
Institute of Computer Science
Department of Mathematics and Computer Science

Summer Term 2022 | 02.05.2022
Barry Linnert

Algorithms and Programming IV
(Concurrency with) Threads

2

Objectives of Today‘s Lecture

• Performance from a user perspective
• Limits to concurrency by processes
• Introduction of Threads
• Usage of shared data
• Characterization of term Critical section

− Solutions to protect the Critical section

ALP IV: Concepts of Non-sequential and Distributed Programming Summer Term 2022

3

CONCURRENCY WITH THREADS
Concepts of Non-sequential and Distributed Programming

ALP IV: Concepts of Non-sequential and Distributed Programming Summer Term 2022

4

Requirements for Programs
• A program should do what it is expected to do!

− Functional requirements, such as
− Scope of functions
− Correctness

• A program should comply with certain requirements about its behavior.
− Non-functional requirements, such as

− Performance
− Usability
− Security
− …

ALP IV: Concepts of Non-sequential and Distributed Programming Summer Term 2022

5

Correctness
• Correctness is ensured based on

− Correct implementation of commands and functions
− compiler/interpreter, HW

− Correct execution of the set of commands and instructions
− Sequential processing of the instructions of the programs as separate processes
− Programming model and machine model (execution model) correspond to each other

− Check with
− Hoare logic (calculus)
− Simulation
− Testing

ALP IV: Concepts of Non-sequential and Distributed Programming Summer Term 2022

6

Requirements for Programs
• A program should do what it is expected to do!

− Functional requirements, such as
− Scope of functions
− Correctness

• A program should comply with certain requirements about its behavior.
− Non-functional requirements, such as

− Performance
− Usability
− Security
− …

ALP IV: Concepts of Non-sequential and Distributed Programming Summer Term 2022

7

Performance
• There are (at least) two different perspectives

to discuss the topic performance:

• Perspective of the service provider
− use all resources to run as many programs as possible
− maximum utilization of resources – especially CPU

• Perspective of the user
− the fastest possible processing of your own program
− short response time

ALP IV: Concepts of Non-sequential and Distributed Programming Summer Term 2022

8

Performance from the User Perspective
• Process switching comes with an overhead.

• But, if the program is designed to use more resources than CPU (and memory) this usage of
the different resources may be performed in parallel (parts of the program are executed
concurrently).

• Problem has to be split into reasonable pieces (e.g. via divide and conquer approaches).

• The usage of all of the resources may lead to a reduction of idle time as well as to a
reduction of the response time of the entire program.

• The uniform progress of the processes of the program (and all other processes) is ensured
by the operating system. It needs to correspond to goals and possibilities of the operating
system (scheduling).

ALP IV: Concepts of Non-sequential and Distributed Programming Summer Term 2022

9

Virtualization of the Processor
• That is our current machine model

(execution model):

ALP IV: Concepts of Non-sequential and Distributed Programming Summer Term 2022

10

LIMITS TO CONCURRENCY BY
PROCESSES

ALP IV: Concepts of Non-sequential and Distributed Programming Summer Term 2022

11

Program with several Processes
• To get some positive effect to the performance of the solution the problem is to be

split into reasonable pieces. Approaches, such as divide and conquer may be
used.

• To perform the partitioning of the data representing the problem into reasonable
pieces the parent process can perform the splitting before the forking of the
(working) child processes.

• Thus, the parent process can provide the data for the child processes due to the
duplication of the address space (by the operating system).

ALP IV: Concepts of Non-sequential and Distributed Programming Summer Term 2022

12ALP IV: Concepts of Non-sequential and Distributed Programming Summer Term 2022

// Example with two processes
#include ...
int main(void) {

int data[2][3];
int i, j;
int status, result = 0;
pid_t pid;

// init data
for (i = 0; i < 2; i++) {
for (j = 0; j < 3; j++) {
data[i][j] = (i + 1) * j;

}
}
pid = fork();

if (pid == 0) {
// child process is calculating
for (j = 0; j < 3; j++) {
result += data[0][j];

}
exit(result);

}

else if (pid > 0) {
// parent process is calculating
for (j = 0; j < 3; j++) {
result += data[1][j];

}
}
else {
printf("fork() failed\n");
exit(EXIT_FAILURE);

}

// handling results by remaining
// parent process
pid = wait(&status);
printf ("\n Result: %d\n",

result + WEXITSTATUS(status));

return 0;
}

13

Program with several Processes
• To get some positive effect to the performance of the solution the problem is to be

split into reasonable pieces. Approaches, such as divide and conquer may be
used.

• To perform the partitioning of the data representing the problem into reasonable
pieces the parent process can perform the splitting before the forking of the
(working) child processes.

• Thus, the parent process can provide the data for the child processes due to the
duplication of the address space (by the operating system).

• The result of the calculation of every piece of the problem is transmitted by the
return value of the child process.

ALP IV: Concepts of Non-sequential and Distributed Programming Summer Term 2022

Is this approach sufficient?

14

Example: Matrix Multiplication

𝐴𝐴11 𝐴𝐴12 𝐴𝐴13
𝐴𝐴21 𝐴𝐴22 𝐴𝐴23

�
𝐵𝐵11 𝐵𝐵12
𝐵𝐵21 𝐵𝐵22
𝐵𝐵31 𝐵𝐵32

= 𝐴𝐴11 � 𝐵𝐵11 + 𝐴𝐴12 � 𝐵𝐵21 + 𝐴𝐴13 � 𝐵𝐵31 𝐴𝐴11 � 𝐵𝐵12 + 𝐴𝐴12 � 𝐵𝐵22 + 𝐴𝐴13 � 𝐵𝐵32
𝐴𝐴21 � 𝐵𝐵11 + 𝐴𝐴22 � 𝐵𝐵21 + 𝐴𝐴23 � 𝐵𝐵31 𝐴𝐴21 � 𝐵𝐵12 + 𝐴𝐴22 � 𝐵𝐵22 + 𝐴𝐴23 � 𝐵𝐵32

ALP IV: Concepts of Non-sequential and Distributed Programming Summer Term 2022

15

Example: Matrix Multiplication

𝐴𝐴11 𝐴𝐴12 𝐴𝐴13
𝐴𝐴21 𝐴𝐴22 𝐴𝐴23

�
𝐵𝐵11 𝐵𝐵12
𝐵𝐵21 𝐵𝐵22
𝐵𝐵31 𝐵𝐵32

= 𝐴𝐴11 � 𝐵𝐵11 + 𝐴𝐴12 � 𝐵𝐵21 + 𝐴𝐴13 � 𝐵𝐵31 𝐴𝐴11 � 𝐵𝐵12 + 𝐴𝐴12 � 𝐵𝐵22 + 𝐴𝐴13 � 𝐵𝐵32
𝐴𝐴21 � 𝐵𝐵11 + 𝐴𝐴22 � 𝐵𝐵21 + 𝐴𝐴23 � 𝐵𝐵31 𝐴𝐴21 � 𝐵𝐵12 + 𝐴𝐴22 � 𝐵𝐵22 + 𝐴𝐴23 � 𝐵𝐵32

