
Institute of Computer Science
Department of Mathematics and Computer Science

Summer Term 2023 | 08.05.2023
Barry Linnert

Algorithms and Programming IV
Parallelization



2

Objectives of Today‘s Lecture

• more (about) Locks
• Parallelization

− Machine model / Execution model
− Hardware support

• POSIX Mutex
• Minimization of the critical section

ALP IV: Concepts of Non-sequential and Distributed Programming Summer Term 2023



3

PARALLELIZATION
Concepts of Non-sequential and Distributed Programming

ALP IV: Concepts of Non-sequential and Distributed Programming Summer Term 2023



4

Requirements for Programs
• A program should do what it is expected to do!

− Functional requirements, such as
− Scope of functions
− Correctness

• A program should comply with certain requirements about its behavior.
− Non-functional requirements, such as

− Performance
− Usability
− Security
− …

ALP IV: Concepts of Non-sequential and Distributed Programming Summer Term 2023



5

Correctness
• Correctness is ensured based on

− Correct implementation of commands and functions
− compiler/interpreter, HW

− Correct execution of the set of commands and instructions
− Sequential processing of the instructions of the critical section by mutual exclusion due to locks
− Programming model and machine model (execution model) correspond to each other

− Check with
− Hoare logic (calculus)
− Simulation
− Testing

ALP IV: Concepts of Non-sequential and Distributed Programming Summer Term 2023



6

Requirements for Solutions to protect the Critical Section
• The solution has to protect the critical section reliably by mutual exclusion.
• The solution should be used in higher level programming languages.

− Thus, the solution is usable on different architectures providing portability for the program 
using it.

• The solution must not lead to a deadlock.

ALP IV: Concepts of Non-sequential and Distributed Programming Summer Term 2023



7

Performance
• There are (at least) two different perspectives 

to discuss the topic performance:

• Perspective of the service provider
− use all resources to run as many programs as possible
− maximum utilization of resources – especially CPU

• Perspective of the user
− the fastest possible processing of your own program
− short response time

ALP IV: Concepts of Non-sequential and Distributed Programming Summer Term 2023



8

Performance from the User Perspective
• Thread switching comes with an overhead.

• But, if the program is designed to use more resources than CPU (and memory) this usage of 
the different resources may be performed in parallel (parts of the program are executed 
concurrently).

• Problem has to be split into reasonable pieces (e.g. via divide and conquer approaches).

• The data representing the problem can be shared between all threads by using the same 
address space.

• The usage of all of the resources may lead to a reduction of idle time as well as to a 
reduction of the response time of the entire program.

• The uniform progress of the threads of the program (and all other processes) is ensured by 
the operating system. It needs to correspond to goals and possibilities of the operating 
system (scheduling).

ALP IV: Concepts of Non-sequential and Distributed Programming Summer Term 2023



9ALP IV: Concepts of Non-sequential and Distributed Programming Summer Term 2023

Machine model



10

Example: Accounting
• A bank transfers money from one account to another.
• The amount of money to be debit from one account equals the amount of money 

that is transferred to the other account.
− Money does not disappear or is created out of nothing.

• The transfers usually are performed on a multitude of accounts and more than 
once between different accounts.

• So the tasks may be performed concurrently.

• In our example two different threads transfer money between two accounts.

ALP IV: Concepts of Non-sequential and Distributed Programming Summer Term 2023



11ALP IV: Concepts of Non-sequential and Distributed Programming Summer Term 2023

// simple accounting with pthreads

#include <pthread.h>
#include <stdlib.h>
#include <stdio.h>
#define NUM_THREADS     2

// shared data
int account[2]; 

// accounting
void *bank_action (void *threadid)
{

// doing transfers

pthread_exit (NULL);
}

int main (int argc, char *argv[])
{

pthread_t threads[NUM_THREADS];
int rc;
long t;
int i, j;

// init data

// creating threads

// joining threads

// output results

/* Last thing that main() should do */
pthread_exit(NULL);

}



12ALP IV: Concepts of Non-sequential and Distributed Programming Summer Term 2023

// simple accounting with pthreads
#include ...
#define NUM_THREADS     2
// shared data
int account[2]; 

// accounting
void *bank_action (void *threadid)
{

long tid;
int i, amount = 0;

tid = (long) threadid;

account[tid] -= amount;
account[NUM_THREADS-1-tid] += amount;

pthread_exit (NULL);
}

int main (int argc, char *argv[])
{

pthread_t threads[NUM_THREADS];
int rc;
long t;
int i, j;

// init data

// creating threads

// joining threads

// output results

/* Last thing that main() should do */
pthread_exit(NULL);

}



13ALP IV: Concepts of Non-sequential and Distributed Programming Summer Term 2023

// simple accounting with pthreads
#include ...
#define NUM_THREADS     2
// shared data
int account[2]; 

// accounting
void *bank_action (void *threadid)
{

long tid;
int i, amount = 0;

tid = (long) threadid;

for (i = 0; i < 300000; i++) {
amount = (int)(((double) rand () /

(RAND_MAX - 1)) * 100);
account[tid] -= amount;
account[NUM_THREADS-1-tid] += amount;

}
pthread_exit (NULL);

}

int main (int argc, char *argv[])
{

pthread_t threads[NUM_THREADS];
int rc;
long t;
int i, j;

// init data

// creating threads

// joining threads

// output results

/* Last thing that main() should do */
pthread_exit(NULL);

}



14ALP IV: Concepts of Non-sequential and Distributed Programming Summer Term 2023

// simple accounting with pthreads
#include ...
#define NUM_THREADS     2
// shared data
int account[2]; 

// accounting
void *bank_action (void *threadid)
{

long tid;
int i, amount = 0;

tid = (long) threadid;
printf ("Hello World! It's me, thread 

#%ld !\n", tid);
for (i = 0; i < 300000; i++) {
amount = (int)(((double) rand () /

(RAND_MAX - 1)) * 100);
account[tid] -= amount;
account[NUM_THREADS-1-tid] += amount;

}
pthread_exit (NULL);

}

int main (int argc, char *argv[])
{

pthread_t threads[NUM_THREADS];
int rc;
long t;
int i, j;

// init data

// creating threads

// joining threads

// output results

/* Last thing that main() should do */
pthread_exit(NULL);

}



15ALP IV: Concepts of Non-sequential and Distributed Programming Summer Term 2023

// simple accounting with pthreads
#include ...
#define NUM_THREADS     2
// shared data
int account[2]; 

// accounting
void *bank_action (void *threadid) {

...
}

int main (int argc, char *argv[])
{

pthread_t threads[NUM_THREADS];
int rc;
long t;
int i, j;

// init data
srand ((unsigned) time (NULL));
account[0] = account[1] = 100;

// creating threads

// joining threads

// output results
for (i = 0; i < NUM_THREADS; i++) {

printf (" account_%d: %d \n", i, 
account[i]);

/* Last thing that main() should do */
pthread_exit(NULL);

}



16ALP IV: Concepts of Non-sequential and Distributed Programming Summer Term 2023

// simple accounting with pthreads
#include ...
#define NUM_THREADS     2
// shared data
int account[2]; 

// accounting
void *bank_action (void *threadid) {

...
}

int main (int argc, char *argv[])
{

pthread_t threads[NUM_THREADS];
int rc;
long t;
int i, j;

// init data
...

