22
𝐵𝐵31 𝐵𝐵32

= 𝐴𝐴11 � 𝐵𝐵11 + 𝐴𝐴12 � 𝐵𝐵21 + 𝐴𝐴13 � 𝐵𝐵31 𝐴𝐴11 � 𝐵𝐵12 + 𝐴𝐴12 � 𝐵𝐵22 + 𝐴𝐴13 � 𝐵𝐵32
𝐴𝐴21 � 𝐵𝐵11 + 𝐴𝐴22 � 𝐵𝐵21 + 𝐴𝐴23 � 𝐵𝐵31 𝐴𝐴21 � 𝐵𝐵12 + 𝐴𝐴22 � 𝐵𝐵22 + 𝐴𝐴23 � 𝐵𝐵32

ALP IV: Concepts of Non-sequential and Distributed Programming Summer Term 2023

12

OpenMP – Compiling
• From program to process with threads:

• Activating OpenMP while using the Gnu C-compiler:
− gcc -o test -fopenmp test.c

• Setting the amount of threads to be generated by using environment variable:
− export OMP_NUM_THREADS=4

ALP IV: Concepts of Non-sequential and Distributed Programming Summer Term 2023

13

OpenMP – API
• Using the Fortran programming language:

!$omp ...

• Using C/C++:
#pragma omp ...

• Applies to the following statement (operation) or a block of statements ({...} in
curly brace) only.

• Generates team of threads including the main thread.

ALP IV: Concepts of Non-sequential and Distributed Programming Summer Term 2023

14

Parallel Processing
#pragma omp parallel [clause [[,]clause] ...]

− Executes the following statement or statement block as team of separated
threads.

− The number of threads is determined by the environment variable
OMP_NUM_THREADS.

− Parameters (clauses) determine the behavior of the team of threads or the
usage of data. Clauses can be passed in any order.

− The main thread generates all other threads (team) and executes the
instructions (parallel region) as well.

− The (additionally) created threads of the team end with the completion of the last
statement. The main thread continues with the following statement.

ALP IV: Concepts of Non-sequential and Distributed Programming Summer Term 2023

15

Parallel Processing – Example

ALP IV: Concepts of Non-sequential and Distributed Programming Summer Term 2023

// simple program with openmp

#include <stdio.h>

int main ()
{

#pragma omp parallel
printf ("I'm a thread. \n");

return 0;
}

How many threads will be
created?
How often the sentence “I’m
a thread.” will be printed?

source code: 09-00.c

16

Parallel Processing – Variables in Parallel Region
• The usage of the variables within a parallel executed statement block is controlled

by the clauses (parameters):
private (list_of_variables)

− Indicates these are private variables whose values are only available to the
corresponding thread.

shared (list_of_variables)

− Deliver a list of variables holding data shared between all of the threads (shared
variables).

ALP IV: Concepts of Non-sequential and Distributed Programming Summer Term 2023

17

Parallel Processing – Variables in Parallel Region II
default (shared)

− Indicates that all variables, except those specified separately, are treated as
shared variables.

default (none)

− For all variables the usage must be explicitly specified.

• Example:
#pragma omp parallel shared (a, b) private (i)

ALP IV: Concepts of Non-sequential and Distributed Programming Summer Term 2023

18

Control of the Threads of a Team
• Different functions can be used to control the team of threads working in parallel:
#include <omp.h>

int omp_get_num_threads ();

− Returns the amount of threads executing the current parallel region.

int omp_get_thread_num ();

− Returns the number of the current thread of the team of threads.

ALP IV: Concepts of Non-sequential and Distributed Programming Summer Term 2023

19ALP IV: Concepts of Non-sequential and Distributed Programming Summer Term 2023

// simple program with openmp
// Rauber, Ruenger: Parallele und vert. Prg.