ALP IV: Concepts of Non-sequential and Distributed Programming Summer Term 2022

16ALP IV: Concepts of Non-sequential and Distributed Programming Summer Term 2022

// simple matrix multiplication

int main (int argc, char *argv[])
{

int ma[2][3];
int mb[3][2];

int i, j, h;

// init data // doing the work

return 0;
}

17ALP IV: Concepts of Non-sequential and Distributed Programming Summer Term 2022

// simple matrix multiplication

#include <stdlib.h>

int main (int argc, char *argv[])
{

int ma[2][3];
int mb[3][2];

int i, j, h;

// init data
srand ((unsigned) time (NULL));

for (i = 0; i < 2; i++) {
for (j = 0; j < 3; j++) {
ma[i][j] = (int)(((double) rand()

/ (RAND_MAX - 1)) * 100);

}
}

for (i = 0; i < 3; i++) {
for (j = 0; j < 2; j++) {
mb[i][j] = (int)(((double)

rand() / (RAND_MAX - 1)) * 100);

}
}

// doing the work

return 0;
}

18ALP IV: Concepts of Non-sequential and Distributed Programming Summer Term 2022

// simple matrix multiplication
#include <stdio.h>
#include <stdlib.h>

int main (int argc, char *argv[])
{

int ma[2][3];
int mb[3][2];

int i, j, h;

// init data
srand ((unsigned) time (NULL));

for (i = 0; i < 2; i++) {
for (j = 0; j < 3; j++) {
ma[i][j] = (int)(((double) rand()

/ (RAND_MAX - 1)) * 100);
printf ("%d,%d: %d \n", i, j,

ma[i][j]);
}

}

for (i = 0; i < 3; i++) {
for (j = 0; j < 2; j++) {
mb[i][j] = (int)(((double)

rand() / (RAND_MAX - 1)) * 100);
printf ("%d,%d: %d \n", i, j,

mb[i][j]);
}

}

// doing the work

return 0;
}

19ALP IV: Concepts of Non-sequential and Distributed Programming Summer Term 2022

// simple matrix multiplication
#include <stdio.h>
#include <stdlib.h>

int main (int argc, char *argv[])
{

int ma[2][3];
int mb[3][2];
int result = 0;
int i, j, h;

// init data
srand ((unsigned) time (NULL));

for (i = 0; i < 2; i++) {
for (j = 0; j < 3; j++) {
ma[i][j] = (int)(((double) rand()

/ (RAND_MAX - 1)) * 100);
printf ("%d,%d: %d \n", i, j,

ma[i][j]);
}

}

for (i = 0; i < 3; i++) {
for (j = 0; j < 2; j++) {
mb[i][j] = (int)(((double)

rand() / (RAND_MAX - 1)) * 100);
printf ("%d,%d: %d \n", i, j,

mb[i][j]);
}

}

// doing the work
for (h = 0; h < 2; h++) {
for (i = 0; i < 2; i++) {

for (j = 0; j < 3; j++) {
result += (ma[h][j] * mb[j][i]);

}

}
}
return 0;

}

20ALP IV: Concepts of Non-sequential and Distributed Programming Summer Term 2022

// simple matrix multiplication
#include <stdio.h>
#include <stdlib.h>

int main (int argc, char *argv[])
{

int ma[2][3];
int mb[3][2];
int result = 0;
int i, j, h;

// init data
srand ((unsigned) time (NULL));

for (i = 0; i < 2; i++) {
for (j = 0; j < 3; j++) {
ma[i][j] = (int)(((double) rand()

/ (RAND_MAX - 1)) * 100);
printf ("%d,%d: %d \n", i, j,

ma[i][j]);
}

}

for (i = 0; i < 3; i++) {
for (j = 0; j < 2; j++) {
mb[i][j] = (int)(((double)

rand() / (RAND_MAX - 1)) * 100);
printf ("%d,%d: %d \n", i, j,

mb[i][j]);
}

}

// doing the work
for (h = 0; h < 2; h++) {
for (i = 0; i < 2; i++) {
result = 0;
printf ("%d,%d : ", h, i);
for (j = 0; j < 3; j++) {
result += (ma[h][j] * mb[j][i]);

}
printf (" %d \n", result);

}
}
return 0;

}

21ALP IV: Concepts of Non-sequential and Distributed Programming Summer Term 2022

// simple matrix multiplication
#include <stdio.h>
#include <stdlib.h>

int main (int argc, char *argv[])
{

int ma[2][3];
int mb[3][2];
int result = 0;
int i, j, h;

// init data
srand ((unsigned) time (NULL));

for (i = 0; i < 2; i++) {
for (j = 0; j < 3; j++) {
ma[i][j] = (int)(((double) rand()

/ (RAND_MAX - 1)) * 100);
printf ("%d,%d: %d \n", i, j,

ma[i][j]);
}

}

for (i = 0; i < 3; i++) {
for (j = 0; j < 2; j++) {
mb[i][j] = (int)(((double)

rand() / (RAND_MAX - 1)) * 100);
printf ("%d,%d: %d \n", i, j,

mb[i][j]);
}

}

// doing the work
for (h = 0; h < 2; h++) {
for (i = 0; i < 2; i++) {
result = 0;
printf ("%d,%d : ", h, i);
for (j = 0; j < 3; j++) {
result += (ma[h][j] * mb[j][i]);

}
printf (" %d \n", result);

}
}
return 0;

}

22ALP IV: Concepts of Non-sequential and Distributed Programming Summer Term 2022

// simple matrix multiplication
#include ...
int main (int argc, char *argv[]) {

int ma[2][3];
int mb[3][2];
...
// init data
...

// doing the work
for (h = 0; h < 2; h++) {
for (i = 0; i < 2; i++) {
result = 0;
printf ("%d,%d : ", h, i);
for (j = 0; j < 3; j++) {
result += (ma[h][j] * mb[j][i]);

}
printf (" %d \n", result);

}
}

return 0;
}

23ALP IV: Concepts of Non-sequential and Distributed Programming Summer Term 2022

// simple matrix multiplication
#include ...
int main (int argc, char *argv[]) {

int ma[2][3];
int mb[3][2];
...
// init data
...

// doing the work
for (h = 0; h < 2; h++) {
for (i = 0; i < 2; i++) {
result = 0;
printf ("%d,%d : ", h, i);
for (j = 0; j < 3; j++) {
result += (ma[h][j] * mb[j][i]);

}
printf (" %d \n", result);

}
}

return 0;
}

The outermost for loop is
a good candidate to split
the problem (work) into
reasonable pieces.