// creating threads
for (t = 0; t < NUM_THREADS; t++) {

printf ("In main: creating thread 
%ld\n", t);

rc = pthread_create (&threads[t], 
NULL, bank_action, (void *)t);

if (rc) {
printf ("ERROR; return code from 
pthread_create () is %d\n", rc);
exit (-1);

}
}
// joining threads
for (t = 0; t < NUM_THREADS; t++) {
pthread_join (threads[t], NULL);

}

// output results
...
/* Last thing that main() should do */
pthread_exit(NULL);

}



17ALP IV: Concepts of Non-sequential and Distributed Programming Summer Term 2023

// simple accounting with pthreads
#include ...
#define NUM_THREADS     2
// shared data
int account[2]; 

// accounting
void *bank_action (void *threadid) {

...
}

int main (int argc, char *argv[])
{

pthread_t threads[NUM_THREADS];
int rc;
long t;
int i, j;

// init data
...

// creating threads
for (t = 0; t < NUM_THREADS; t++) {

printf ("In main: creating thread 
%ld\n", t);

rc = pthread_create (&threads[t], 
NULL, bank_action, (void *)t);

if (rc) {
printf ("ERROR; return code from 
pthread_create () is %d\n", rc);
exit (-1);

}
}
// joining threads
for (t = 0; t < NUM_THREADS; t++) {
pthread_join (threads[t], NULL);

}

// output results
...
/* Last thing that main() should do */
pthread_exit(NULL);

}



18

Twofold Lock with Mutual Precedence
• The twofold lock with mutual precedence approach protects the critical section 

reliably.

• It prevents deadlocks as the own lock is released in order to give the other thread 
a chance to get the lock before the lock is acquired by the requesting thread.

• To give the other thread a chance to get the lock, the first one will wait shortly.

ALP IV: Concepts of Non-sequential and Distributed Programming Summer Term 2023



19ALP IV: Concepts of Non-sequential and Distributed Programming Summer Term 2023

// simple accounting with pthreads
#include ...

#define NUM_THREADS   2 

int account[2];
char _lock[2];

int lock (long tid) {
_lock[tid] = 1;

while (_lock[NUM_THREADS - 1 - tid]) {
_lock[tid] = 0;
sleep (1);
_lock[tid] = 1;

}
return 0;

}

int unlock (long tid) {
_lock[tid] = 0;
return 0;

}

// accounting
void *bank_action (void *threadid)
{

long tid;
int i;
int amount = 0;
tid = (long) threadid;
for (i = 0; i < 300000; i++) {
amount = (int)(((double) rand () /

(RAND_MAX - 1)) * 100);

// try to enter the critical section
lock (tid);

// critical section
account[tid] -= amount;
account[NUM_THREADS-1-tid] += amount;
// return from critical section
unlock (tid);

}
pthread_exit (NULL);

}



20

Twofold Lock with Mutual Precedence
• The approach of the twofold lock with mutual precedence meet the requirements, 

but comes with some additional limitations or problems:

• The requesting thread sleeps a little time to give the other thread the chance to 
acquire the lock (after returning from the critical section). But the sleeping 
increases the response time.

• Mutual precedence can lead to a loop: "After you!" – „After you!“ 
− This is called a livelock and can lead to starvation as no thread will get the lock even if 

they could.
− The problem can be reduced in case the sleeping lasts longer to give the other thread 

more time to get the lock.

ALP IV: Concepts of Non-sequential and Distributed Programming Summer Term 2023



21ALP IV: Concepts of Non-sequential and Distributed Programming Summer Term 2023

// simple accounting with pthreads
#include ...

#define NUM_THREADS   2 

int account[2];
char _lock[2];

int lock (long tid) {
_lock[tid] = 1;

while (_lock[NUM_THREADS - 1 - tid]) {
_lock[tid] = 0;
sleep (1);
_lock[tid] = 1;

}
return 0;

}

int unlock (long tid) {
_lock[tid] = 0;
return 0;

}

// accounting
void *bank_action (void *threadid)
{

long tid;
int i;
int amount = 0;
tid = (long) threadid;
for (i = 0; i < 300000; i++) {
amount = (int)(((double) rand () /

(RAND_MAX - 1)) * 100);

// try to enter the critical section
lock (tid);

// critical section
account[tid] -= amount;
account[NUM_THREADS-1-tid] += amount;
// return from critical section
unlock (tid);

}
pthread_exit (NULL);

}



22

Requirements for Solutions to protect the Critical Section
• The solution has to protect the critical section reliably by mutual exclusion.
• The solution should be used in higher level programming languages.

− Thus, the solution is usable on different architectures providing portability for the program 
using it.

• The solution must not lead to a deadlock.
• The solution should provide low overhead.

− There is no (excessive) waiting in order to enter the critical section.

ALP IV: Concepts of Non-sequential and Distributed Programming Summer Term 2023



23

Twofold Lock with Priorities
• To overcome the problem of the livelock („After you!“ – „After you!“) an order to 

access the lock in case of a conflict can be implemented.

• The order is represented by priorities.

• The priority is determined based on the sequence of accessing the lock.
− This resembles the queueing approach where the last one requesting the resource is last 

one in the queue.
− The thread with the lowest priority is the first in queue and is the first to get the lock.

ALP IV: Concepts of Non-sequential and Distributed Programming Summer Term 2023



24ALP IV: Concepts of Non-sequential and Distributed Programming Summer Term 2023

// simple accounting with pthreads
#include ...

#define NUM_THREADS   2 
int account[2];
int prio[2];  // init with 0 at main()

int lock (long tid) {

prio[tid] = prio[NUM_THREADS-1-tid]+ 1;

while ((prio[NUM_THREADS-1-tid] != 0)&&  
(prio[NUM_THREADS-1-tid] < 

prio[tid]))
;

return 0;
}

int unlock (long tid) {
prio[tid] = 0;
return 0;

}

// accounting
void *bank_action (void *threadid)
{

long tid;
int i;
int amount = 0;
tid = (long) threadid;
for (i = 0; i < 300000; i++) {
amount = (int)(((double) rand () /

(RAND_MAX - 1)) * 100);

// try to enter the critical section
lock (tid);

// critical section
account[tid] -= amount;
account[NUM_THREADS-1-tid] += amount;
// return from critical section
unlock (tid);

}
pthread_exit (NULL);

}



25

Twofold Lock with Priorities
• Checking and setting of the priority is a 

critical section by itself.

