
Institute of Computer Science
Department of Mathematics and Computer Science

Summer Term 2023 | 17.05.2023
Barry Linnert

Algorithms and Programming IV
Semaphore and Monitor

2

Objectives of Today‘s Lecture

• Semaphore
• Monitors
• Summary

ALP IV: Concepts of Non-sequential and Distributed Programming Summer Term 2023

3

SEMAPHORE
Concepts of Non-sequential and Distributed Programming

ALP IV: Concepts of Non-sequential and Distributed Programming Summer Term 2023

4

Machine and
Execution Model

ALP IV: Concepts of Non-sequential and Distributed Programming Summer Term 2023

Instruction Pointer

Instruction Pointer

Instruction Pointer

Instruction Pointer
Instruction Pointer

Instruction Pointer

Instruction Pointer

Operating system

5

Correctness
• Correct implementation of commands and functions

− Compiler/Interpreter, HW

• Correct execution of the set of commands
− Sequential processing of the operations of the critical section by lock variables

(lock/mutex) using the operating system and hardware.
− Programming model and machine model (execution model) correspond to each other

• Check with
− Hoare calculation
− Testing

ALP IV: Concepts of Non-sequential and Distributed Programming Summer Term 2023

6

Requirements for Programs
• The program should do what it has been programmed to do!

− Functional properties
− Scope of functions
− Correctness

• The program should follow certain rules for this purpose!
− Non-functional properties

− Performance
− Security
− …

ALP IV: Concepts of Non-sequential and Distributed Programming Summer Term 2023

7

Example: Dining Philosophers

ALP IV: Concepts of Non-sequential and Distributed Programming Summer Term 2023

wikipedia.org

8ALP IV: Concepts of Non-sequential and Distributed Programming Summer Term 2023

Dining Philosophers

9

Dining Philosophers
with Shared Chopsticks

ALP IV: Concepts of Non-sequential and Distributed Programming Summer Term 2023

10

Dining Philosophers with Shared Chopsticks I

ALP IV: Concepts of Non-sequential and Distributed Programming Summer Term 2023

11

Dining Philosophers with Shared Chopsticks II
• The philosophers share all of the available chopsticks – not just the one beside

their plate or bowl.

• It has to be ensured the philosopher equipped with two chopsticks can eat without
any interruptions. Thus, the chopsticks should not be snatched by others while in
use.

• Hungry philosophers are not able to think and will wait until two chopsticks are
available. To reduce the energy consumption of the philosopher (and of the whole
system) the waiting philosopher should be resting (sleeping) until the two
chopsticks are released.

ALP IV: Concepts of Non-sequential and Distributed Programming Summer Term 2023

12

Dining Philosophers with Shared Chopsticks III
• To implement the approach of the chopstick sharing philosophers we have to deal

with some requirements:

• The critical section consists of the check if two chopsticks are available, the
picking up of the chopsticks and the process of eating as the chopsticks should not
be withdrawn.

• Additionally the resting of the philosopher waiting to get two chopsticks is to be
considered. A new state of the philosopher’s behavior is to be introduced.

• If enough chopsticks are available, more than one philosopher should be able to
eat.

ALP IV: Concepts of Non-sequential and Distributed Programming Summer Term 2023

13

Dining Philosophers with Shared Chopsticks IV
• We use mutual exclusion to protect the critical section:

− Lock – POSIX pthread_mutex_trylock()
− Resource-saving extension of the lock providing a queue for waiting threads –

POSIX pthread_mutex_lock()

• We need a solution protecting the critical section if not enough chopsticks are
available and granting access if two or more are free.

ALP IV: Concepts of Non-sequential and Distributed Programming Summer Term 2023

Is mutual exclusion
sufficient to implement the
approach of the chopstick
sharing philosophers?

14

Semaphore
• A semaphore is an extension of the lock variable.

• Semaphores are used to protect a critical section, too.

• Their were introduced around 1965 by E.W. Dijkstra

• The term semaphore comes from a flag or signal mast

• Unlike the lock a semaphore is designed to provide access
to the critical section for more than one thread or process.

• Thus, it can be seen as a counting lock (counting variable +
queue).

ALP IV: Concepts of Non-sequential and Distributed Programming Summer Term 2023

wikipedia.org

15

Semaphore – Operation Mode
• A semaphore works as follows:
• As long as the counter is greater than 0, a thread may enter the critical section.
• If the counter is less or equal 0 the thread is blocked.
• Block threads that are not allowed to enter the critical section.
• With access of the critical section by a thread the counter is reduced.
• When a thread leaves the critical section the counter is increased.
• The value of the counter represents the number of available resources protected

by the critical section.
• If the initial value of the counter equals 1, the semaphore corresponds to a lock

variable with a waiting queue.

ALP IV: Concepts of Non-sequential and Distributed Programming Summer Term 2023

16

Semaphore – Functions
• Besides the semaphore counters the following operations are required to

implement a semaphore:

• P – as pass/pack (pass/grasp) - reduces the counter and blocks the thread if the
counter <= 0

• V – as vrijgeven/verhogen (release or exit/raise) - increments the counter and
releases the first blocked thread in the queue (or all blocked threads)

ALP IV: Concepts of Non-sequential and Distributed Programming Summer Term 2023

17

Example Implementation
struct semaphore {

int count; // thread counter
Queue *wt; // count>=1: free, count<=0: occupied

} // if count < 0 : |count| is the
// number of waiting threads

void init (semaphore *s, int i) {
s->count = i; // set i=1 for mutual exclusion
s->wt = NULL;

}
void P (semaphore *s) {

s->count--;
if (s->count < 0) block(s->wt); // enqueue thread

}
void V (semaphore *s) {

s->count++;
if (s->count > 0) deblock(s->wt); // deblock first of queue

} ALP IV: Concepts of Non-sequential and Distributed Programming Summer Term 2023
source code: 08-00.c

18

Versions
• Different versions of semaphores can be distinct:

• By the form of the counting variables
− The simple form with semaphore counter == 1 implements a binary semaphore that

resembles a lock with waiting queue.
− The counting variable can be initialized with any integer value implementing an amount of

resources that can be used in parallel at the critical section.