24ALP IV: Concepts of Non-sequential and Distributed Programming Summer Term 2022

// simple matrix mult. with 2 procs
#include ...
int main (int argc, char *argv[]) {

int ma[2][3];
int mb[3][2];
...
// init data
...

for (i = 0; i < 2; i++) {
result = 0;
printf ("0,%d : ", i);
for (j = 0; j < 3; j++) {
result += (ma[0][j] * mb[j][i]);

}
printf (" %d \n", result);

}

for (i = 0; i < 2; i++) {
result = 0;
printf ("1,%d : ", i);
for (j = 0; j < 3; j++) {
result += (ma[1][j] * mb[j][i]);

}
printf (" %d \n", result);

}

return 0;
}

25ALP IV: Concepts of Non-sequential and Distributed Programming Summer Term 2022

// simple matrix mult. with 2 procs
#include ...
int main (int argc, char *argv[]) {

int ma[2][3];
int mb[3][2];
...
// init data
...

pid = fork();

if (pid == 0) {
// child process is doing work
for (i = 0; i < 2; i++) {
result = 0;
printf ("0,%d : ", i);
for (j = 0; j < 3; j++) {
result += (ma[0][j] * mb[j][i]);

}
printf (" %d \n", result);

}
exit(0);

}

else if(pid > 0) {
// parent process is doing work
for (i = 0; i < 2; i++) {
result = 0;
printf ("1,%d : ", i);
for (j = 0; j < 3; j++) {
result += (ma[1][j] * mb[j][i]);

}
printf (" %d \n", result);

}

}
else {
printf ("fork() failed\n");
exit (EXIT_FAILURE);

}
return 0;

}

26ALP IV: Concepts of Non-sequential and Distributed Programming Summer Term 2022

// simple matrix mult. with 2 procs
#include ...
int main (int argc, char *argv[]) {

int ma[2][3];
int mb[3][2];
...
// init data
...

pid = fork();

if (pid == 0) {
// child process is doing work
for (i = 0; i < 2; i++) {
result = 0;
printf ("0,%d : ", i);
for (j = 0; j < 3; j++) {
result += (ma[0][j] * mb[j][i]);

}
printf (" %d \n", result);

}
exit(0);

}

else if(pid > 0) {
// parent process is doing work
for (i = 0; i < 2; i++) {
result = 0;
printf ("1,%d : ", i);
for (j = 0; j < 3; j++) {
result += (ma[1][j] * mb[j][i]);

}
printf (" %d \n", result);

}
pid = wait(&status);
printf ("\n %d\n",

WEXITSTATUS(status));
exit(EXIT_SUCCESS);

}
else {
printf ("fork() failed\n");
exit (EXIT_FAILURE);

}
return 0;

}

27ALP IV: Concepts of Non-sequential and Distributed Programming Summer Term 2022

// simple matrix mult. with 2 procs
#include ...
int main (int argc, char *argv[]) {

int ma[2][3];
int mb[3][2];
...
// init data
...

pid = fork();

if (pid == 0) {
// child process is doing work
for (i = 0; i < 2; i++) {
result = 0;
printf ("0,%d : ", i);
for (j = 0; j < 3; j++) {
result += (ma[0][j] * mb[j][i]);

}
printf (" %d \n", result);

}
exit(0);

}

else if(pid > 0) {
// parent process is doing work
for (i = 0; i < 2; i++) {
result = 0;
printf ("1,%d : ", i);
for (j = 0; j < 3; j++) {
result += (ma[1][j] * mb[j][i]);

}
printf (" %d \n", result);

}
pid = wait(&status);
printf ("\n %d\n",

WEXITSTATUS(status));
exit(EXIT_SUCCESS);

}
else {
printf ("fork() failed\n");
exit (EXIT_FAILURE);

}
return 0;

}

28

Program with several Processes
• To get some positive effect to the performance of the solution the problem is to be

split into reasonable pieces. Approaches, such as divide and conquer may be
used.

• To perform the partitioning of the data representing the problem into reasonable
pieces the parent process can perform the splitting before the forking of the
(working) child processes.

• Thus, the parent process can provide the data for the child processes due to the
duplication of the address space (by the operating system).

• But, until now the result of the calculation of every piece of the problem is
transmitted by the return value of the child process.
− That is not sufficient for an number of reasons:

− The result may consists of more data than just one value (integer).
− The data may be used by other processes more than once.

ALP IV: Concepts of Non-sequential and Distributed Programming Summer Term 2022

Are there any other
reasons?

29

Concurrent Work on Shared Data I
• A process uses an address spaces of

it’s own.
− The address spaces of different processes

are separated by operating system and
hardware.

− The separation of the address spaces
provides protection against (unauthorized)
access from other processes (of other
users)  Security.

ALP IV: Concepts of Non-sequential and Distributed Programming Summer Term 2022

30

Concurrent Work on Shared Data II
• All of the separated address spaces use

the same main memory.
• To solve the problem of data exchange

between different program execution
paths (we call them processes until
now) the address spaces can be used
by more than one of these execution
paths.

• Using the same address space the
different program execution paths may
work on the same data and can store
the results in common variables or
addresses.

ALP IV: Concepts of Non-sequential and Distributed Programming Summer Term 2022

31

THREADS

ALP IV: Concepts of Non-sequential and Distributed Programming Summer Term 2022

32

Threads
• These „ different program execution paths” are called Threads.

• Threads share an address space, but use a stack by there own.
− Text/code segment and data segment (heap) are shared between all threads of the group

of threads using the same address space.
− Sometimes the first thread instance linked to a specific address space is called process.

− Using this characterization the process holds one or more threads.

• To use threads in different environments there is a standardized interface: POSIX
− pthreads

ALP IV: Concepts of Non-sequential and Distributed Programming Summer Term 2022

Why does threads
have a stack of
their own?

33

Threads

ALP IV: Concepts of Non-sequential and Distributed Programming Summer Term 2022

• One shared address space
contains text and data segment,
but different stacks.

• Switch between threads is
performed by operating system
(or thread environment).
− The point in time the switch to

assign the CPU to another thread
is performed is unpredictable to
the thread.

− In this way the thread resembles a
process.

34

• The introduction of threads
extends our machine model (or
execution model):

• Different processes are
represented by different address
spaces which hold different
threads. (The threads share the
specific address space of the
process.)

ALP IV: Concepts of Non-sequential and Distributed Programming Summer Term 2022

Machine Model

35

Using Pthreads

• Due to the broad approach and the purpose to have an universal interface the
POSIX threads differ in fundamental issues from processes.

• Pthreads have to be managed by the program itself.

• A new pthread does not start right after the invocation, but starts execution at a
given address in text/code segment.
− A function pointer should be used to give the thread a starting point for execution.