• The twofold lock approach does not 
meet all requirements for a solution to 
protect a critical section.

ALP IV: Concepts of Non-sequential and Distributed Programming Summer Term 2023

In main: creating thread 0
In main: creating thread 1
Hello World! It's me, thread #0 !
Hello World! It's me, thread #1 !
account_0: 100 
account_1: 100 

In main: creating thread 0
In main: creating thread 1
Hello World! It's me, thread #0 !
Hello World! It's me, thread #1 !
account_0: 100 
account_1: 100 

...
account_0: 1568 
account_1: -2317 



26

Twofold Lock with Priorities and Reservation
• The easiest way to overcome the problems with the twofold lock with priorities 

approach is to use a fixed priority, so the check and set of the priority does not 
take place.

• But, this could lead to starvation of the thread with lower priority (higher value of 
the priority variable). 

• To reduce the effect of the fixed priority, the dynamic determination of the priority 
can be used as introduced by the twofold lock with priorities, but has to be 
protected.

• Thus, an additional variable is introduced announcing the attempt by a thread to 
get in line of access to the lock. This is implemented by the variable interested.

ALP IV: Concepts of Non-sequential and Distributed Programming Summer Term 2023



27ALP IV: Concepts of Non-sequential and Distributed Programming Summer Term 2023

// simple accounting with pthreads
#include ...

#define NUM_THREADS   2 
int account[2];
int prio[2]; // init with 0 at main()
char interested[2]; // init with 0 at main()

int lock (long tid) {
interested[tid] = 1;
prio[tid] = prio[NUM_THREADS-1-tid]+ 1;
interested[tid] = 0;
while (interested[NUM_THREADS-1-tid])
;

while ((prio[NUM_THREADS-1-tid] != 0)&&((prio[NUM_THREADS-1-tid] < prio[tid])|| 
((prio[NUM_THREADS-1-tid] == prio[tid])&&((NUM_THREADS-1-tid) < tid))))

;
return 0;

}
int unlock (long tid) {

prio[tid] = 0;
return 0;

}



28

Twofold Lock with Priorities and Reservation

• The critical section is protected!

• But, due to the prioritization based on 
the thread IDs there is no fair access 
to the critical section in case of a 
conflict.

ALP IV: Concepts of Non-sequential and Distributed Programming Summer Term 2023

In main: creating thread 0
In main: creating thread 1
Hello World! It's me, thread #0 !
Hello World! It's me, thread #1 !
account_0: 100 
account_1: 100 

In main: creating thread 0
In main: creating thread 1
Hello World! It's me, thread #0 !
Hello World! It's me, thread #1 !
account_0: 100 
account_1: 100 

...



29

Requirements for Solutions to protect the Critical Section
• The solution has to protect the critical section reliably by mutual exclusion.
• The solution should be used in higher level programming languages.

− Thus, the solution is usable on different architectures providing portability for the program 
using it.

• The solution must not lead to a deadlock.
• The solution should provide low overhead.

− There is no (excessive) waiting in order to enter the critical section.

ALP IV: Concepts of Non-sequential and Distributed Programming Summer Term 2023



30

Requirements for Solutions to protect the Critical Section
• The solution has to protect the critical section reliably by mutual exclusion.
• The solution should be used in higher level programming languages.

− Thus, the solution is usable on different architectures providing portability for the program 
using it.

• The solution must not lead to a deadlock.
• The solution should provide low overhead.

− There is no (excessive) waiting in order to enter the critical section.
• The access to the critical section should be fair.

ALP IV: Concepts of Non-sequential and Distributed Programming Summer Term 2023



31

Lock with Alternate Access

• The simple solution to get a fair access to the critical section is to have an 
alternate access.

• Every thread gets access after the other one is leaving the critical section.

ALP IV: Concepts of Non-sequential and Distributed Programming Summer Term 2023



32ALP IV: Concepts of Non-sequential and Distributed Programming Summer Term 2023

// simple accounting with pthreads
#include ...
#define NUM_THREADS   2 
int account[2];

int favoured = 1;

int lock (long tid) {

while (favoured == (NUM_THREADS-1-tid))
;

return 0;
}
int unlock (long tid) {

favoured = NUM_THREADS - 1 - tid;
return 0;

}

// accounting
void *bank_action (void *threadid)
{

long tid;
int i;
int amount = 0;
tid = (long) threadid;
for (i = 0; i < 300000; i++) {
amount = (int)(((double) rand () /

(RAND_MAX - 1)) * 100);

// try to enter the critical section
lock (tid);

// critical section
account[tid] -= amount;
account[NUM_THREADS-1-tid] += amount;
// return from critical section
unlock (tid);

}
pthread_exit (NULL);

}



33

Lock with Alternate Access

• The critical section is protected!

• In case of unbalanced usage of the 
critical section the requesting thread 
has to busy wait potentially a long 
time.
− Thus, the requirement of low overhead is 

not achieved.
• If one thread terminates, the other 

thread will not get access to the critical 
section anymore.

ALP IV: Concepts of Non-sequential and Distributed Programming Summer Term 2023

In main: creating thread 0
In main: creating thread 1
Hello World! It's me, thread #0 !
Hello World! It's me, thread #1 !
account_0: 100 
account_1: 100 

In main: creating thread 0
In main: creating thread 1
Hello World! It's me, thread #0 !
Hello World! It's me, thread #1 !
account_0: 100 
account_1: 100 

...



34

Requirements for Solutions to protect the Critical Section
• The solution has to protect the critical section reliably by mutual exclusion.
• The solution should be used in higher level programming languages.

− Thus, the solution is usable on different architectures providing portability for the program 
using it.

• The solution must not lead to a deadlock.
• The solution should provide low overhead.

− There is no (excessive) waiting in order to enter the critical section.
• The access to the critical section should be fair.

ALP IV: Concepts of Non-sequential and Distributed Programming Summer Term 2023



35

Twofold Lock with Mutual Access – Dekker
• The turn-taking approach of the lock with alternate access algorithm can be 

combined with the “classical” locking approach.
• So in case one thread is alive and is using the critical section the other one is 

favored to get the lock to enter the critical section. 
• If only one thread is requesting the critical section, the lock variable is used to 

protect the critical section independent of the decision which thread is favored (as 
the other thread doesn’t require access to the critical section).

• One of the first correct algorithms for mutual exclusion introduced by Th. J. Dekker 
in 1962 or 1963.