#include <stdio.h>

int npoints, iam, np, mypoints;
double *x;

int main () {
scanf ("%d", &npoints);
x = (double *) malloc (npoints * sizeof (double));
initialize ();

#pragma omp parallel shared (x, npoints) private (iam, np, mypoints)
{

mypoints = npoints / np;
compute_subdomain (x, iam, mypoints);

}
return 0;

} source code: 09-01.c

20ALP IV: Concepts of Non-sequential and Distributed Programming Summer Term 2023

// simple program with openmp
// Rauber, Ruenger: Parallele und vert. Prg.

#include <stdio.h>
#include <omp.h>

int npoints, iam, np, mypoints;
double *x;

int main () {
scanf ("%d", &npoints);
x = (double *) malloc (npoints * sizeof (double));
initialize ();

#pragma omp parallel shared (x, npoints) private (iam, np, mypoints)
{
np = omp_get_num_threads ();
iam = omp_get_thread_num ();
mypoints = npoints / np;
compute_subdomain (x, iam, mypoints);

}
return 0;

} source code: 09-01.c

21

Nested Parallel Regions
• Parallel regions can be nested.
• The inner parallel region is then executed (by default) by a team containing one

thread only.
• If the inner region is also to be executed in parallel, this can be changed:

#include <omp.h>

int omp_set_nested (int nested);

− Enables or disables nested parallelism. To enable nested parallel execution the
value nested != 0

• The amount of threads of the team used for the inner parallel region depends on
the specific implementation of the OpenMP environment.

ALP IV: Concepts of Non-sequential and Distributed Programming Summer Term 2023

22

Parallel Loop
#pragma omp for [clause [[,] clause] ...]

for (i = lower_bound; i op upper_bound; incr_expr)

{

...

}

− For processing one or more loops in parallel.
− Loop has to be embedded in a parallel region.
− The loop must be of fixed length.
− incr_expr must be a loop independent integer expression and the loop must

not be terminated prematurely (break).
− The loop count variable is always a private variable.

ALP IV: Concepts of Non-sequential and Distributed Programming Summer Term 2023

23

Parallel Loop – Shortcut
#pragma omp parallel for [clause [[,] clause] ...]

for (i = lower_bound; i op upper_bound; incr_expr)

{

...

}

− Is a short notation of the parallel loop OpenMP directive. It can be used if only a
single loop is to be executed in parallel.

− The loop statement (operation) has to follow the OpenMP directive.

ALP IV: Concepts of Non-sequential and Distributed Programming Summer Term 2023

24

Distribution of Iterations of the Loop
• Usually, the distribution of the loop iterations (chunk) among the threads of the

team is done automatically but can be controlled by clauses (parameters):
schedule (static, chunk_size)

− A static partitioning is performed so that the iterations are divided into chunks of
the size chunk_size and assigned to the threads in turn (round-robin).

schedule (dynamic, chunk_size)

− Threads whose processing is complete are assigned the next chunk (bag-of-
tasks).

schedule (guided, chunk_size)

− The size of the newly assigned chunk is reduced with every new assignment.
ALP IV: Concepts of Non-sequential and Distributed Programming Summer Term 2023

25

Distribution of Iterations of the Loop II
• The settings for the distribution of the loop iterations can also be controlled by

environment variables:
schedule (runtime)

− The schedule and chunk size are taken from the environment variables:
export OMP_SCHEDULE "dynamic, 4"

export OMP_SCHEDULE "guided"

ALP IV: Concepts of Non-sequential and Distributed Programming Summer Term 2023

26

Example: Matrix Multiplication

𝐴𝐴11 𝐴𝐴12 𝐴𝐴13
𝐴𝐴21 𝐴𝐴22 𝐴𝐴23

�
𝐵𝐵11 𝐵𝐵12
𝐵𝐵21 𝐵𝐵22
𝐵𝐵31 𝐵𝐵32

= 𝐴𝐴11 � 𝐵𝐵11 + 𝐴𝐴12 � 𝐵𝐵21 + 𝐴𝐴13 � 𝐵𝐵31 𝐴𝐴11 � 𝐵𝐵12 + 𝐴𝐴12 � 𝐵𝐵22 + 𝐴𝐴13 � 𝐵𝐵32
𝐴𝐴21 � 𝐵𝐵11 + 𝐴𝐴22 � 𝐵𝐵21 + 𝐴𝐴23 � 𝐵𝐵31 𝐴𝐴21 � 𝐵𝐵12 + 𝐴𝐴22 � 𝐵𝐵22 + 𝐴𝐴23 � 𝐵𝐵32