ALP IV: Concepts of Non-sequential and Distributed Programming Summer Term 2022

36ALP IV: Concepts of Non-sequential and Distributed Programming Summer Term 2022

// simple example for pthreads

#include <stdlib.h>
#include <stdio.h>

void *PrintHello (?)
{

printf ("Hello World!
It's me, thread #%ld!\n", ?);

}

int main (int argc, char *argv[])
{

long t;
for (t=0; t < NUM_THREADS; t++) {

printf ("In main:
creating thread %ld\n", t);

}

}

37ALP IV: Concepts of Non-sequential and Distributed Programming Summer Term 2022

// simple example for pthreads

#include <pthread.h>
#include <stdlib.h>
#include <stdio.h>

#define NUM_THREADS 5

void *PrintHello (void *threadid)
{

long tid;

tid = (long) threadid;

printf ("Hello World!
It's me, thread #%ld!\n", tid);

pthread_exit (NULL);
}

int main (int argc, char *argv[])
{

pthread_t threads[NUM_THREADS];
int rc;
long t;
for (t=0; t < NUM_THREADS; t++) {

printf ("In main:
creating thread %ld\n", t);

rc = pthread_create (&threads[t],
NULL, PrintHello, (void *)t);

}

/* Last thing that main() should do */
pthread_exit(NULL);

}

38ALP IV: Concepts of Non-sequential and Distributed Programming Summer Term 2022

// simple example for pthreads

#include <pthread.h>
#include <stdlib.h>
#include <stdio.h>

#define NUM_THREADS 5

void *PrintHello (void *threadid)
{

long tid;

tid = (long) threadid;

printf ("Hello World!
It's me, thread #%ld!\n", tid);

pthread_exit (NULL);
}

int main (int argc, char *argv[])
{

pthread_t threads[NUM_THREADS];
int rc;
long t;
for (t=0; t < NUM_THREADS; t++) {

printf ("In main:
creating thread %ld\n", t);

rc = pthread_create (&threads[t],
NULL, PrintHello, (void *)t);

if (rc) {
printf ("ERROR; return code from
pthread_create () is %d\n", rc);
exit (-1);

}
}

/* Last thing that main() should do */
pthread_exit(NULL);

}

39ALP IV: Concepts of Non-sequential and Distributed Programming Summer Term 2022

// simple example for pthreads

#include <pthread.h>
#include <stdlib.h>
#include <stdio.h>

#define NUM_THREADS 5

void *PrintHello (void *threadid)
{

long tid;

tid = (long) threadid;

printf ("Hello World!
It's me, thread #%ld!\n", tid);

pthread_exit (NULL);
}

int main (int argc, char *argv[])
{

pthread_t threads[NUM_THREADS];
int rc;
long t;
for (t=0; t < NUM_THREADS; t++) {

printf ("In main:
creating thread %ld\n", t);

rc = pthread_create (&threads[t],
NULL, PrintHello, (void *)t);

if (rc) {
printf ("ERROR; return code from
pthread_create () is %d\n", rc);
exit (-1);

}
}

/* Last thing that main() should do */
pthread_exit(NULL);

}

40

Example: Matrix Multiplication
• Using threads the matrix multiplication program can store the results in shared

data.
− Every thread has access to the shared data and can store the part of the resulting matrix.

• Additionally the input data is shared and is not to be stored more than once.

ALP IV: Concepts of Non-sequential and Distributed Programming Summer Term 2022

𝐴𝐴11 𝐴𝐴12 𝐴𝐴13
𝐴𝐴21 𝐴𝐴22 𝐴𝐴23

�
𝐵𝐵11 𝐵𝐵12
𝐵𝐵21 𝐵𝐵22
𝐵𝐵31 𝐵𝐵32

= 𝐴𝐴11 � 𝐵𝐵11 + 𝐴𝐴12 � 𝐵𝐵21 + 𝐴𝐴13 � 𝐵𝐵31 𝐴𝐴11 � 𝐵𝐵12 + 𝐴𝐴12 � 𝐵𝐵22 + 𝐴𝐴13 � 𝐵𝐵32
𝐴𝐴21 � 𝐵𝐵11 + 𝐴𝐴22 � 𝐵𝐵21 + 𝐴𝐴23 � 𝐵𝐵31 𝐴𝐴21 � 𝐵𝐵12 + 𝐴𝐴22 � 𝐵𝐵22 + 𝐴𝐴23 � 𝐵𝐵32

41ALP IV: Concepts of Non-sequential and Distributed Programming Summer Term 2022

// simple matrix mult. with pthreads
#include <pthread.h>
#include <stdlib.h>
#include <stdio.h>
#define NUM_THREADS 3

// shared data
int ma[3][3];
int mb[3][3];
int result[3][3];

// calculation
void *matr_mult (void *threadid)
{

// doing the calculation

pthread_exit (NULL);
}

int main (int argc, char *argv[])
{

pthread_t threads[NUM_THREADS];
int rc;
long t;
int i, j;

// init data

// creating threads

// joining threads

// output results

/* Last thing that main() should do */
pthread_exit(NULL);

}

42ALP IV: Concepts of Non-sequential and Distributed Programming Summer Term 2022

// simple matrix mult. with pthreads
#include ...
#define NUM_THREADS 3
// shared data
...

// calculation
void *matr_mult (void *threadid)
{

long tid;
int i, j;
tid = (long) threadid;

for (i = 0; i < 3; i++) {
result[tid][i] = 0;
for (j = 0; j < 3; j++) {
result[tid][i] += (ma[tid][j] *

mb[j][i]);
}

}
pthread_exit (NULL);

}

int main (int argc, char *argv[])
{

pthread_t threads[NUM_THREADS];
int rc;
long t;
int i, j;

// init data

// creating threads

// joining threads

// output results

/* Last thing that main() should do */
pthread_exit(NULL);

}

43ALP IV: Concepts of Non-sequential and Distributed Programming Summer Term 2022

// simple matrix mult. with pthreads
#include ...
#define NUM_THREADS 3
// shared data
...

// calculation
void *matr_mult (void *threadid)
{

long tid;
int i, j;
tid = (long) threadid;
printf ("Hello World! It's me, thread

#%ld !\n", tid);
for (i = 0; i < 3; i++) {
result[tid][i] = 0;
for (j = 0; j < 3; j++) {
result[tid][i] += (ma[tid][j] *

mb[j][i]);
}

}
pthread_exit (NULL);

}

int main (int argc, char *argv[])
{

pthread_t threads[NUM_THREADS];
int rc;
long t;
int i, j;

// init data

// creating threads

// joining threads

// output results

/* Last thing that main() should do */
pthread_exit(NULL);

}

44ALP IV: Concepts of Non-sequential and Distributed Programming Summer Term 2022

// simple matrix mult. with pthreads
#include ...
#define NUM_THREADS 3
// shared data
...
// calculation
void *matr_mult (void *threadid) {

...
}

int main (int argc, char *argv[]) {
...
// init data
srand ((unsigned) time (NULL));
for (i = 0; i < 3; i++) {
for (j = 0; j < 3; j++) {
ma[i][j] = (int)(((double) rand ()

/ (RAND_MAX - 1)) * 100);

}
}

for (i = 0; i < 3; i++) {
for (j = 0; j < 3; j++) {
mb[i][j] = (int)(((double) rand ()

/ (RAND_MAX - 1)) * 100);

}
}

// creating threads

// joining threads

// output results

/* Last thing that main() should do */
pthread_exit(NULL);

}

45ALP IV: Concepts of Non-sequential and Distributed Programming Summer Term 2022

// simple matrix mult. with pthreads
#include ...
#define NUM_THREADS 3
// shared data
...
// calculation
void *matr_mult (void *threadid) {

...
}

int main (int argc, char *argv[]) {
...
// init data
srand ((unsigned) time (NULL));
for (i = 0; i < 3; i++) {
for (j = 0; j < 3; j++) {
ma[i][j] = (int)(((double) rand ()

/ (RAND_MAX - 1)) * 100);
printf ("%d,%d: %d \n", i, j,

ma[i][j]);
}

}

for (i = 0; i < 3; i++) {
for (j = 0; j < 3; j++) {
mb[i][j] = (int)(((double) rand ()

/ (RAND_MAX - 1)) * 100);
printf ("%d,%d: %d \n", i, j,

mb[i][j]);
}

}

// creating threads

// joining threads

// output results

/* Last thing that main() should do */
pthread_exit(NULL);

}

46ALP IV: Concepts of Non-sequential and Distributed Programming Summer Term 2022

// simple matrix mult. with pthreads
#include ...
#define NUM_THREADS 3
// shared data
...
// calculation
void *matr_mult (void *threadid) {

...
}

int main (int argc, char *argv[]) {
...
// init data
...