ALP IV: Concepts of Non-sequential and Distributed Programming Summer Term 2023



36ALP IV: Concepts of Non-sequential and Distributed Programming Summer Term 2023

// simple accounting with pthreads
#include ...
#define NUM_THREADS   2 
int account[2];

int favoured = 1;

int lock (long tid) {

if (favoured != tid) {

while (favoured != tid)
;

}

return 0;
}
int unlock (long tid) {

favoured = NUM_THREADS - 1 - tid;

return 0;
}

// accounting
void *bank_action (void *threadid)
{

long tid;
int i;
int amount = 0;
tid = (long) threadid;
for (i = 0; i < 300000; i++) {
amount = (int)(((double) rand () /

(RAND_MAX - 1)) * 100);

// try to enter the critical section
lock (tid);

// critical section
account[tid] -= amount;
account[NUM_THREADS-1-tid] += amount;
// return from critical section
unlock (tid);

}
pthread_exit (NULL);

}



37ALP IV: Concepts of Non-sequential and Distributed Programming Summer Term 2023

// simple accounting with pthreads
#include ...
#define NUM_THREADS   2 
int account[2];
char _lock[2]; // init with 0 at main()
int favoured = 1;

int lock (long tid) {
_lock[tid] = 1;
while (_lock[NUM_THREADS - 1 - tid]) {
if (favoured != tid) {
_lock[tid] = 0;
while (favoured != tid)
;

_lock[tid] = 1;
}

}
return 0;

}
int unlock (long tid) {

favoured = NUM_THREADS - 1 - tid;
_lock[tid] = 0;
return 0;

}

// accounting
void *bank_action (void *threadid)
{

long tid;
int i;
int amount = 0;
tid = (long) threadid;
for (i = 0; i < 300000; i++) {
amount = (int)(((double) rand () /

(RAND_MAX - 1)) * 100);

// try to enter the critical section
lock (tid);

// critical section
account[tid] -= amount;
account[NUM_THREADS-1-tid] += amount;
// return from critical section
unlock (tid);

}
pthread_exit (NULL);

}



38

Twofold Lock with Mutual Access – Dekker
• The critical section is protected!

• A fair access in case of concurrent 
requests is provided by mutual 
prioritization. 

• There is no starvation even in case 
one of the threads is terminating.

• The twofold lock with mutual access 
(Dekker) approach meets all 
requirements for a solution to protect a 
critical section.

ALP IV: Concepts of Non-sequential and Distributed Programming Summer Term 2023

In main: creating thread 0
In main: creating thread 1
Hello World! It's me, thread #0 !
Hello World! It's me, thread #1 !
account_0: 100 
account_1: 100 

In main: creating thread 0
In main: creating thread 1
Hello World! It's me, thread #0 !
Hello World! It's me, thread #1 !
account_0: 100 
account_1: 100 

...



39

Requirements for Solutions to protect the Critical Section
• The solution has to protect the critical section reliably by mutual exclusion.
• The solution should be used in higher level programming languages.

− Thus, the solution is usable on different architectures providing portability for the program 
using it.

• The solution must not lead to a deadlock.
• The solution should provide low overhead.

− There is no (excessive) waiting in order to enter the critical section.
• The access to the critical section should be fair.

ALP IV: Concepts of Non-sequential and Distributed Programming Summer Term 2023



40

Twofold Lock with Mutual Access – Peterson

• A more elegant version of the approach was introduced by Gary L. Peterson in 
1981.

ALP IV: Concepts of Non-sequential and Distributed Programming Summer Term 2023



41ALP IV: Concepts of Non-sequential and Distributed Programming Summer Term 2023

// simple accounting with pthreads
#include ...
#define NUM_THREADS   2 
int account[2];
char _lock[2]; // init with 0 at main()
int favoured = 1;

int lock (long tid) {
_lock[tid] = 1;
favoured = NUM_THREADS - 1 - tid;

while ((_lock[NUM_THREADS-1-tid])&& 
(favoured == (NUM_THREADS-1-tid)))

;

return 0;
}

int unlock (long tid) {
favoured = NUM_THREADS - 1 - tid;
_lock[tid] = 0;
return 0;

}

// accounting
void *bank_action (void *threadid)
{

long tid;
int i;
int amount = 0;
tid = (long) threadid;
for (i = 0; i < 300000; i++) {
amount = (int)(((double) rand () /

(RAND_MAX - 1)) * 100);

// try to enter the critical section
lock (tid);

// critical section
account[tid] -= amount;
account[NUM_THREADS-1-tid] += amount;
// return from critical section
unlock (tid);

}
pthread_exit (NULL);

}



42

Requirements for Solutions to protect the Critical Section
• The solution has to protect the critical section reliably by mutual exclusion.
• The solution should be used in higher level programming languages.

− Thus, the solution is usable on different architectures providing portability for the program 
using it.

• The solution must not lead to a deadlock.
• The solution should provide low overhead.

− There is no (excessive) waiting in order to enter the critical section.
• The access to the critical section should be fair.

ALP IV: Concepts of Non-sequential and Distributed Programming Summer Term 2023



43

Multiple Locks with Mutual Access – Peterson
• The algorithm using twofold locks with mutual access by Peterson can be 

extended to be used by more than two threads.
• The number of threads requesting access to the critical sections has to be known 

in advance. 

• Approach implements the following idea:
− A thread with the thread ID tid enters a waiting room as the last thread.
− As long as thread tid is the last thread in the waiting room and there is a thread waiting in 

a waiting room further along the way to get access to the critical section, thread tid waits 
(active).

− If another thread enters the waiting room or there is no thread waiting in a waiting room 
closer to the critical section, the thread tid moves to the next waiting room until it reaches 
the last waiting room and is allowed to enter the critical section.

ALP IV: Concepts of Non-sequential and Distributed Programming Summer Term 2023



44ALP IV: Concepts of Non-sequential and Distributed Programming Summer Term 2023

// simple accounting with pthreads
#include ...

#define NUM_THREADS   4 

int account[NUM_THREADS]; 
int level[NUM_THREADS]; // init with 0
int last[NUM_THREADS]; // init with 0

int unlock (long tid) {
level[tid] = 0;
return 0;

}

int lock (long tid) {
int i, j, loop;

for (i = 1; i < NUM_THREADS; i++) {
level[tid] = i;
last[i] = tid;

}
return 0;

}

// accounting
...



45ALP IV: Concepts of Non-sequential and Distributed Programming Summer Term 2023

// simple accounting with pthreads
#include ...

#define NUM_THREADS   4 

int account[NUM_THREADS]; 
int level[NUM_THREADS]; // init with 0
int last[NUM_THREADS]; // init with 0

int unlock (long tid) {
level[tid] = 0;
return 0;

}

int lock (long tid) {
int i, j, loop;

for (i = 1; i < NUM_THREADS; i++) {
level[tid] = i;
last[i] = tid;
loop = 1;
while ((loop)&&(last[i] == tid)) {
j = 0;

}
}
return 0;

}

// accounting
...