• By the type of managements of threads or processes
− Implementing active waiting for the threads or
− block the threads and wake up all or the first after resources are available again.

ALP IV: Concepts of Non-sequential and Distributed Programming Summer Term 2023

19

POSIX semaphores
#include <semaphore.h>

int sem_init (sem_t *sem, int pshared, unsigned int value);

Initialization of the semaphores

int sem_wait (sem_t *sem);

P - Reduce the counter and block the thread if necessary

int sem_post (sem_t *sem);

V - increment the counter and release the first thread

ALP IV: Concepts of Non-sequential and Distributed Programming Summer Term 2023

20

POSIX semaphores II
int sem_trywait (sem_t *sem);

P - Reduce the counter and return without blocking, the return value indicates the
success of the attempt to get access to the critical section

int sem_timedwait (sem_t *sem, const struct timespec *abs_timeout);

P - Reduce the counter and block the thread if necessary with abort after a given time

ALP IV: Concepts of Non-sequential and Distributed Programming Summer Term 2023

21ALP IV: Concepts of Non-sequential and Distributed Programming Summer Term 2023

// C program to demonstrate working of Semaphores
// https://www.geeksforgeeks.org/use-posix-
// semaphores-c/

#include <stdio.h>
#include <pthread.h>
#include <semaphore.h>
#include <unistd.h>
sem_t mutex;

void* thread(void* arg)
{

//wait
sem_wait(&mutex);
printf("\nEntered..\n");

//critical section
sleep(4);

//signal
printf("\nJust Exiting...\n");
sem_post(&mutex);

}

int main()
{

sem_init(&mutex, 0, 1);
pthread_t t1,t2;

pthread_create(&t1,NULL,thread,NULL);
sleep(2);

pthread_create(&t2,NULL,thread,NULL);

pthread_join(t1,NULL);
pthread_join(t2,NULL);
sem_destroy(&mutex);

return 0;
}

source code: 08-01.c

22

Dining Philosophers with Shared Chopsticks

ALP IV: Concepts of Non-sequential and Distributed Programming Summer Term 2023

23ALP IV: Concepts of Non-sequential and Distributed Programming Summer Term 2023

// dining philosophers with shared cs
#include <stdio.h>
#include <stdlib.h>
#include <pthread.h>

#include <unistd.h>
#define NUM_THREADS 5

void* Philosopher (void *threadid) {
int i;
for (i = 0; i < 1000; i++) {
// thinking
sleep (2);
//wait

printf("\n %d Dining..\n", (long)
threadid);

sleep(4);
printf("\n %d Finished..\n", (long)

threadid);

}
}

int main (int argc, char *argv[]) {
pthread_t threads[NUM_THREADS];
int rc;
long t;

for (t=0; t < NUM_THREADS; t++) {
rc = pthread_create (&threads[t],

NULL, Philosopher, (void *)t);
if (rc) {
printf ("ERROR; return code from

pthread_create () is %d\n", rc);
exit (-1);

}
}
for (t=0; t < NUM_THREADS; t++) {
pthread_join (threads[t], NULL);

}

pthread_exit(NULL);
return 0;

}
source code: 08-02.c

24ALP IV: Concepts of Non-sequential and Distributed Programming Summer Term 2023

// dining philosophers with shared cs
#include <stdio.h>
#include <stdlib.h>
#include <pthread.h>
#include <semaphore.h>
#include <unistd.h>
#define NUM_THREADS 5
sem_t mutex;

void* Philosopher (void *threadid) {
int i;
for (i = 0; i < 1000; i++) {
// thinking
sleep (2);
//wait
sem_wait(&mutex);
printf("\n %d Dining..\n", (long)

threadid);
sleep(4);
printf("\n %d Finished..\n", (long)

threadid);
sem_post(&mutex);

}
}

int main (int argc, char *argv[]) {
pthread_t threads[NUM_THREADS];
int rc;
long t;

sem_init(&mutex, 0, 2); // eating p.
for (t=0; t < NUM_THREADS; t++) {
rc = pthread_create (&threads[t],

NULL, Philosopher, (void *)t);
if (rc) {
printf ("ERROR; return code from

pthread_create () is %d\n", rc);
exit (-1);

}
}
for (t=0; t < NUM_THREADS; t++) {
pthread_join (threads[t], NULL);

}
sem_destroy(&mutex);
pthread_exit(NULL);
return 0;

}
source code: 08-02.c

25ALP IV: Concepts of Non-sequential and Distributed Programming Summer Term 2023

// dining philosophers with shared cs
#include <stdio.h>
#include <stdlib.h>
#include <pthread.h>
#include <semaphore.h>
#include <unistd.h>
#define NUM_THREADS 5
sem_t mutex;

void* Philosopher (void *threadid) {
int i;
for (i = 0; i < 1000; i++) {
// thinking
sleep (2);
//wait
sem_wait(&mutex);
printf("\n %d Dining..\n", (long)

threadid);
sleep(4);
printf("\n %d Finished..\n", (long)

threadid);
sem_post(&mutex);

}
}

int main (int argc, char *argv[]) {
pthread_t threads[NUM_THREADS];
int rc;
long t;

sem_init(&mutex, 0, 2); // eating p.
for (t=0; t < NUM_THREADS; t++) {
rc = pthread_create (&threads[t],

NULL, Philosopher, (void *)t);
if (rc) {
printf ("ERROR; return code from

pthread_create () is %d\n", rc);
exit (-1);