// creating threads

// joining threads

// output results
for (i = 0; i < 3; i++) {
for (j = 0; j < 3; j++) {
printf (" %d", result[i][j]);

}
printf ("\n");

}

/* Last thing that main() should do */
pthread_exit(NULL);

}

47ALP IV: Concepts of Non-sequential and Distributed Programming Summer Term 2022

// simple matrix mult. with pthreads
#include ...
#define NUM_THREADS 3
// shared data
...
// calculation
void *matr_mult (void *threadid) {

...
}

int main (int argc, char *argv[]) {
...
// init data
...

// creating threads
for (t = 0; t < NUM_THREADS; t++) {

rc = pthread_create (&threads[t],
NULL, matr_mult, (void *)t);

}
// joining threads
for (t = 0; t < NUM_THREADS; t++) {
pthread_join (threads[t],NULL);

}

// output results
...
/* Last thing that main() should do */
pthread_exit(NULL);

}

48ALP IV: Concepts of Non-sequential and Distributed Programming Summer Term 2022

// simple matrix mult. with pthreads
#include ...
#define NUM_THREADS 3
// shared data
...
// calculation
void *matr_mult (void *threadid) {

...
}

int main (int argc, char *argv[]) {
...
// init data
...

// creating threads
for (t = 0; t < NUM_THREADS; t++) {

printf ("In main: creating thread
%ld\n", t);

rc = pthread_create (&threads[t],
NULL, matr_mult, (void *)t);

if (rc) {
printf ("ERROR; return code from
pthread_create () is %d\n", rc);
exit (-1);

}
}
// joining threads
for (t = 0; t < NUM_THREADS; t++) {
pthread_join (threads[t],NULL);

}

// output results
...
/* Last thing that main() should do */
pthread_exit(NULL);

}

49ALP IV: Concepts of Non-sequential and Distributed Programming Summer Term 2022

// simple matrix mult. with pthreads
#include ...
#define NUM_THREADS 3
// shared data
...
// calculation
void *matr_mult (void *threadid) {

...
}

int main (int argc, char *argv[]) {
...
// init data
...

// creating threads
for (t = 0; t < NUM_THREADS; t++) {

printf ("In main: creating thread
%ld\n", t);

rc = pthread_create (&threads[t],
NULL, matr_mult, (void *)t);

if (rc) {
printf ("ERROR; return code from
pthread_create () is %d\n", rc);
exit (-1);

}
}
// joining threads
for (t = 0; t < NUM_THREADS; t++) {
pthread_join (threads[t],NULL);

}

// output results
...
/* Last thing that main() should do */
pthread_exit(NULL);

}

50

Example: Matrix Multiplication – Output

ALP IV: Concepts of Non-sequential and Distributed Programming Summer Term 2022

0,0: 69
0,1: 8
0,2: 24
1,0: 65
1,1: 23
1,2: 94
2,0: 10
2,1: 33
2,2: 36
0,0: 51
0,1: 5
0,2: 51
1,0: 58
1,1: 1
1,2: 0
2,0: 37
2,1: 7
2,2: 35

In main: creating thread 0
Hello World! It's me, thread #0 !
In main: creating thread 1
In main: creating thread 2
Hello World! It's me, thread #1 !
4871 521 4359
8127 1006 6605
3756 355 1770

Hello World! It's me, thread #2 !

51

Example: Matrix Multiplication – Conclusion
• Using threads, the work of the matrix multiplication can be split and distributed

easily.

• Shared data reduces the amount of main memory needed.

• Storing and exchange of data between the threads is performed easily by using
common (global) variables.

ALP IV: Concepts of Non-sequential and Distributed Programming Summer Term 2022

52

USING SHARED DATA

ALP IV: Concepts of Non-sequential and Distributed Programming Summer Term 2022

53

Using Shared Data for Intermediate Results
• Until now the shared data was used for writing final

results and for reading input data only.

• Some applications need to work on intermediate
results.

• With threads these intermediate results may serve
as input data for other threads.

ALP IV: Concepts of Non-sequential and Distributed Programming Summer Term 2022

54

Example: Accounting
• A bank transfers money from one account to another.
• The amount of money to be debit from one account equals the amount of money

that is transferred to the other account.
− Money does not disappear or is created out of nothing.

• The transfers usually are performed on a multitude of accounts and more than
once between different accounts.

• So the tasks may be performed concurrently.

• In our example two different threads transfer money between two accounts.

ALP IV: Concepts of Non-sequential and Distributed Programming Summer Term 2022

55ALP IV: Concepts of Non-sequential and Distributed Programming Summer Term 2022

// simple accounting with pthreads

#include <pthread.h>
#include <stdlib.h>
#include <stdio.h>
#define NUM_THREADS 2

// shared data
int account[2];

// accounting
void *bank_action (void *threadid)
{

// doing transfers

pthread_exit (NULL);
}

int main (int argc, char *argv[])
{

pthread_t threads[NUM_THREADS];
int rc;
long t;
int i, j;

// init data

// creating threads

// joining threads

// output results

/* Last thing that main() should do */
pthread_exit(NULL);

}

56ALP IV: Concepts of Non-sequential and Distributed Programming Summer Term 2022

// simple accounting with pthreads
#include ...
#define NUM_THREADS 2
// shared data
int account[2];

// accounting
void *bank_action (void *threadid)
{

long tid;
int i, amount = 0;

tid = (long) threadid;

account[tid] -= amount;
account[NUM_THREADS-1-tid] += amount;

pthread_exit (NULL);
}

int main (int argc, char *argv[])
{

pthread_t threads[NUM_THREADS];
int rc;
long t;
int i, j;

// init data

// creating threads

// joining threads

// output results

/* Last thing that main() should do */
pthread_exit(NULL);

}

57ALP IV: Concepts of Non-sequential and Distributed Programming Summer Term 2022

// simple accounting with pthreads
#include ...
#define NUM_THREADS 2
// shared data
int account[2];

// accounting
void *bank_action (void *threadid)
{

long tid;
int i, amount = 0;

tid = (long) threadid;

for (i = 0; i < 300000; i++) {
amount = (int)(((double) rand () /

(RAND_MAX - 1)) * 100);
account[tid] -= amount;
account[NUM_THREADS-1-tid] += amount;