ALP IV: Concepts of Non-sequential and Distributed Programming Summer Term 2023

27ALP IV: Concepts of Non-sequential and Distributed Programming Summer Term 2023
source code: 09-02.c

// simple program with openmp
// Rauber, Ruenger: Parallele und vert. Prg.

#include <stdio.h>
#include <omp.h>

double MA[100][100], MB[100][100];
double MC[100][100];
int i, row, col, size = 100;

void read_input ()
{

int j;

for (i = 0; i < 100; i++)
for (j = 0; j < 100; j++)
MA[i][j] = (double)(i + j) + 1.0;

for (i = 0; i < 100; i++)
for (j = 0; j < 100; j++)
MB[i][j] = (double)(i + j) + 1.0;

}

void write_output ()
{

int j;

for (i = 0; i < 100; i++)
for (j = 0; j < 100; j++)
printf ("%f ", MC[i][j]);

printf ("\n");
}

int main () {
read_input (); // MA, MB

...

write_output (); // MC

return 0;
}

28ALP IV: Concepts of Non-sequential and Distributed Programming Summer Term 2023
source code: 09-02.c

// simple program with openmp
// Rauber, Ruenger: Parallele und vert. Prg.

#include <stdio.h>
#include <omp.h>

double MA[100][100], MB[100][100];
double MC[100][100];
int i, row, col, size = 100;

void read_input ()
{

...
}

void write_output ()
{

...
}

int main () {
read_input (); // MA, MB
#pragma omp parallel

shared (MA, MB, MC, size)
private (row, col, i)

{

for (row = 0; row < size; row++) {
for (col = 0; col < size; col++)
MC[row][col] = 0.0;

}

for (row = 0; row < size; row++) {
for (col = 0; col < size; col++)
for (i = 0; i < size; i++)
MC[row][col] += MA[row][i] *

MB[i][col];
}

}
write_output (); // MC
return 0;

}

29ALP IV: Concepts of Non-sequential and Distributed Programming Summer Term 2023
source code: 09-02.c

// simple program with openmp
// Rauber, Ruenger: Parallele und vert. Prg.

#include <stdio.h>
#include <omp.h>

double MA[100][100], MB[100][100];
double MC[100][100];
int i, row, col, size = 100;

void read_input ()
{

...
}

void write_output ()
{

...
}

int main () {
read_input (); // MA, MB
#pragma omp parallel

shared (MA, MB, MC, size)
private (row, col, i)

{
#pragma omp for schedule (static)
for (row = 0; row < size; row++) {
for (col = 0; col < size; col++)
MC[row][col] = 0.0;

}
#pragma omp for schedule (static)
for (row = 0; row < size; row++) {
for (col = 0; col < size; col++)
for (i = 0; i < size; i++)
MC[row][col] += MA[row][i] *

MB[i][col];
}

}
write_output (); // MC
return 0;

}

30ALP IV: Concepts of Non-sequential and Distributed Programming Summer Term 2023

// simple program with openmp
// Rauber, Ruenger: Parallele und vert. Prg.