}
}
for (t=0; t < NUM_THREADS; t++) {
pthread_join (threads[t], NULL);

}
sem_destroy(&mutex);
pthread_exit(NULL);
return 0;

}
source code: 08-02.c

27

Example: Producer and Consumer

ALP IV: Concepts of Non-sequential and Distributed Programming Summer Term 2023

28

Example: Producer and Consumer

ALP IV: Concepts of Non-sequential and Distributed Programming Summer Term 2023

29

Example: Producer and Consumer

ALP IV: Concepts of Non-sequential and Distributed Programming Summer Term 2023

30

Example: Producer and Consumer

ALP IV: Concepts of Non-sequential and Distributed Programming Summer Term 2023

31

Example: Producer and Consumer

ALP IV: Concepts of Non-sequential and Distributed Programming Summer Term 2023

32

Example: Producer and Consumer

ALP IV: Concepts of Non-sequential and Distributed Programming Summer Term 2023

33

Example: Producer and Consumer

ALP IV: Concepts of Non-sequential and Distributed Programming Summer Term 2023

34ALP IV: Concepts of Non-sequential and Distributed Programming Summer Term 2023

// simple producer consumer example with
// semaphores
#include <stdio.h>
#include <stdlib.h>
#include <pthread.h>
#include <semaphore.h>
#include <unistd.h>
#define NUM_THREADS 5
#define NUM_PLACES 3

int last;
int buffer[NUM_PLACES];

void* Producer (void *threadid)
{

...
}
void* Consumer (void *threadid)
{

...
}

int main (int argc, char *argv[])
{

pthread_t threads[NUM_THREADS];
int rc;
long t;

// init semaphores

// init

// creating threads

// joining threads

// release semaphores

return 0;
} source code: 08-03.c

35ALP IV: Concepts of Non-sequential and Distributed Programming Summer Term 2023

// simple producer consumer example with
// semaphores
#include <stdio.h>
#include <stdlib.h>
#include <pthread.h>
#include <semaphore.h>
#include <unistd.h>
#define NUM_THREADS 5
#define NUM_PLACES 3

int last;
int buffer[NUM_PLACES];

void* Producer (void *threadid)
{

...
}
void* Consumer (void *threadid)
{

...
}

int main (int argc, char *argv[])
{

...
// init all
// creating threads
for(t=0; t < NUM_THREADS; t++) {
if (t == 0)
rc = pthread_create (&threads[t],

NULL, Producer, (void *)t);
else
rc = pthread_create (&threads[t],

NULL, Consumer, (void *)t);
if (rc) {
exit (-1);

}
}
// joining threads
for(t=0; t < NUM_THREADS; t++) {

pthread_join (threads[t], NULL);
} ...
pthread_exit(NULL);

}
source code: 08-03.c

36ALP IV: Concepts of Non-sequential and Distributed Programming Summer Term 2023

// simple producer consumer example with
// semaphores
#include <stdio.h>
#include <stdlib.h>
#include <pthread.h>
#include <semaphore.h>
#include <unistd.h>
#define NUM_THREADS 5
#define NUM_PLACES 3
sem_t empty; // amount data in buffer
sem_t full; // free places in buffer
sem_t mutex; // critical section
int last;
int buffer[NUM_PLACES];

void* Producer (void *threadid)
{

...
}
void* Consumer (void *threadid)
{

...
}

int main (int argc, char *argv[])
{

...
// init semaphores
sem_init(&empty, 0, 0);
sem_init(&full, 0, 3);
sem_init(&mutex, 0, 1); // crit. sec.

// init
for (t=0; t < NUM_PLACES; t++)
buffer[t] = 0;

last = 0;
// creating threads
// joining threads

// release semaphores
sem_destroy(&mutex);
sem_destroy(&full);
sem_destroy(&empty);
...
return 0;

}
source code: 08-03.c

37ALP IV: Concepts of Non-sequential and Distributed Programming Summer Term 2023

// simple producer consumer example with
// semaphores

void* Producer (void *threadid)
{

int i;

for (i= 0; i < 1000; i++) {

buffer[last] = i;
printf("Producer %d puts %d into

buffer at place %d \n",
(long) threadid, buffer[last],
last);

last++;

}
pthread_exit (NULL);

}

void* Consumer (void *threadid)
{

int i;

while (1) {

printf ("Consumer %d takes %d \n",
(long) threadid,
buffer[last - 1]);

fflush (stdout);
last--;

}
pthread_exit (NULL);

}
source code: 08-03.c

38ALP IV: Concepts of Non-sequential and Distributed Programming Summer Term 2023

// simple producer consumer example with
// semaphores

void* Producer (void *threadid)
{

int i;

for (i= 0; i < 1000; i++) {
sem_wait(&full);

buffer[last] = i;
printf("Producer %d puts %d into

buffer at place %d \n",
(long) threadid, buffer[last],
last);

last++;

}
pthread_exit (NULL);

}

void* Consumer (void *threadid)
{

int i;

while (1) {

printf ("Consumer %d takes %d \n",
(long) threadid,
buffer[last - 1]);

fflush (stdout);
last--;

sem_post(&full);
}
pthread_exit (NULL);

}
source code: 08-03.c

39ALP IV: Concepts of Non-sequential and Distributed Programming Summer Term 2023

// simple producer consumer example with
// semaphores

void* Producer (void *threadid)
{

int i;

for (i= 0; i < 1000; i++) {
sem_wait(&full);

buffer[last] = i;
printf("Producer %d puts %d into

buffer at place %d \n",
(long) threadid, buffer[last],
last);

last++;

sem_post(&empty);
}
pthread_exit (NULL);

}

void* Consumer (void *threadid)
{

int i;

while (1) {
sem_wait(&empty);

printf ("Consumer %d takes %d \n",
(long) threadid,
buffer[last - 1]);

fflush (stdout);
last--;

sem_post(&full);
}
pthread_exit (NULL);