}
pthread_exit (NULL);

}

int main (int argc, char *argv[])
{

pthread_t threads[NUM_THREADS];
int rc;
long t;
int i, j;

// init data

// creating threads

// joining threads

// output results

/* Last thing that main() should do */
pthread_exit(NULL);

}

58ALP IV: Concepts of Non-sequential and Distributed Programming Summer Term 2022

// simple accounting with pthreads
#include ...
#define NUM_THREADS 2
// shared data
int account[2];

// accounting
void *bank_action (void *threadid)
{

long tid;
int i, amount = 0;

tid = (long) threadid;
printf ("Hello World! It's me, thread

#%ld !\n", tid);
for (i = 0; i < 300000; i++) {
amount = (int)(((double) rand () /

(RAND_MAX - 1)) * 100);
account[tid] -= amount;
account[NUM_THREADS-1-tid] += amount;

}
pthread_exit (NULL);

}

int main (int argc, char *argv[])
{

pthread_t threads[NUM_THREADS];
int rc;
long t;
int i, j;

// init data

// creating threads

// joining threads

// output results

/* Last thing that main() should do */
pthread_exit(NULL);

}

59ALP IV: Concepts of Non-sequential and Distributed Programming Summer Term 2022

// simple accounting with pthreads
#include ...
#define NUM_THREADS 2
// shared data
int account[2];

// accounting
void *bank_action (void *threadid) {

...
}

int main (int argc, char *argv[])
{

pthread_t threads[NUM_THREADS];
int rc;
long t;
int i, j;

// init data
srand ((unsigned) time (NULL));
account[0] = account[1] = 100;

// creating threads

// joining threads

// output results
for (i = 0; i < NUM_THREADS; i++) {

printf (" account_%d: %d \n", i,
account[i]);

/* Last thing that main() should do */
pthread_exit(NULL);

}

60ALP IV: Concepts of Non-sequential and Distributed Programming Summer Term 2022

// simple accounting with pthreads
#include ...
#define NUM_THREADS 2
// shared data
int account[2];

// accounting
void *bank_action (void *threadid) {

...
}

int main (int argc, char *argv[])
{

pthread_t threads[NUM_THREADS];
int rc;
long t;
int i, j;

// init data
...

// creating threads
for (t = 0; t < NUM_THREADS; t++) {

printf ("In main: creating thread
%ld\n", t);

rc = pthread_create (&threads[t],
NULL, bank_action, (void *)t);

if (rc) {
printf ("ERROR; return code from
pthread_create () is %d\n", rc);
exit (-1);

}
}
// joining threads
for (t = 0; t < NUM_THREADS; t++) {
pthread_join (threads[t], NULL);

}

// output results
...
/* Last thing that main() should do */
pthread_exit(NULL);

}

61ALP IV: Concepts of Non-sequential and Distributed Programming Summer Term 2022

// simple accounting with pthreads
#include ...
#define NUM_THREADS 2
// shared data
int account[2];

// accounting
void *bank_action (void *threadid) {

...
}

int main (int argc, char *argv[])
{

pthread_t threads[NUM_THREADS];
int rc;
long t;
int i, j;

// init data
...

// creating threads
for (t = 0; t < NUM_THREADS; t++) {

printf ("In main: creating thread
%ld\n", t);

rc = pthread_create (&threads[t],
NULL, bank_action, (void *)t);

if (rc) {
printf ("ERROR; return code from
pthread_create () is %d\n", rc);
exit (-1);

}
}
// joining threads
for (t = 0; t < NUM_THREADS; t++) {
pthread_join (threads[t], NULL);

}

// output results
...
/* Last thing that main() should do */
pthread_exit(NULL);

}

62

Example: Accounting – Output
• First run:

• Second run:

ALP IV: Concepts of Non-sequential and Distributed Programming Summer Term 2022

In main: creating thread 0
In main: creating thread 1
Hello World! It's me, thread #0 !
Hello World! It's me, thread #1 !
account_0: 3174954
account_1: -3955026

In main: creating thread 0
In main: creating thread 1
Hello World! It's me, thread #0 !
Hello World! It's me, thread #1 !
account_0: -1142039
account_1: -1270137

63

Example: Accounting – Conclusion I

• The accounting program with two
threads is not correct!

• As the accounts are not balanced there
must be a problem with the
manipulation of the account values.
− The two command lines should change

the two account variables – one for every
account.

− A given amount of money is taken from
on account by subtracting this value from
the value stored in the first account
variable. The same amount is added to
the value of the second account variable.

ALP IV: Concepts of Non-sequential and Distributed Programming Summer Term 2022

// simple accounting with pthreads
// accounting
void *bank_action (void *threadid)
{

long tid;
int i;
int amount = 0;

tid = (long) threadid;
for (i = 0; i < 300000; i++) {
amount = (int)(((double) rand () /

(RAND_MAX - 1)) * 100);

account[tid] -= amount;
account[NUM_THREADS-1-tid] += amount;

}

pthread_exit (NULL);
}

64

Example: Accounting – Conclusion II

− The amount of money to be transferred is
not changed as the variable to hold this
value is a local one. So it is used only by
one thread. Every thread has it’s own
variable storing the amount of money to
be transferred.

− But, the variables representing the
accounts are global variables holding
shared data.

ALP IV: Concepts of Non-sequential and Distributed Programming Summer Term 2022

// simple accounting with pthreads
// accounting
void *bank_action (void *threadid)
{

long tid;
int i;
int amount = 0;

tid = (long) threadid;
for (i = 0; i < 300000; i++) {
amount = (int)(((double) rand () /

(RAND_MAX - 1)) * 100);

account[tid] -= amount;
account[NUM_THREADS-1-tid] += amount;

}

pthread_exit (NULL);
}

65

Example: Accounting – Conclusion III

− Every transfer can be seen as a
sequence of at least 8 machine
instructions:
− The high level operation is not a

atomic operation!

− Thus, the value of one account
variable can be changed by the
second thread in time the first one
is transferring the money from one
to another account.
− There is no sequential execution.

ALP IV: Concepts of Non-sequential and Distributed Programming Summer Term 2022

// simple accounting with pthreads
account[tid] -= amount;
account[NUM_THREADS-1-tid] += amount;

read_into_reg_r0 (account[tid]);
read_into_reg_r1 (amount);
sub_reg_r0_r1;
store_reg_r0 (account[tid]);

read_into_reg_r0 (account[NUM_THREADS-1-tid]);
read_into_reg_r1 (amount);
add_reg_r0_r1;
store_reg_r0 (account[tid]);

• The correct manipulation of the shared variables are critical for the correctness of
the whole program.

66

CRITICAL SECTION

ALP IV: Concepts of Non-sequential and Distributed Programming Summer Term 2022

67

Critical Section I
• For a correct execution of the program the usage of the shared data must be

performed in a deterministic way.
• The foundation for the deterministic execution of the program – or sections of the

program – is the sequential processing of the operations, commands, and
instructions.
− Atomic operations provide, per se, a sequential processing (of this one operation).