#include <stdio.h>
#include <omp.h>

double MA[100][100], MB[100][100];
double MC[100][100];
int i, row, col, size = 100;

void read_input ()
{

...
}

void write_output ()
{

...
}

int main () {
read_input (); // MA, MB
#pragma omp parallel

private (row, col, i)
{
#pragma omp for schedule (static)
for (row = 0; row < size; row++) {
#pragma omp parallel

shared (MA, MB, MC, size)
{
#pragma omp for schedule (static)
for (col = 0; col < size; col++){
MC[row][col] = 0.0;
for (i = 0; i < size; i++)

MC[row][col] += MA[row][i] *
MB[i][col];

}
}

}
}
write_output (); // MC
return 0;}

source code: 09-03.c

31

Functional Parallelism
#pragma omp sections [clause [[,]clause] ...]

− Executes the parts of the following statement block by separated threads as
team of threads. The OpenMP directive does not apply to iterative parallel
regions (of loops).

− Each of the sub-regions is delimited as a section:
#pragma omp section

− An implicit synchronization of the thread with the main thread takes place at the
end of a section. The synchronization can be prevented with the clause
(parameter) nowait.

ALP IV: Concepts of Non-sequential and Distributed Programming Summer Term 2023

32ALP IV: Concepts of Non-sequential and Distributed Programming Summer Term 2023

// simple program with openmp
// Quinn: parallel prog. in c with mpi and openmp

#include <stdio.h>
#include <omp.h>

double alpha () {
printf ("alpha \n");
return 1.1;

}
double beta () {

printf ("beta \n");
return 2.2;

}
double delta () {

printf ("delta \n");
return 3.3;

}
double my_gamma (double v, double w) {

printf ("gamma \n");
return v + w;

}

double epsilon (double x, double y) {
printf ("epsilon \n");
return x + y;

}

int main () {
double v, w, x, y;

v = alpha ();

w = beta ();
x = my_gamma (v, w);
y = delta ();

printf ("%6.2f \n", epsilon (x, y));

return 0;
}

source code: 09-04.c

33ALP IV: Concepts of Non-sequential and Distributed Programming Summer Term 2023

34ALP IV: Concepts of Non-sequential and Distributed Programming Summer Term 2023

35ALP IV: Concepts of Non-sequential and Distributed Programming Summer Term 2023

36ALP IV: Concepts of Non-sequential and Distributed Programming Summer Term 2023

37ALP IV: Concepts of Non-sequential and Distributed Programming Summer Term 2023

// simple program with openmp
// Quinn: parallel prog. in c with mpi and openmp

#include <stdio.h>
#include <omp.h>

double alpha () {
printf ("alpha \n");
return 1.1;

}
double beta () {

printf ("beta \n");
return 2.2;

}
double delta () {

printf ("delta \n");
return 3.3;

}
double my_gamma (double v, double w) {

printf ("gamma \n");
return v + w;

}

double epsilon (double x, double y) {
printf ("epsilon \n");
return x + y;

}

int main () {
double v, w, x, y;

#pragma omp parallel sections
{
#pragma omp section
v = alpha ();
#pragma omp section
w = beta ();
#pragma omp section
y = delta ();

}
x = my_gamma (v, w);
printf ("%6.2f \n", epsilon (x, y));

return 0;
}

source code: 09-04.c

38ALP IV: Concepts of Non-sequential and Distributed Programming Summer Term 2023

39ALP IV: Concepts of Non-sequential and Distributed Programming Summer Term 2023

40ALP IV: Concepts of Non-sequential and Distributed Programming Summer Term 2023

41ALP IV: Concepts of Non-sequential and Distributed Programming Summer Term 2023

42ALP IV: Concepts of Non-sequential and Distributed Programming Summer Term 2023

// simple program with openmp
// Quinn: p. prg. in c w. mpi + openmp

#include <stdio.h>
#include <omp.h>

double alpha () {
return 1.1;

}
double beta () {

return 2.2;
}
double delta () {

return 3.3;
}
double my_gamma (double v, double w) {

return v + w;
}

double epsilon (double x, double y) {
return x + y;

}

int main () {
double v, w, x, y;

#pragma omp parallel
{
#pragma omp sections
{
#pragma omp section
v = alpha ();
#pragma omp section
w = beta ();

}
#pragma omp sections
{
#pragma omp section
x = my_gamma (v, w);
#pragma omp section
y = delta ();

}
}
printf ("%6.2f \n", epsilon (x, y));

return 0;
}

source code: 09-05.c

43

Reduction
• After completion of a parallel statement block defined by parallel, sections

and for directives, the intermediate results can be summarized with the clause:
reduction (op: list)

− The clause op denotes a specific reduction operator to be applied (+, -, *, /, &, ^,
|, &&, ||) and list denotes the variables to be used for reduction.