46ALP IV: Concepts of Non-sequential and Distributed Programming Summer Term 2023

// simple accounting with pthreads
#include ...

#define NUM_THREADS   4 

int account[NUM_THREADS]; 
int level[NUM_THREADS]; // init with 0
int last[NUM_THREADS]; // init with 0

int unlock (long tid) {
level[tid] = 0;
return 0;

}

int lock (long tid) {
int i, j, loop;

for (i = 1; i < NUM_THREADS; i++) {
level[tid] = i;
last[i] = tid;
loop = 1;
while ((loop)&&(last[i] == tid)) {
j = 0;
loop = 0;
while ((j < NUM_THREADS)&&              

((level[j] < i)||(j == tid)))
j++;

}
}
return 0;

}

// accounting
...



47ALP IV: Concepts of Non-sequential and Distributed Programming Summer Term 2023

// simple accounting with pthreads
#include ...

#define NUM_THREADS   4 

int account[NUM_THREADS]; 
int level[NUM_THREADS]; // init with 0
int last[NUM_THREADS]; // init with 0

int unlock (long tid) {
level[tid] = 0;
return 0;

}

int lock (long tid) {
int i, j, loop;

for (i = 1; i < NUM_THREADS; i++) {
level[tid] = i;
last[i] = tid;
loop = 1;
while ((loop)&&(last[i] == tid)) {
j = 0;
loop = 0;
while ((j < NUM_THREADS)&&              

((level[j] < i)||(j == tid)))
j++;

if (j < NUM_THREADS)
loop = 1;

}
}
return 0;

}

// accounting
...



48

Multiple Locks with Mutual Access – Peterson

• The critical section is protected!

• Multiple threads are handled.

• The multiple locks with mutual 
access (Peterson) approach meets 
all requirements for a solution to 
protect a critical section.

ALP IV: Concepts of Non-sequential and Distributed Programming Summer Term 2023

In main: creating thread 0
In main: creating thread 1
Hello World! It's me, thread #0 !
In main: creating thread 2
Hello World! It's me, thread #1 !
In main: creating thread 3
Hello World! It's me, thread #2 !
Hello World! It's me, thread #3 !
account_0: -5011 
account_1: 4241 
account_2: 6877 
account_3: -5707 

...



49

Multiple Locks with Mutual Access – Lamport
• A similar algorithm was introduced by Leslie Lamport in 1974.
• As the idea behind the approach envisions a bakery with tickets for the customers, 

the approach also known as Lamport‘s bakery.

ALP IV: Concepts of Non-sequential and Distributed Programming Summer Term 2023



50ALP IV: Concepts of Non-sequential and Distributed Programming Summer Term 2023

// simple accounting with pthreads
#include ...

#define NUM_THREADS   6 

int account[NUM_THREADS]; // init with 0
char enter[NUM_THREADS]; // init with 0
int tickets[NUM_THREADS]; // init with 0

int unlock (long tid) {

return 0;
}

int lock (long tid) {

return 0;
}



51ALP IV: Concepts of Non-sequential and Distributed Programming Summer Term 2023

// simple accounting with pthreads
#include ...

#define NUM_THREADS   6 

int account[NUM_THREADS]; // init with 0
char enter[NUM_THREADS]; // init with 0
int tickets[NUM_THREADS]; // init with 0

int unlock (long tid) {
tickets[tid] = 0;
return 0;

}

int lock (long tid) {
int i, max = 0;
enter[tid] = 1;
for (i = 0; i < NUM_THREADS; i++) {
if (max < tickets[i])
max = tickets[i];

}

return 0;
}



52ALP IV: Concepts of Non-sequential and Distributed Programming Summer Term 2023

// simple accounting with pthreads
#include ...

#define NUM_THREADS   6 

int account[NUM_THREADS]; // init with 0
char enter[NUM_THREADS]; // init with 0
int tickets[NUM_THREADS]; // init with 0

int unlock (long tid) {
tickets[tid] = 0;
return 0;

}

int lock (long tid) {
int i, max = 0;
enter[tid] = 1;
for (i = 0; i < NUM_THREADS; i++) {
if (max < tickets[i])
max = tickets[i];

}
tickets[tid] = max + 1;
enter[tid] = 0;
for (i = 0; i < NUM_THREADS; i++) {

}
return 0;

}



53ALP IV: Concepts of Non-sequential and Distributed Programming Summer Term 2023

// simple accounting with pthreads
#include ...

#define NUM_THREADS   6 

int account[NUM_THREADS]; // init with 0
char enter[NUM_THREADS]; // init with 0
int tickets[NUM_THREADS]; // init with 0

int unlock (long tid) {
tickets[tid] = 0;
return 0;

}

int lock (long tid) {
int i, max = 0;
enter[tid] = 1;
for (i = 0; i < NUM_THREADS; i++) {
if (max < tickets[i])
max = tickets[i];

}
tickets[tid] = max + 1;
enter[tid] = 0;
for (i = 0; i < NUM_THREADS; i++) {
if (i != tid) {

}
}
return 0;

}



54ALP IV: Concepts of Non-sequential and Distributed Programming Summer Term 2023

// simple accounting with pthreads
#include ...

#define NUM_THREADS   6 

int account[NUM_THREADS]; // init with 0
char enter[NUM_THREADS]; // init with 0
int tickets[NUM_THREADS]; // init with 0

int unlock (long tid) {
tickets[tid] = 0;
return 0;

}

int lock (long tid) {
int i, max = 0;
enter[tid] = 1;
for (i = 0; i < NUM_THREADS; i++) {
if (max < tickets[i])
max = tickets[i];

}
tickets[tid] = max + 1;
enter[tid] = 0;
for (i = 0; i < NUM_THREADS; i++) {
if (i != tid) {
while (enter[i])
;

}
}
return 0;

}



55ALP IV: Concepts of Non-sequential and Distributed Programming Summer Term 2023

// simple accounting with pthreads
#include ...

#define NUM_THREADS   6 

int account[NUM_THREADS]; // init with 0
char enter[NUM_THREADS]; // init with 0
int tickets[NUM_THREADS]; // init with 0

int unlock (long tid) {
tickets[tid] = 0;
return 0;

}

int lock (long tid) {
int i, max = 0;
enter[tid] = 1;
for (i = 0; i < NUM_THREADS; i++) {
if (max < tickets[i])
max = tickets[i];

}
tickets[tid] = max + 1;
enter[tid] = 0;
for (i = 0; i < NUM_THREADS; i++) {
if (i != tid) {
while (enter[i])
;

while ((tickets[i] != 0)&& 
((tickets[tid] > tickets[i])||  
((tickets[tid] == tickets[i])&&
(tid > i))))
;

}
}
return 0;

}



56

Multiple Locks with Mutual Access – Lamport

• The critical section is protected!

• Multiple threads are handled.