}
source code: 08-03.c

40ALP IV: Concepts of Non-sequential and Distributed Programming Summer Term 2023

// simple producer consumer example with
// semaphores

void* Producer (void *threadid)
{

int i;

for (i= 0; i < 1000; i++) {
sem_wait(&full);
sem_wait(&mutex);
buffer[last] = i;
printf("Producer %d puts %d into

buffer at place %d \n",
(long) threadid, buffer[last],
last);

last++;
sem_post(&mutex);
sem_post(&empty);

}
pthread_exit (NULL);

}

void* Consumer (void *threadid)
{

int i;

while (1) {
sem_wait(&empty);
sem_wait(&mutex);

printf ("Consumer %d takes %d \n",
(long) threadid,
buffer[last - 1]);

fflush (stdout);
last--;
sem_post(&mutex);
sem_post(&full);

}
pthread_exit (NULL);

}
source code: 08-03.c

41ALP IV: Concepts of Non-sequential and Distributed Programming Summer Term 2023

// simple producer consumer example with
// semaphores

void* Producer (void *threadid)
{

int i;

for (i= 0; i < 1000; i++) {
sem_wait(&full);
sem_wait(&mutex);
buffer[last] = i;
printf("Producer %d puts %d into

buffer at place %d \n",
(long) threadid, buffer[last],
last);

last++;
sem_post(&mutex);
sem_post(&empty);

}
pthread_exit (NULL);

}

void* Consumer (void *threadid)
{

int i;

while (1) {
sem_wait(&empty);
sem_wait(&mutex);

printf ("Consumer %d takes %d \n",
(long) threadid,
buffer[last - 1]);

fflush (stdout);
last--;
sem_post(&mutex);
sem_post(&full);

}
pthread_exit (NULL);

}
source code: 08-03.c

42

Example: Readers and Writers
• Not all of the threads need write access to shared data.
• Read accesses do not change the data and can be executed concurrently or in

parallel without any problems.
• Write accesses must be protected (against each other).
• If, in case of a writing thread, read accesses have to be prohibited the situation

can be depicted as follows:

ALP IV: Concepts of Non-sequential and Distributed Programming Summer Term 2023

Read Write

Read + –

Write – –

43

Additive Semaphores
• An additive semaphore reduce and increase the counter with values greater than 1

for one thread.

• Thus, the reader-writer problem can be solved by giving the writer exclusive
access to the critical section by reduction of the counter to 0 in case of write
access.

ALP IV: Concepts of Non-sequential and Distributed Programming Summer Term 2023

44ALP IV: Concepts of Non-sequential and Distributed Programming Summer Term 2023

// simple reader writer example with
// semaphores
#include <stdio.h>
#include <stdlib.h>
#include <pthread.h>
#include <semaphore.h>
#include <unistd.h>

#define NUM_THREADS 5
#define NUM_WRITERS 2

int buffer;

void* Writer (void *threadid)
{

...
}

void* Reader (void *threadid)
{

...
}

int main (int argc, char *argv[]) {
pthread_t threads[NUM_THREADS];
int rc;
long t;
// init semaphores and buf
// creating threads
for (t = 0; t < NUM_THREADS; t++) {
if (t < NUM_WRITERS)
rc = pthread_create (&threads[t],

NULL, Writer, (void *)t);
else
rc = pthread_create (&threads[t],

NULL, Reader, (void *)t);
if (rc) {
exit (-1);

}
}
// joining threads
for (t = 0; t < NUM_THREADS; t++) {

pthread_join (threads[t], NULL);
} ...

}
source code: 08-04.c

45ALP IV: Concepts of Non-sequential and Distributed Programming Summer Term 2023

// simple reader writer example with
// semaphores
#include <stdio.h>
#include <stdlib.h>
#include <pthread.h>
#include <semaphore.h>
#include <unistd.h>

#define NUM_THREADS 5
#define NUM_WRITERS 2
sem_t writer; // writers in critical sec.
sem_t reader; // readers in critical sec.
int buffer;

void* Writer (void *threadid)
{

...
}

void* Reader (void *threadid)
{

...
}

int main (int argc, char *argv[])
{

pthread_t threads[NUM_THREADS];
int rc;
long t;

// init semaphores and buf
sem_init(&writer, 0, 1);
sem_init(&reader, 0, NUM_THREADS –

NUM_WRITERS);
buffer = 0;

// creating threads
// joining threads

sem_destroy(&reader);
sem_destroy(&writer);
pthread_exit(NULL);

return 0;
} source code: 08-04.c

46ALP IV: Concepts of Non-sequential and Distributed Programming Summer Term 2023

// simple reader writer example with
// semaphores

void* Writer (void *threadid)
{

int i, j;
for (i = 0; i < 1000; i++) {

buffer++;
printf("Writer %d writes %d into

buffer \n", (long) threadid,
buffer);

sleep (1);
}
pthread_exit (NULL);

}

void* Reader (void *threadid)
{

int i;

while (1) {

printf ("Reader %d reads %d \n",
(long) threadid, buffer);

fflush (stdout);

}
pthread_exit (NULL);

} source code: 08-04.c

47ALP IV: Concepts of Non-sequential and Distributed Programming Summer Term 2023

// simple reader writer example with
// semaphores

void* Writer (void *threadid)
{

int i, j;
for (i = 0; i < 1000; i++) {

buffer++;
printf("Writer %d writes %d into

buffer \n", (long) threadid,
buffer);

sleep (1);
}
pthread_exit (NULL);

}

void* Reader (void *threadid)
{

int i;

while (1) {

sem_wait(&reader);

printf ("Reader %d reads %d \n",
(long) threadid, buffer);

fflush (stdout);

sem_post(&reader);

}
pthread_exit (NULL);