• Definition: A program section (series of operations) that only one thread is
permitted to execute at a time to ensure the correct execution of the section and
the whole program is called critical section.

ALP IV: Concepts of Non-sequential and Distributed Programming Summer Term 2022

68

Critical Section II

• If more than one thread is processing this program section concurrently, the
program may be executed incorrectly.
− The faulty execution need not occur with every program run.

• Operations of the critical section create inconsistent states on the processed data
until all of the operations of the critical section are executed successfully.

ALP IV: Concepts of Non-sequential and Distributed Programming Summer Term 2022

69

Mutual Exclusion

• To protect the critical section it is to be enforced that only one thread is able to
enter the critical section.

• Thus, all other threads have to be excluded from entering the critical section.
• This is called mutual exclusion.

ALP IV: Concepts of Non-sequential and Distributed Programming Summer Term 2022

70

Requirements for Solutions to protect the Critical Section
• The solution has to protect the critical section reliably by mutual exclusion.
• The solution should be used in higher level programming languages.

− Thus, the solution is usable on different architectures providing portability for the program
using it.

ALP IV: Concepts of Non-sequential and Distributed Programming Summer Term 2022

71

Lock

• A lock is a variable that indicates whether a critical section can be entered by a
thread.

• The lock has to be a variable that can be accessed by all of the threads.
• If the lock is set (unequal 0), the requesting thread should not/can’t access the

critical section.
• Entering the critical section the thread has to set the lock first.
• After releasing the critical section the lock has to be unset (write 0 to the lock

variable).

ALP IV: Concepts of Non-sequential and Distributed Programming Summer Term 2022

72

Example: Accounting – Critical Section

• Following, the protection of the critical
section will be evaluated using the well
known example of the transferring
money from one account to another.

• The critical section contains the
operations on the account variables.

ALP IV: Concepts of Non-sequential and Distributed Programming Summer Term 2022

// simple accounting with pthreads
// accounting
void *bank_action (void *threadid)
{

long tid;
int i;
int amount = 0;

tid = (long) threadid;
for (i = 0; i < 300000; i++) {
amount = (int)(((double) rand () /

(RAND_MAX - 1)) * 100);

account[tid] -= amount;
account[NUM_THREADS-1-tid] += amount;

}

pthread_exit (NULL);
}

73

Lock

• Using a global variable as lock variable the lock has to be set by the thread
entering the critical section.

• As it is not clear if or when the critical section is free or will released be the other
thread the requesting thread has to check the lock in a loop.

ALP IV: Concepts of Non-sequential and Distributed Programming Summer Term 2022

74ALP IV: Concepts of Non-sequential and Distributed Programming Summer Term 2022

// simple accounting with pthreads

#include <pthread.h>
#include <stdlib.h>
#include <stdio.h>

#define NUM_THREADS 2

int account[2];

// accounting
void *bank_action (void *threadid)
{

long tid;
int i;
int amount = 0;
tid = (long) threadid;
for (i = 0; i < 300000; i++) {
amount = (int)(((double) rand () /

(RAND_MAX - 1)) * 100);

// critical section
account[tid] -= amount;
account[NUM_THREADS-1-tid] += amount;

}
pthread_exit (NULL);

}

75ALP IV: Concepts of Non-sequential and Distributed Programming Summer Term 2022

// simple accounting with pthreads

#include <pthread.h>
#include <stdlib.h>
#include <stdio.h>

#define NUM_THREADS 2

int account[2];
char lock = 0;

// accounting
void *bank_action (void *threadid)
{

long tid;
int i;
int amount = 0;
tid = (long) threadid;
for (i = 0; i < 300000; i++) {
amount = (int)(((double) rand () /

(RAND_MAX - 1)) * 100);
// try to enter the critical section
while (lock)
;

lock = 1;
// critical section
account[tid] -= amount;
account[NUM_THREADS-1-tid] += amount;
// return from critical section
lock = 0;

}
pthread_exit (NULL);

}

76

Example: Accounting – Lock
• Checking and setting the lock variable

is by itself a critical section.

• The simple lock approach does not
meet all requirements for a solution to
protect a critical section.

ALP IV: Concepts of Non-sequential and Distributed Programming Summer Term 2022

In main: creating thread 0
In main: creating thread 1
Hello World! It's me, thread #0 !
Hello World! It's me, thread #1 !
account_0: 100
account_1: 100

In main: creating thread 0
In main: creating thread 1
Hello World! It's me, thread #0 !
Hello World! It's me, thread #1 !
account_0: 6277461
account_1: -6368446

77

Twofold Lock
• As the simple lock constitutes a critical section by itself, this critical section has to

be protected, too.
− The critical section consists of checking and setting of the one lock variable which both of

the threads try to do concurrently.
• To avoid the concurrent access to the single lock variable every thread gets a lock

variable of its own. The thread checks if the other one hold its lock and sets its
own if not.

• Checking and setting is now performed on different lock variables.

• To handle the locking more easily the set and unset of the lock variables are
encapsulated into functions.

ALP IV: Concepts of Non-sequential and Distributed Programming Summer Term 2022

78ALP IV: Concepts of Non-sequential and Distributed Programming Summer Term 2022

// simple accounting with pthreads

#include <pthread.h>
#include <stdlib.h>
#include <stdio.h>

#define NUM_THREADS 2

int account[2];

// accounting
void *bank_action (void *threadid)
{

long tid;
int i;
int amount = 0;
tid = (long) threadid;
for (i = 0; i < 300000; i++) {
amount = (int)(((double) rand () /

(RAND_MAX - 1)) * 100);

// critical section
account[tid] -= amount;
account[NUM_THREADS-1-tid] += amount;

}
pthread_exit (NULL);

}

79ALP IV: Concepts of Non-sequential and Distributed Programming Summer Term 2022

// simple accounting with pthreads

#include <pthread.h>
#include <stdlib.h>
#include <stdio.h>

#define NUM_THREADS 2

int account[2];
char _lock[2];

int lock (long tid) {
while (_lock[NUM_THREADS - 1 - tid])
;

_lock[tid] = 1;
return 0;

}

int unlock (long tid) {
_lock[tid] = 0;
return 0;

}

// accounting
void *bank_action (void *threadid)
{

long tid;
int i;
int amount = 0;
tid = (long) threadid;
for (i = 0; i < 300000; i++) {
amount = (int)(((double) rand () /

(RAND_MAX - 1)) * 100);

// critical section
account[tid] -= amount;
account[NUM_THREADS-1-tid] += amount;

}
pthread_exit (NULL);

}

80ALP IV: Concepts of Non-sequential and Distributed Programming Summer Term 2022

// simple accounting with pthreads

#include <pthread.h>
#include <stdlib.h>
#include <stdio.h>

#define NUM_THREADS 2

int account[2];
char _lock[2];

int lock (long tid) {
while (_lock[NUM_THREADS - 1 - tid])
;

_lock[tid] = 1;
return 0;

}

int unlock (long tid) {
_lock[tid] = 0;
return 0;

}

// accounting
void *bank_action (void *threadid)
{

long tid;
int i;
int amount = 0;
tid = (long) threadid;
for (i = 0; i < 300000; i++) {
amount = (int)(((double) rand () /

(RAND_MAX - 1)) * 100);

// try to enter the critical section
lock (tid);

// critical section
account[tid] -= amount;
account[NUM_THREADS-1-tid] += amount;
// return from critical section
unlock (tid);

}
pthread_exit (NULL);

}

81

Example: Accounting – Twofold Lock
• Still, the checking and setting of the

lock variables is itself a critical section.
− Thus, the processing of lock() and

unlock() which can be interrupted and
may lead to an inconsistent state of the
lock.