− The intermediate results are processed by the threads in separate, private
variables and are only merged when the parallel region is completed.

ALP IV: Concepts of Non-sequential and Distributed Programming Summer Term 2023

44ALP IV: Concepts of Non-sequential and Distributed Programming Summer Term 2023

// simple program with openmp to calc pi
// Quinn: parallel prog. in c with mpi and openmp

#include <stdio.h>
#include <omp.h>

int main () {
double area, pi, x;
int i, n;

n = 1000000000;
area = 0.0;

#pragma omp parallel for private (x) reduction (+:area)
for (i = 0; i < n; i++) {
x = ((double) i + 0.5) / n;
area += 4.0 / (1.0 + x*x);

}
pi = area / n;

printf ("Pi: %f \n", pi);
return 0;

} source code: 09-06.c

45

Single Thread Execution
#pragma omp single [clause [[,]clause] ...]

− The following (sub)region is processed by one thread of the team only.
− This is particularly useful to process a (cumulated) output.
− At the end of the (partial) region an implicit synchronization takes place. The

synchronization can be prevented with the parameter nowait.

ALP IV: Concepts of Non-sequential and Distributed Programming Summer Term 2023

46

Execution by the Main Thread
#pragma omp master

− The following (sub)region is processed by the main thread of the team only. All
other threads ignore the following statement or statements. They do not even
need to reach the previous statements.

− This is particularly useful for initialization, work distribution and processing of
results.

− There is no implicit synchronization.

ALP IV: Concepts of Non-sequential and Distributed Programming Summer Term 2023

47

Thread Control
• Further functions to control the number of threads are:
#include <omp.h>

int omp_set_dynamic (int dynamic_threads);

− With submitting dynamic_threads != 0 the runtime system is allowed to
determine the number of threads of the team dynamically.

− The function must be called outside of a parallel region, and the number of
threads for each parallel region remains constant.

int omp_get_dynamic ();

− Returns the current setting of the dynamic assignment of the number of threads.

ALP IV: Concepts of Non-sequential and Distributed Programming Summer Term 2023

48

Thread Control II
• As there are functions to get the current number of threads of a team the amount

of threads can be set by:
#include <omp.h>

int omp_set_num_threads (int num_threads);

− Defines the number of threads for the subsequent parallel region.
− The function must be called outside of a parallel region.
− The effect depends on a dynamic or static adjustment of the number of threads.

ALP IV: Concepts of Non-sequential and Distributed Programming Summer Term 2023

49

Critical Section
#pragma omp critical [(name)]

− Protects a critical section generated by parallel processing threads.
− Emphasize the following parallel (sub)region as a critical section and protect it

by mutual exclusion. All threads wait as long as the critical section is processed
by another thread.

− A name name can be assigned to the specific critical section. If the critical
sections are named individually, a mutual exclusion will only occur for the
specific named critical section.

ALP IV: Concepts of Non-sequential and Distributed Programming Summer Term 2023

50

Barrier
#pragma omp barrier

− All threads will synchronize at the barrier and wait until all other threads have
reached this point of processing.

ALP IV: Concepts of Non-sequential and Distributed Programming Summer Term 2023

51

Lock
• In order to build individual solutions to protect a critical section different functions

to use a lock are provided:
#include <omp.h>

int omp_set_lock (omp_lock_t *lock);

− Tries to set a lock and block the thread in case the lock is set by another thread.

int omp_unset_lock (omp_lock_t *lock);

− Release (unset) the lock.