} source code: 08-04.c

48ALP IV: Concepts of Non-sequential and Distributed Programming Summer Term 2023

// simple reader writer example with
// semaphores

void* Writer (void *threadid)
{

int i, j;
for (i = 0; i < 1000; i++) {

buffer++;
printf("Writer %d writes %d into

buffer \n", (long) threadid,
buffer);

sleep (1);
}
pthread_exit (NULL);

}

void* Reader (void *threadid)
{

int i;

while (1) {
sem_wait(&writer);
sem_wait(&reader);
sem_post(&writer);
printf ("Reader %d reads %d \n",

(long) threadid, buffer);
fflush (stdout);

sem_post(&reader);

}
pthread_exit (NULL);

} source code: 08-04.c

49ALP IV: Concepts of Non-sequential and Distributed Programming Summer Term 2023

// simple reader writer example with
// semaphores

void* Writer (void *threadid)
{

int i, j;
for (i = 0; i < 1000; i++) {

sem_wait(&reader);
buffer++;
printf("Writer %d writes %d into

buffer \n", (long) threadid,
buffer);

sem_post(&reader);

sleep (1);
}
pthread_exit (NULL);

}

void* Reader (void *threadid)
{

int i;

while (1) {
sem_wait(&writer);
sem_wait(&reader);
sem_post(&writer);
printf ("Reader %d reads %d \n",

(long) threadid, buffer);
fflush (stdout);

sem_post(&reader);

}
pthread_exit (NULL);

} source code: 08-04.c

50ALP IV: Concepts of Non-sequential and Distributed Programming Summer Term 2023

// simple reader writer example with
// semaphores

void* Writer (void *threadid)
{

int i, j;
for (i = 0; i < 1000; i++) {

for (j = 0; j < NUM_THREADS -
NUM_WRITERS; j++)

sem_wait(&reader);
buffer++;
printf("Writer %d writes %d into

buffer \n", (long) threadid,
buffer);

for (j = 0; j < NUM_THREADS -
NUM_WRITERS; j++)

sem_post(&reader);

sleep (1);
}
pthread_exit (NULL);

}

void* Reader (void *threadid)
{

int i;

while (1) {
sem_wait(&writer);
sem_wait(&reader);
sem_post(&writer);
printf ("Reader %d reads %d \n",

(long) threadid, buffer);
fflush (stdout);

sem_post(&reader);

}
pthread_exit (NULL);

} source code: 08-04.c

51ALP IV: Concepts of Non-sequential and Distributed Programming Summer Term 2023

// simple reader writer example with
// semaphores

void* Writer (void *threadid)
{

int i, j;
for (i = 0; i < 1000; i++) {
sem_wait(&writer);
for (j = 0; j < NUM_THREADS -

NUM_WRITERS; j++)
sem_wait(&reader);

buffer++;
printf("Writer %d writes %d into

buffer \n", (long) threadid,
buffer);

for (j = 0; j < NUM_THREADS -
NUM_WRITERS; j++)

sem_post(&reader);
sem_post(&writer);
sleep (1);

}
pthread_exit (NULL);

}

void* Reader (void *threadid)
{

int i;

while (1) {
sem_wait(&writer);
sem_wait(&reader);
sem_post(&writer);
printf ("Reader %d reads %d \n",

(long) threadid, buffer);
fflush (stdout);

sem_post(&reader);

}
pthread_exit (NULL);

} source code: 08-04.c

52ALP IV: Concepts of Non-sequential and Distributed Programming Summer Term 2023

// simple reader writer example with
// semaphores

void* Writer (void *threadid)
{

int i, j;
for (i = 0; i < 1000; i++) {
sem_wait(&writer);
for (j = 0; j < NUM_THREADS -

NUM_WRITERS; j++)
sem_wait(&reader);

buffer++;
printf("Writer %d writes %d into

buffer \n", (long) threadid,
buffer);

for (j = 0; j < NUM_THREADS -
NUM_WRITERS; j++)

sem_post(&reader);
sem_post(&writer);
sleep (1);

}
pthread_exit (NULL);

}

void* Reader (void *threadid)
{

int i;

while (1) {
sem_wait(&writer);
sem_wait(&reader);
sem_post(&writer);
printf ("Reader %d reads %d \n",

(long) threadid, buffer);
fflush (stdout);

sem_post(&reader);

}
pthread_exit (NULL);

} source code: 08-04.c

53

Example: Cigarette Smoker‘s Problem
• Three smokers want to smoke and each have a different amount of a specific

resource (paper, tobacco, matches).

• None of the participants provides the other with a parts of their own resource.

• The service staff will make one or two of the resources available at irregular
intervals (at the earliest after a cigarette length).

• How can everyone smoke at some point?

ALP IV: Concepts of Non-sequential and Distributed Programming Summer Term 2023

54ALP IV: Concepts of Non-sequential and Distributed Programming Summer Term 2023

// simple example of the first attempt to
// solve the cigarette smoker`s problem

#include <stdio.h>
#include <stdlib.h>
#include <pthread.h>
#include <semaphore.h>
#include <string.h>

#define NUM_THREADS 4
sem_t resource[3];
sem_t finished;
int tids[NUM_THREADS];

void* Service (void *threadid)
{

...
}

void* Smoker (void *threadid)
{

...
}

int main (int argc, char *argv[]) {
pthread_t threads[NUM_THREADS];
int rc;
int i;
// init semaphores
// creating threads
for (i = 0; i < NUM_THREADS; i++) {
tids[i] = i;
if (i == 0)
rc = pthread_create (&threads[i],

NULL, Service, (void*) &tids[i]);
else
rc = pthread_create (&threads[i],

NULL, Smoker, (void*) &tids[i]);
if (rc) {
exit (-1);