• The multiple locks with mutual 
access (Lamport) approach meets all 
requirements for a solution to protect a 
critical section.

ALP IV: Concepts of Non-sequential and Distributed Programming Summer Term 2023

In main: creating thread 0
Hello World! It's me, thread #0 !
In main: creating thread 1
Hello World! It's me, thread #1 !
In main: creating thread 2
Hello World! It's me, thread #2 !
In main: creating thread 3
Hello World! It's me, thread #3 !
In main: creating thread 4
Hello World! It's me, thread #4 !
In main: creating thread 5
Hello World! It's me, thread #5 !
account_0: -37603 
account_1: -24997 
account_2: 4667 
account_3: 81509 
account_4: 14189 
account_5: -37165 

...



57

Requirements for Solutions to protect the Critical Section
• The solution has to protect the critical section reliably by mutual exclusion.
• The solution should be used in higher level programming languages.

− Thus, the solution is usable on different architectures providing portability for the program 
using it.

• The solution must not lead to a deadlock.
• The solution should provide low overhead.

− There is no (excessive) waiting in order to enter the critical section.
• The access to the critical section should be fair.

ALP IV: Concepts of Non-sequential and Distributed Programming Summer Term 2023



58ALP IV: Concepts of Non-sequential and Distributed Programming Summer Term 2023

Machine model
• Based on the current execution and machine 

model the approaches meet the requirements 
for solutions to protect the critical section:
− Twofold Lock with Mutual Access – Dekker
− Twofold Lock with Mutual Access – Peterson
− Multiple Locks with Mutual Access – Peterson
− Multiple Locks with Mutual Access – Lamport



59

Performance
• There are (at least) two different perspectives 

to discuss the topic performance:

• Perspective of the service provider
− use all resources to run as many programs as possible
− maximum utilization of resources – especially CPU

• Perspective of the user
− the fastest possible processing of your own program
− short response time

ALP IV: Concepts of Non-sequential and Distributed Programming Summer Term 2023



60

PARALLELIZATION
Concepts of Non-sequential and Distributed Programming

ALP IV: Concepts of Non-sequential and Distributed Programming Summer Term 2023



61

Parallelization

• Current computer architectures differ from the machine model used to 
discuss the different approaches to protect the critical section.

• Is the machine model (which is used until now) sufficient to cover the real 
behavior of real machines?

ALP IV: Concepts of Non-sequential and Distributed Programming Summer Term 2023



62

Pipelining

ALP IV: Concepts of Non-sequential and Distributed Programming Summer Term 2023

1. Befehl
Befehl
holen

Operation
ausführen

Ergebnis
speichern

Befehl
dekodieren

Operanden
holen

Sequentielle Ausführung:

Befehl
holen

Befehl
dekodieren . . . 

2. Befehl

Befehl
holen

Operation
ausführen

Ergebnis
speichern

Befehl
dekodieren

Operanden
holen1. Befehl

Pipelining:

Befehl
holen

Operation
ausführen

Ergebnis
speichern

Befehl
dekodieren

Operanden
holen2. Befehl

Befehl
holen

Operation
ausführen

Ergebnis
speichern

Befehl
dekodieren

Operanden
holen3. Befehl

LV TI II



64ALP IV: Concepts of Non-sequential and Distributed Programming Summer Term 2023

S2 S3 S5

Instruction 
decode 
unit

Operand 
fetch 

unit
LOAD

Write 
back 

unit

S1

Instruction 
fetch 

unit

S4

Floating 
point

STORE

ALU

ALU

Execution Units working in Parallel

LV TI II



65

Optimizations of current Compilers and Processors
• There are lots of optimizations implemented in current compilers and processors:

− Out of order execution
− Reorganize operations to use as many processing units as possible.

− Speculative execution
− Execution of all operation sequences after a conditional jump.
− The operations that do not have to/should not be executed due to the condition are 

already processed.
− Cache hierarchies
− During a write operation, data is first written to the local cache and is not available there 

to other processing units of different processor/cores.
− Writing back data to the shared memory takes place with a delay (Write-back Cache).

ALP IV: Concepts of Non-sequential and Distributed Programming Summer Term 2023



66

Machine 
and Execution Model
• The machine and 

execution model has to be 
adapted:

ALP IV: Concepts of Non-sequential and Distributed Programming Summer Term 2023

Instruction Pointer

Instruction Pointer

Instruction Pointer

Instruction Pointer
Instruction Pointer

Instruction Pointer

Instruction Pointer



67

Correctness
• Correctness is ensured based on

− Correct implementation of commands and functions
− compiler/interpreter, HW

− Correct execution of the set of commands and instructions
− Sequential processing of the instructions of the critical section by mutual exclusion due to locks
− Programming model and machine model (execution model) correspond to each other

− Check with
− Hoare logic (calculus)
− Simulation
− Testing

ALP IV: Concepts of Non-sequential and Distributed Programming Summer Term 2023



68

Requirements for Solutions to protect the Critical Section
• The solution has to protect the critical section reliably by mutual exclusion.
• The solution should be used in higher level programming languages.

− Thus, the solution is usable on different architectures providing portability for the program 
using it.

• The solution must not lead to a deadlock.
• The solution should provide low overhead.

− There is no (excessive) waiting in order to enter the critical section.
• The access to the critical section should be fair.

ALP IV: Concepts of Non-sequential and Distributed Programming Summer Term 2023

With the adaption of the machine and execution model all of the 
solutions to protect the critical section have to be checked if their 
still meet the requirements!

!



69

Requirements for Solutions to protect the Critical Section II
• Based on the adapted execution and 

machine model the approaches don’t meet 
the requirements for solutions to protect the 
critical section:
− Twofold Lock with Mutual Access – Dekker
− Twofold Lock with Mutual Access – Peterson
− Multiple Locks with Mutual Access – Peterson
− Multiple Locks with Mutual Access – Lamport

ALP IV: Concepts of Non-sequential and Distributed Programming Summer Term 2023



70

Hardware Support to Protect the Critical Section
• The crucial part of protection of the critical section using locks is to simulate the 

behavior of an atomic operation for the check and set of the lock variable.
• Most hardware architectures provide support for this task by introducing atomic 

operations combining the tasks of checking and setting a value to a memory 
address:
− Test-and-Set

− XCHG – x86

− Fetch-and-Add
− XADD – x86

− Compare-and-Swap
− CMPXCHG – x86

− Hardware (Cache / Memory) Monitors

ALP IV: Concepts of Non-sequential and Distributed Programming Summer Term 2023



71

Hardware Support to Protect the Critical Section II
• The hardware support comes with some drawbacks such as:

− To execute the instructions as atomic operations, the pipeline has to be emptied. Thus, 
the benefit of higher performance is reduced.

− Different hardware architectures provide different approaches and instructions supporting 
the atomic instructions. The support can be complex.