ALP IV: Concepts of Non-sequential and Distributed Programming Summer Term 2023

52

Lock II
• Critical section may be nested too. So there is another set of functions dealing with

nested critical sections:
int omp_set_nest_lock (omp_nest_lock_t *lock);

− If the lock is free, set it for the current thread. If the lock was set by another
thread, block the current requesting thread. If the lock was set by the same
thread increments the lock, so the thread is able to access the critical section
(again).

− All other threads attempting to set a set lock variable will be blocked until the
lock is completely reset.

int omp_unset_nest_lock (omp_nest_lock_t *lock);

− Decrement the lock and if the value is 0 deblock all blocked threads.

ALP IV: Concepts of Non-sequential and Distributed Programming Summer Term 2023

53

Lock III
int omp_init_lock (omp_lock_t *lock);

int omp_init_nest_lock (omp_nest_lock_t *lock);

− Initialization of the lock.

int omp_destroy_lock (omp_lock_t *lock);

int omp_destroy_nest_lock (omp_nest_lock_t *lock);

− Remove the lock.

ALP IV: Concepts of Non-sequential and Distributed Programming Summer Term 2023

54

Lock IV
int omp_test_lock (omp_lock_t *lock);

int omp_test_nest_lock (omp_nest_lock_t *lock);

− Tries to acquire the lock, but does not block the thread in case the attempt was
not successful. The return value indicates the success or failure.

ALP IV: Concepts of Non-sequential and Distributed Programming Summer Term 2023

55

Consistent Content of the Shared Data
#pragma omp atomic

− Ensures that the following statement accessing the memory is executed
atomically.

− Possible statements are: x binop= E, x++, ++x, x--, --x.
With binop = {+, -, *, /, &, ^, |, <<, >>}.

#pragma omp flush [(list)]

− All threads get a consistent view on the content of the variables of the set
list.

− If the variables are pointers, only the consistency of the pointers - not of the data
to which the pointer points - is ensured.

ALP IV: Concepts of Non-sequential and Distributed Programming Summer Term 2023

56

NEXT LECTURE
Concepts of Non-sequential and Distributed Programming

ALP IV: Concepts of Non-sequential and Distributed Programming Summer Term 2023

Institute of Computer Science
Department of Mathematics and Computer Science

APL IV: Concepts of Non-sequential and Distributed
Programming (Summer Term 2023)

Parallel Programming with
Message Passing

	Algorithms and Programming IV�OpenMP
	Objectives of Today‘s Lecture
	OpenMP
	Machine and �Execution Model
	Requirements for programs
	OpenMP
	OpenMP II
	OpenMP III
	Example: Matrix Multiplication
	Example: Matrix Multiplication
	Example: Matrix Multiplication
	OpenMP – Compiling
	OpenMP – API
	Parallel Processing
	Parallel Processing – Example
	Parallel Processing – Variables in Parallel Region
	Parallel Processing – Variables in Parallel Region II
	Control of the Threads of a Team
	Foliennummer 19
	Foliennummer 20
	Nested Parallel Regions
	Parallel Loop
	Parallel Loop – Shortcut
	Distribution of Iterations of the Loop
	Distribution of Iterations of the Loop II
	Example: Matrix Multiplication
	Foliennummer 27
	Foliennummer 28
	Foliennummer 29
	Foliennummer 30
	Functional Parallelism
	Foliennummer 32
	Foliennummer 33
	Foliennummer 34
	Foliennummer 35
	Foliennummer 36
	Foliennummer 37
	Foliennummer 38
	Foliennummer 39
	Foliennummer 40
	Foliennummer 41
	Foliennummer 42
	Reduction
	Foliennummer 44
	Single Thread Execution
	Execution by the Main Thread
	Thread Control
	Thread Control II
	Critical Section
	Barrier
	Lock
	Lock II
	Lock III
	Lock IV
	Consistent Content of the Shared Data
	Next lecture
	Parallel Programming with Message Passing