}
}
// joining threads
for (i = 0; i < NUM_THREADS; i++) {

pthread_join (threads[i], NULL);
}

source code: 08-05.c

55ALP IV: Concepts of Non-sequential and Distributed Programming Summer Term 2023

// simple example of the first attempt to
// solve the cigarette smoker`s problem

#include <stdio.h>
#include <stdlib.h>
#include <pthread.h>
#include <semaphore.h>
#include <string.h>

#define NUM_THREADS 4
sem_t resource[3];
sem_t finished;
int tids[NUM_THREADS];

void* Service (void *threadid)
{

...
}

void* Smoker (void *threadid)
{

...
}

int main (int argc, char *argv[]) {
pthread_t threads[NUM_THREADS];
int rc;
int i;

// init semaphores
sem_init(&finished, 0, 1);
sem_init(&resource[0], 0, 0);
sem_init(&resource[1], 0, 0);
sem_init(&resource[2], 0, 0);

srand ((unsigned) time (NULL));
// creating threads
// joining threads

sem_destroy(&finished);
sem_destroy(&resource[0]);
sem_destroy(&resource[1]);
sem_destroy(&resource[2]);
pthread_exit (NULL);
return 0;

}
source code: 08-05.c

56ALP IV: Concepts of Non-sequential and Distributed Programming Summer Term 2023

// simple example of the first attempt to solve the cigarette smoker`s problem

void* Service (void *threadid)
{

int i, random_nr;
for (i= 0; i < 1000; i++) {

if (random_nr < RAND_MAX / 3) {

}
if ((random_nr >= RAND_MAX / 3)&&(random_nr < 2 * (RAND_MAX / 3))) {

}
if (random_nr >= 2 * (RAND_MAX / 3)) {

}
}
pthread_exit (NULL);

}
source code: 08-05.c

57ALP IV: Concepts of Non-sequential and Distributed Programming Summer Term 2023

// simple example of the first attempt to solve the cigarette smoker`s problem

void* Service (void *threadid)
{

int i, random_nr;
for (i= 0; i < 1000; i++) {
sem_wait (&finished);

if (random_nr < RAND_MAX / 3) {

}
if ((random_nr >= RAND_MAX / 3)&&(random_nr < 2 * (RAND_MAX / 3))) {

}
if (random_nr >= 2 * (RAND_MAX / 3)) {

}
}
pthread_exit (NULL);

}
source code: 08-05.c

58ALP IV: Concepts of Non-sequential and Distributed Programming Summer Term 2023

// simple example of the first attempt to solve the cigarette smoker`s problem

void* Service (void *threadid)
{

int i, random_nr;
for (i= 0; i < 1000; i++) {
sem_wait (&finished);
random_nr = rand ();

if (random_nr < RAND_MAX / 3) {

}
if ((random_nr >= RAND_MAX / 3)&&(random_nr < 2 * (RAND_MAX / 3))) {

}
if (random_nr >= 2 * (RAND_MAX / 3)) {

}
}
pthread_exit (NULL);

}
source code: 08-05.c

59ALP IV: Concepts of Non-sequential and Distributed Programming Summer Term 2023

// simple example of the first attempt to solve the cigarette smoker`s problem

void* Service (void *threadid)
{

int i, random_nr;
for (i= 0; i < 1000; i++) {
sem_wait (&finished);
random_nr = rand ();

if (random_nr < RAND_MAX / 3) {
sem_post(&resource[0]);
sem_post(&resource[1]);

}
if ((random_nr >= RAND_MAX / 3)&&(random_nr < 2 * (RAND_MAX / 3))) {
sem_post(&resource[0]);
sem_post(&resource[2]);

}
if (random_nr >= 2 * (RAND_MAX / 3)) {
sem_post(&resource[1]);
sem_post(&resource[2]);

}
}
pthread_exit (NULL);

}
source code: 08-05.c

60ALP IV: Concepts of Non-sequential and Distributed Programming Summer Term 2023

// simple example of the first attempt to solve the cigarette smoker`s problem

void* Smoker (void *threadid)
{

int i;
for (i= 0; i < 333; i++) {
printf ("Smoker %d waits\n", *((int *) threadid));
if (*((int *) threadid) == 1) {
sem_wait (&resource[0]); printf ("Smoker %d got 0 \n", *((int *) threadid));
sem_wait (&resource[1]); printf ("Smoker %d got 1 \n", *((int *) threadid));

}
if (*((int *) threadid) == 2) {
sem_wait (&resource[1]); printf ("Smoker %d got 1 \n", *((int *) threadid));
sem_wait (&resource[2]); printf ("Smoker %d got 2 \n", *((int *) threadid));

}
if (*((int *) threadid) == 3) {
sem_wait (&resource[0]); printf ("Smoker %d got 0 \n", *((int *) threadid));
sem_wait (&resource[2]); printf ("Smoker %d got 2 \n", *((int *) threadid));

}
printf ("Smoker %d is smoking\n", *((int *) threadid));
sem_post(&finished);

}
pthread_exit (NULL);

}
source code: 08-05.c

61

Example: Cigarette Smoker‘s Problem – Approach

• Combine the resources to build a new resource.

• A separate thread deals with management of the resources and the combination
of the resources.