• Example: ARM Cache Monitors for Locks
− http://infocenter.arm.com/help/topic/com.arm.doc.dht0008a/DHT0008A_arm_synchronizat

ion_primitives.pdf

ALP IV: Concepts of Non-sequential and Distributed Programming Summer Term 2023



72ALP IV: Concepts of Non-sequential and Distributed Programming Summer Term 2023

locked    EQU    1
unlocked  EQU  0
; lock_mutex
EXPORT lock_mutex
lock_mutex PROC

LDR     r1, =locked
1   LDREX   r2,   [r0]

CMP     r2, r1        ; Test if mutex is locked or unlocked
BEQ     %f2           ; If locked - wait for it to be released, from 2
STREXNE r2, r1, [r0]  ; Not locked, attempt to lock it
CMPNE   r2, #1        ; Check if Store-Exclusive failed
BEQ     %b1           ; Failed - retry from 1

; Lock acquired
DMB                   ; Required before accessing protected resource
BX      lr

2   ; Take appropriate action while waiting for mutex to become unlocked
WAIT_FOR_UPDATE
B       %b1           ; Retry from 1
ENDP



73

Requirements for Solutions to protect the Critical Section
• The solution has to protect the critical section reliably by mutual exclusion.
• The solution should be used in higher level programming languages.

− Thus, the solution is usable on different architectures providing portability for the program 
using it.

• The solution must not lead to a deadlock.
• The solution should provide low overhead.

− There is no (excessive) waiting in order to enter the critical section.
• The access to the critical section should be fair.

ALP IV: Concepts of Non-sequential and Distributed Programming Summer Term 2023

There is some part of the (new) execution and machine model that was 
considered only briefly and may help to overcome the problems with the 
current execution and machine model – the Operating System!



74

Operating System Support for Mutual Exclusion
• Operating systems provide support for mutual exclusion to protect a critical 

section.
• The operating system usually implements the protection using hardware 

architecture based instruction, such as test-and-set.
• As the operating system is aware of the state of the process or thread it can 

reduce the overhead by blocking the requesting process or thread rather than 
implementing busy waiting. The process or thread is deblocked if the critical 
section is released and the lock is unset.

• The POSIX standard provides the POSIX Mutex.

ALP IV: Concepts of Non-sequential and Distributed Programming Summer Term 2023



75

POSIX Mutex
int pthread_mutex_init(pthread_mutex_t *mutex, 

const pthread_mutexattr_t *mutexattr);

Initialization of the lock for access to the critical section, 

int pthread_mutex_lock(pthread_mutex_t *mutex);

Request for the lock to get access to the critical section, 
Thread sleeps as long as the lock is not available

int pthread_mutex_trylock(pthread_mutex_t *mutex);

like pthread_mutex_lock()but without sleeping

int pthread_mutex_unlock(pthread_mutex_t *mutex); 

Release of the critical section and unset of the lock
ALP IV: Concepts of Non-sequential and Distributed Programming Summer Term 2023



76ALP IV: Concepts of Non-sequential and Distributed Programming Summer Term 2023

// simple accounting with pthreads
#include ...
#define NUM_THREADS     6
// shared data
int account[NUM_THREADS]; 

// accounting
void *bank_action (void *threadid)
{

long tid;
int i, amount, acc_nr, error = 0;
tid = (long) threadid;

account[tid] -= amount;
account[acc_nr] += amount;

pthread_exit (NULL);
}

int main (int argc, char *argv[])
{

pthread_t threads[NUM_THREADS];
int rc;
long t;
int i, j;

// init data

// creating threads

// joining threads

// output results

/* Last thing that main() should do */
pthread_exit(NULL);

}



77ALP IV: Concepts of Non-sequential and Distributed Programming Summer Term 2023

// simple accounting with pthreads
#include ...
#define NUM_THREADS     6
// shared data
int account[NUM_THREADS]; 

// accounting
void *bank_action (void *threadid)
{

long tid;
int i, amount, acc_nr, error = 0;
tid = (long) threadid;
for (i = 0; i < 300000; i++) {
// calc acc_nr and amount

account[tid] -= amount;
account[acc_nr] += amount;

}
pthread_exit (NULL);

}

int main (int argc, char *argv[])
{

pthread_t threads[NUM_THREADS];
int rc;
long t;
int i, j;

// init data

// creating threads

// joining threads

// output results

/* Last thing that main() should do */
pthread_exit(NULL);

}



78ALP IV: Concepts of Non-sequential and Distributed Programming Summer Term 2023

// simple accounting with pthreads
#include ...
#define NUM_THREADS     6
// shared data
int account[NUM_THREADS]; 
pthread_mutex_t lock;

// accounting
void *bank_action (void *threadid)
{

long tid;
int i, amount, acc_nr, error = 0;
tid = (long) threadid;
for (i = 0; i < 300000; i++) {
// calc acc_nr and amount
// try to enter the critical section
_error = pthread_mutex_lock(&lock);
account[tid] -= amount;
account[acc_nr] += amount;
_error = pthread_mutex_unlock(&lock);

}
pthread_exit (NULL);

}

int main (int argc, char *argv[])
{

pthread_t threads[NUM_THREADS];
int rc;
long t;
int i, j;

// init lock
pthread_mutex_init(&lock, NULL);

// init data

// creating threads

// joining threads

// output results

/* Last thing that main() should do */
pthread_exit(NULL);

}



79

POSIX mutex
• The critical section is protected!

• Multiple threads are handled.

• The POSIX mutex meets all 
requirements for a solution to protect a 
critical section.

ALP IV: Concepts of Non-sequential and Distributed Programming Summer Term 2023

In main: creating thread 0
Hello World! It's me, thread #0 !
In main: creating thread 1
In main: creating thread 2
Hello World! It's me, thread #1 !
Hello World! It's me, thread #2 !
In main: creating thread 3
In main: creating thread 4
Hello World! It's me, thread #3 !
Hello World! It's me, thread #4 !
In main: creating thread 5
Hello World! It's me, thread #5 !
account_0: -82978 
account_1: 3782 
account_2: 66872 
account_3: 13514 
account_4: 26006 
account_5: -26596

...



80

Java – synchronized
• Other programming languages provide interfaces to solutions or solutions by their

own to protect critical sections.

• Example: Java

ALP IV: Concepts of Non-sequential and Distributed Programming Summer Term 2023

synchronized(MyKlassenName.class) 

{ 

// statements

}

public static synchronized void method() 

{ 

// statements 

}



81

Performance Aspects 

• Sequential processing always leads to 
reduction of utilization of the processing units –
at least from user‘s perspective.

• Therefore, it is always recommended to 
minimize the critical section!