ALP IV: Concepts of Non-sequential and Distributed Programming Summer Term 2023

62ALP IV: Concepts of Non-sequential and Distributed Programming Summer Term 2023

// simple example of the first attempt to solve the cigarette smoker`s problem

void* Service (void *threadid)
{

int i, random_nr;
for (i= 0; i < 1000; i++) {
sem_wait (&finished);
random_nr = rand ();
if (random_nr < RAND_MAX / 3) {
res[0]++;
res[1]++;

}
if ((random_nr >= RAND_MAX / 3)&&(random_nr < 2 * (RAND_MAX / 3))) {
res[0]++;
res[2]++;

}
if (random_nr >= 2 * (RAND_MAX / 3)) {
res[1]++;
res[2]++;

}
sem_post (&table);

}
pthread_exit(NULL);

}
source code: 08-06.c

63ALP IV: Concepts of Non-sequential and Distributed Programming Summer Term 2023

// simple example of the first attempt to solve the cigarette smoker`s problem

void* Help (void *threadid)
{

int i;

for (i= 0; i < 1000; i++) {
sem_wait (&table);
if ((res[0] > 0)&&(res[1] > 0)) {
res[0]--; res[1]--;
sem_post (&res_0_1);

}
if ((res[0] > 0)&&(res[2] > 0)) {
res[0]--; res[2]--;
sem_post (&res_0_2);

}
if ((res[1] > 0)&&(res[2] > 0)) {
res[1]--; res[2]--;
sem_post (&res_1_2);

}
}
pthread_exit(NULL);

} source code: 08-06.c

64ALP IV: Concepts of Non-sequential and Distributed Programming Summer Term 2023

// simple example of the first attempt to solve the cigarette smoker`s problem

void* Smoker (void *threadid)
{

int i;

for (i= 0; i < 333; i++) {
printf ("Smoker %d waits\n", *((int *) threadid));
if (*((int *) threadid) == 1) {
sem_wait (&res_0_1); printf("Smoker %d got 0 and 1 \n",*((int *) threadid));

}
if (*((int *) threadid) == 2) {
sem_wait (&res_1_2); printf("Smoker %d got 1 and 2 \n",*((int *) threadid));

}
if (*((int *) threadid) == 3) {
sem_wait (&res_0_2); printf("Smoker %d got 0 and 2 \n",*((int *) threadid));

}

printf ("Smoker %d is smoking\n", *((int *) threadid));
sem_post(&finished);

}
pthread_exit(NULL);

} source code: 08-06.c

67

MONITOR
Concepts of Non-sequential and Distributed Programming

ALP IV: Concepts of Non-sequential and Distributed Programming Summer Term 2023

68

Monitor
• The usage of locks to manage the access to a critical section is error-prone.
• A safer solution would be an automatic lock and release for access to shared data.
• An object that guarantees mutual exclusion without requiring the programmer to

explicitly insert lock and unlock operations is called monitor.
• A monitor is an object consisting of procedures (methods/functions) and data

structures that ensures that at any time it is used by not more than one thread.
• Thus, a monitor is an extension of a lock or semaphore.

• The concept of a monitor was introduced by C.A.R. Hoare in 1974.

• The operating system kernel itself represents a monitor.

ALP IV: Concepts of Non-sequential and Distributed Programming Summer Term 2023

69

Monitor II

ALP IV: Concepts of Non-sequential and Distributed Programming Summer Term 2023

proc n

Lock
proc 3

proc 2

proc 1

Data

70

Condition variables
• Blocking a thread within the monitor blocks the entire monitor (even the functions

that are not affected).
• While a process is waiting for a condition variable, the monitor must be released

for other processes.
• Two operations are provided to realize the condition synchronization via the

condition variable:
− cwait(c) process releases monitor and waits for the following csignal(c), i.e. the

occurrence of condition c. It then continues in the monitor. The process is blocked in any
case!

− csignal(c) A waiting process is released. The monitor is occupied again. If there is no
waiting process, the procedure has no effect.

• The waiting processes are managed in a queue (as with signaling or semaphores).
ALP IV: Concepts of Non-sequential and Distributed Programming Summer Term 2023

71

POSIX condition variables
#include <pthread.h>
int pthread_cond_wait(pthread_cond_t *restrict cond,

pthread_mutex_t *restrict mutex);

Waiting for condition cond and release of mutex mutex

int pthread_cond_timedwait(pthread_cond_t *restrict cond,

pthread_mutex_t *restrict mutex,

const struct timespec *restrict abstime);

Waiting for condition cond and release of mutex mutex with interruption
after abstime

ALP IV: Concepts of Non-sequential and Distributed Programming Summer Term 2023

72

Monitor

ALP IV: Concepts of Non-sequential and Distributed Programming Summer Term 2023

proc n
Lock

proc 2

proc 1

Data

Queues for waiting for the condition variables

73

SUMMARY
Concepts of Non-sequential and Distributed Programming

ALP IV: Concepts of Non-sequential and Distributed Programming Summer Term 2023

74

Summary – Programming and Correctness
• We program our programs using high level programming languages as it makes it

easier to abstract from the specific machine, write code for different hardware
architectures and are able to focus on the problem and algorithm to solve the
problem.

• The operations of the high level programming language are translated to machine
instructions.

• The programming follows a model (programming model) that has to be transferred
reliably to the corresponding execution and machine model, which is the basis for
the execution of the machine instructions.

• If the transfer from the programming model – with the specific program as one
example – to the execution and machine model that determines the execution of
the program is correct, the execution of the program will be correct.

ALP IV: Concepts of Non-sequential and Distributed Programming Summer Term 2023

75

Summary – Determinism
• To cover the transfer by the example of the program the terms determinism,

deterministic program or algorithm and deterministic execution of the program
were introduced.

• Deterministic program and execution imply that given a specific input the program
will always produce the same specific output and will always fulfill changes to the
state of the system in the same way (and order).

• Thus, the deterministic execution of the program is based on executing the same
machine instructions in exactly the same order or sequence (using the same input
and generating the same output data).

ALP IV: Concepts of Non-sequential and Distributed Programming Summer Term 2023

76

Summary – Processes
• Sequential programming and execution of the program as just described are well

known from previous courses.
• Unfortunately, they come with some drawbacks. One is the un-efficient usage of

resources as the programs have to be executed one after the other (first-in-first-
out/first-come-first-served).

• The solution for the problem combining the conflicting requirements of
deterministic execution and the efficient usage of the machine was the introduction
of processes.

• Thus, the frame to apply the term determinism was adapted from the whole
machine to the abstraction or virtualization represented by the process executing
the program.

ALP IV: Concepts of Non-sequential and Distributed Programming Summer Term 2023

77

Summary – Threads
• The requirements for a deterministic execution of the program are fulfilled even if

the process is blocked and has to wait to resume it’s execution after execution of
other processes.

• As the concept of processes comes with separated address spaces the
interchange of data is difficult.

• To overcome the problem and to have different parts of the program use the same
data, threads were introduced.

• These execution paths work together in one address spaces on shared data and
therefore enable easy data interchange for programs running on one machine.

• Unfortunately, the term determinism cannot be used anymore as the deterministic
execution of threads cannot be enforced and the concept thread does not provide
a secure frame as shared data overcome the borders.

ALP IV: Concepts of Non-sequential and Distributed Programming Summer Term 2023

78

Summary – Critical Section
• To deal with this problem the term determinism was displaced by the term

determined algorithm or determined program (execution).
• This should be sufficient as the result of the execution is the interesting part and

the order of execution of the instruction (and operations of the programming
language) is only the vehicle to enforce the correct execution.

• But beware: the usage of shared data may lead to unexpected program behavior.
• These parts of the program are described as critical sections.
• These critical sections have to be protected! This protection enforces a

deterministic execution and usage of the data and therefore the correct execution
based on determined execution of the program.

ALP IV: Concepts of Non-sequential and Distributed Programming Summer Term 2023

79

Summary – Protection of the Critical Section
• The approaches to protect the critical sections – locks, semaphores, monitors –

and their algorithms usually are critical sections or use operations representing
critical sections themselves.

• Therefore, some of these approaches rely on specific characteristics of the
machine depict by the machine model.

• And of course, if the machine architecture is not consistent with the model (or vice
versa) the approaches will not protect the critical section reliably.

ALP IV: Concepts of Non-sequential and Distributed Programming Summer Term 2023

80

Requirements for Solutions to protect the Critical Section
• The solution has to protect the critical section reliably by mutual exclusion.
• The solution should be used in higher level programming languages.

− Thus, the solution is usable on different architectures providing portability for the program
using it.

• The solution must not lead to a deadlock.
• The solution should provide low overhead.

− There is no (excessive) waiting in order to enter the critical section.
• The access to the critical section should be fair.

ALP IV: Concepts of Non-sequential and Distributed Programming Summer Term 2023

81

Literature
• Herrtwich, R.G.; Hommel, G.: Kooperation und Konkurrenz – Nebenläufige,

verteilte und echtzeitabhängige Programmsysteme. Studienreihe Informatik,
Springer-Verlag, 1989

• Gregory R. Andrews: Foundations of Multithreaded, Parallel, and Distributed
Programming, Pearson, 2000

• Maurer, Christian: Nichtsequentielle und Verteilte Programmierung mit Go,
Springer-Verlag, 2018

• Thomas Rauber, Gudula Rünger: Parallele und verteilte Programmierung,
Springer-Verlag, 2000

• Michael J. Quinn: Parallel Programming in C with MPI and OpenMP, McGraw-Hill
Science, 2003

ALP IV: Concepts of Non-sequential and Distributed Programming Summer Term 2023

82

NEXT LECTURE
Concepts of Non-sequential and Distributed Programming

ALP IV: Concepts of Non-sequential and Distributed Programming Summer Term 2023

Institute of Computer Science
Department of Mathematics and Computer Science

APL IV: Concepts of Non-sequential and Distributed
Programming (Summer Term 2023)

OpenMP

	Algorithms and Programming IV�Semaphore and Monitor
	Objectives of Today‘s Lecture
	Semaphore
	Machine and �Execution Model
	Correctness
	Requirements for Programs
	Example: Dining Philosophers
	Dining Philosophers
	Dining Philosophers� with Shared Chopsticks
	Dining Philosophers with Shared Chopsticks I
	Dining Philosophers with Shared Chopsticks II
	Dining Philosophers with Shared Chopsticks III
	Dining Philosophers with Shared Chopsticks IV
	Semaphore
	Semaphore – Operation Mode
	Semaphore – Functions
	Example Implementation
	Versions
	POSIX semaphores
	POSIX semaphores II
	Slide Number 21
	Dining Philosophers with Shared Chopsticks
	Slide Number 23
	Slide Number 24
	Slide Number 25
	Example: Producer and Consumer
	Example: Producer and Consumer
	Example: Producer and Consumer
	Example: Producer and Consumer
	Example: Producer and Consumer
	Example: Producer and Consumer
	Example: Producer and Consumer
	Slide Number 34
	Slide Number 35
	Slide Number 36
	Slide Number 37
	Slide Number 38
	Slide Number 39
	Slide Number 40
	Slide Number 41
	Example: Readers and Writers
	Additive Semaphores
	Slide Number 44
	Slide Number 45
	Slide Number 46
	Slide Number 47
	Slide Number 48
	Slide Number 49
	Slide Number 50
	Slide Number 51
	Slide Number 52
	Example: Cigarette Smoker‘s Problem
	Slide Number 54
	Slide Number 55
	Slide Number 56
	Slide Number 57
	Slide Number 58
	Slide Number 59
	Slide Number 60
	Example: Cigarette Smoker‘s Problem – Approach
	Slide Number 62
	Slide Number 63
	Slide Number 64
	Monitor
	Monitor
	Monitor II
	Condition variables
	POSIX condition variables
	Monitor
	Summary
	Summary – Programming and Correctness
	Summary – Determinism
	Summary – Processes
	Summary – Threads
	Summary – Critical Section
	Summary – Protection of the Critical Section
	Requirements for Solutions to protect the Critical Section
	Literature
	Next Lecture
	OpenMP