ALP IV: Concepts of Non-sequential and Distributed Programming Summer Term 2023



82ALP IV: Concepts of Non-sequential and Distributed Programming Summer Term 2023

// simple accounting with pthreads
#include ...
#define NUM_THREADS     6
// shared data
int account[NUM_THREADS]; 
pthread_mutex_t lock;

// accounting
void *bank_action (void *threadid)
{

long tid;
int i, amount, acc_nr, error = 0;
tid = (long) threadid;
for (i = 0; i < 300000; i++) {
// calc acc_nr and amount
// try to enter the critical section
_error = pthread_mutex_lock(&lock);
account[tid] -= amount;
account[acc_nr]            += amount;
_error = pthread_mutex_unlock(&lock);

}
pthread_exit (NULL);

}

• Until now the critical section consists of the 
two operations:
account[tid]               -= amount;

account[NUM_THREADS-1-tid] += amount;



83

Minimization of the Critical Section

• As the value of amount remains unchanged the critical section consists actually of
the operation on the single date :

account[tid] = account[tid] - amount;

− The critical sections consists of reading account[tid] and writing the new value after 
subtraction of amount to  account[tid].

− Thus, only the one operation has to be protected.

ALP IV: Concepts of Non-sequential and Distributed Programming Summer Term 2023



84ALP IV: Concepts of Non-sequential and Distributed Programming Summer Term 2023

// simple accounting with pthreads
#include ...
#define NUM_THREADS     6
// shared data
int account[NUM_THREADS]; 
pthread_mutex_t lock;

// accounting
void *bank_action (void *threadid)
{

...
for (i = 0; i < 300000; i++) {
// calc acc_nr and amount
_error = pthread_mutex_lock(&lock);
account[tid] -= amount;
_error = pthread_mutex_unlock(&lock);

_error = pthread_mutex_lock(&lock);
account[acc_nr] += amount;
_error = pthread_mutex_unlock(&lock);

}
pthread_exit (NULL);

}



85

Requirements for Solutions to protect the Critical Section
• The solution has to protect the critical section reliably by mutual exclusion.
• The solution should be used in higher level programming languages.

− Thus, the solution is usable on different architectures providing portability for the program 
using it.

• The solution must not lead to a deadlock.
• The solution should provide low overhead.

− There is no (excessive) waiting in order to enter the critical section.
• The access to the critical section should be fair.

ALP IV: Concepts of Non-sequential and Distributed Programming Summer Term 2023



86

Correctness
• Correctness is ensured based on

− Correct implementation of commands and functions
− compiler/interpreter, HW

− Correct execution of the set of commands and instructions
− Sequential processing of the instructions the operations of the critical section by lock variables 

(lock/mutex) using the operating system and hardware
− Programming model and machine model (execution model) correspond to each other

− Check with
− Hoare logic (calculus)
− Simulation
− Testing

ALP IV: Concepts of Non-sequential and Distributed Programming Summer Term 2023



87

Performance from the User Perspective
• Thread switching comes with an overhead.

• But, if the program is designed to use more resources than CPU (and memory) this usage of 
the different resources may be performed in parallel (parts of the program are executed 
concurrently).

• Problem has to be split into reasonable pieces (e.g. via divide and conquer approaches).

• The data representing the problem can be shared between all threads by using the same 
address space.

• The usage of all of the resources may lead to a reduction of idle time as well as to a 
reduction of the response time of the entire program.

• The uniform progress of the threads of the program (and all other processes) is ensured by 
the operating system. It needs to correspond to goals and possibilities of the operating 
system (scheduling).

ALP IV: Concepts of Non-sequential and Distributed Programming Summer Term 2023



88

• A program should do what it is expected to do!
− Functional requirements, such as 

− Scope of functions
− Correctness

• A program should comply with certain requirements 
about its behavior.
− Non-functional requirements, such as 

− Performance
− Usability
− Security
− …

ALP IV: Concepts of Non-sequential and Distributed Programming Summer Term 2023

Requirements for Programs



89

NEXT LECTURE
Concepts of Non-sequential and Distributed Programming

ALP IV: Concepts of Non-sequential and Distributed Programming Summer Term 2023



Institute of Computer Science
Department of Mathematics and Computer Science

APL IV: Concepts of Non-sequential and Distributed 
Programming (Summer Term 2023)

Modeling with Petri nets


	Algorithms and Programming IV�Parallelization
	Objectives of Today‘s Lecture
	PARALLELIZATION
	Requirements for Programs
	Correctness
	Requirements for Solutions to protect the Critical Section
	Performance
	Performance from the User Perspective
	Machine model
	Example: Accounting
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Twofold Lock with Mutual Precedence
	Slide Number 19
	Twofold Lock with Mutual Precedence
	Slide Number 21
	Requirements for Solutions to protect the Critical Section
	Twofold Lock with Priorities
	Slide Number 24
	Twofold Lock with Priorities
	Twofold Lock with Priorities and Reservation
	Slide Number 27
	Twofold Lock with Priorities and Reservation
	Requirements for Solutions to protect the Critical Section
	Requirements for Solutions to protect the Critical Section
	Lock with Alternate Access
	Slide Number 32
	Lock with Alternate Access
	Requirements for Solutions to protect the Critical Section
	Twofold Lock with Mutual Access – Dekker
	Slide Number 36
	Slide Number 37
	Twofold Lock with Mutual Access – Dekker
	Requirements for Solutions to protect the Critical Section
	Twofold Lock with Mutual Access – Peterson
	Slide Number 41
	Requirements for Solutions to protect the Critical Section
	Multiple Locks with Mutual Access – Peterson
	Slide Number 44
	Slide Number 45
	Slide Number 46
	Slide Number 47
	Multiple Locks with Mutual Access – Peterson
	Multiple Locks with Mutual Access – Lamport
	Slide Number 50
	Slide Number 51
	Slide Number 52
	Slide Number 53
	Slide Number 54
	Slide Number 55
	Multiple Locks with Mutual Access – Lamport
	Requirements for Solutions to protect the Critical Section
	Machine model
	Performance
	Parallelization
	Parallelization
	Pipelining
	Execution Units working in Parallel
	Optimizations of current Compilers and Processors
	Machine �and Execution Model
	Correctness
	Requirements for Solutions to protect the Critical Section
	Requirements for Solutions to protect the Critical Section II
	Hardware Support to Protect the Critical Section
	Hardware Support to Protect the Critical Section II
	Slide Number 72
	Requirements for Solutions to protect the Critical Section
	Operating System Support for Mutual Exclusion
	POSIX Mutex
	Slide Number 76
	Slide Number 77
	Slide Number 78
	POSIX mutex
	Java – synchronized
	Performance Aspects 
	Slide Number 82
	Minimization of the Critical Section
	Slide Number 84
	Requirements for Solutions to protect the Critical Section
	Correctness
	Performance from the User Perspective
	Slide Number 88
	Next Lecture
	Modeling with Petri nets