• The critical section includes both of the
lock variables.

• The twofold lock approach does not
meet all requirements for a solution to
protect a critical section.

ALP IV: Concepts of Non-sequential and Distributed Programming Summer Term 2022

In main: creating thread 0
In main: creating thread 1
Hello World! It's me, thread #0 !
Hello World! It's me, thread #1 !
account_0: -2415554
account_1: 2352894

In main: creating thread 0
In main: creating thread 1
Hello World! It's me, thread #0 !
Hello World! It's me, thread #1 !
account_0: -284407
account_1: -48137

82

Twofold Lock with Primary Protection
• The critical section of setting the lock is unprotected as the first thread may require

access even if it has released the lock shortly before.
• Thus, it is to prevent the thread releasing the lock gets it again right in time the

other thread checks the state of the lock variable.
• The lock variable of the thread is set before the checking of the lock variable of the

other thread.

ALP IV: Concepts of Non-sequential and Distributed Programming Summer Term 2022

83ALP IV: Concepts of Non-sequential and Distributed Programming Summer Term 2022

// simple accounting with pthreads

#include <pthread.h>
#include <stdlib.h>
#include <stdio.h>

#define NUM_THREADS 2

int account[2];
char _lock[2];

int lock (long tid) {

return 0;
}

int unlock (long tid) {

return 0;
}

// accounting
void *bank_action (void *threadid)
{

long tid;
int i;
int amount = 0;
tid = (long) threadid;
for (i = 0; i < 300000; i++) {
amount = (int)(((double) rand () /

(RAND_MAX - 1)) * 100);

// try to enter the critical section
lock (tid);

// critical section
account[tid] -= amount;
account[NUM_THREADS-1-tid] += amount;
// return from critical section
unlock (tid);

}
pthread_exit (NULL);

}

84ALP IV: Concepts of Non-sequential and Distributed Programming Summer Term 2022

// simple accounting with pthreads

#include <pthread.h>
#include <stdlib.h>
#include <stdio.h>

#define NUM_THREADS 2

int account[2];
char _lock[2];

int lock (long tid) {
_lock[tid] = 1;
while (_lock[NUM_THREADS - 1 - tid])
;

return 0;
}

int unlock (long tid) {
_lock[tid] = 0;
return 0;

}

// accounting
void *bank_action (void *threadid)
{

long tid;
int i;
int amount = 0;
tid = (long) threadid;
for (i = 0; i < 300000; i++) {
amount = (int)(((double) rand () /

(RAND_MAX - 1)) * 100);

// try to enter the critical section
lock (tid);

// critical section
account[tid] -= amount;
account[NUM_THREADS-1-tid] += amount;
// return from critical section
unlock (tid);

}
pthread_exit (NULL);

}

85

Twofold Lock with Primary Protection
• The threads block each other.
• There is a deadlock!

• How about the requirements for a
solution to protect a critical section?

ALP IV: Concepts of Non-sequential and Distributed Programming Summer Term 2022

In main: creating thread 0
In main: creating thread 1
Hello World! It's me, thread #1 !
Hello World! It's me, thread #0 !

86

Requirements for Solutions to protect the Critical Section
• The solution has to protect the critical section reliably by mutual exclusion.
• The solution should be used in higher level programming languages.

− Thus, the solution is usable on different architectures providing portability for the program
using it.

• The solution must not lead to a deadlock.

ALP IV: Concepts of Non-sequential and Distributed Programming Summer Term 2022

87

Twofold Lock with Primary Protection
• The threads block each other.
• There is a deadlock!

• The twofold lock with primary
protection approach does not meet
all requirements for a solution to
protect a critical section.

ALP IV: Concepts of Non-sequential and Distributed Programming Summer Term 2022

In main: creating thread 0
In main: creating thread 1
Hello World! It's me, thread #1 !
Hello World! It's me, thread #0 !

88

Twofold Lock with Mutual Precedence
• To prevent the deadlock the lock has to be released in case the requesting thread

will not be able to get the lock.
• Thus, the thread will after acquiring the lock give way to the other thread in case it

is requesting the lock, too.
• To give the other thread a chance to get the lock, the first one will wait shortly.

ALP IV: Concepts of Non-sequential and Distributed Programming Summer Term 2022

89ALP IV: Concepts of Non-sequential and Distributed Programming Summer Term 2022

// simple accounting with pthreads
#include ...

#define NUM_THREADS 2

int account[2];
char _lock[2];

int lock (long tid) {
_lock[tid] = 1;

while (_lock[NUM_THREADS - 1 - tid]) {

}
return 0;

}

int unlock (long tid) {
_lock[tid] = 0;
return 0;

}

// accounting
void *bank_action (void *threadid)
{

long tid;
int i;
int amount = 0;
tid = (long) threadid;
for (i = 0; i < 300000; i++) {
amount = (int)(((double) rand () /

(RAND_MAX - 1)) * 100);

// try to enter the critical section
lock (tid);

// critical section
account[tid] -= amount;
account[NUM_THREADS-1-tid] += amount;
// return from critical section
unlock (tid);

}
pthread_exit (NULL);

}

90ALP IV: Concepts of Non-sequential and Distributed Programming Summer Term 2022

// simple accounting with pthreads
#include ...

#define NUM_THREADS 2

int account[2];
char _lock[2];

int lock (long tid) {
_lock[tid] = 1;

while (_lock[NUM_THREADS - 1 - tid]) {
_lock[tid] = 0;
sleep (1);
_lock[tid] = 1;

}
return 0;

}

int unlock (long tid) {
_lock[tid] = 0;
return 0;

}

// accounting
void *bank_action (void *threadid)
{

long tid;
int i;
int amount = 0;
tid = (long) threadid;
for (i = 0; i < 300000; i++) {
amount = (int)(((double) rand () /

(RAND_MAX - 1)) * 100);

// try to enter the critical section
lock (tid);

// critical section
account[tid] -= amount;
account[NUM_THREADS-1-tid] += amount;
// return from critical section
unlock (tid);

}
pthread_exit (NULL);

}

91

Twofold Lock with Mutual Precedence

• The critical section is protected!

ALP IV: Concepts of Non-sequential and Distributed Programming Summer Term 2022

In main: creating thread 0
In main: creating thread 1
Hello World! It's me, thread #0 !
Hello World! It's me, thread #1 !
account_0: 100
account_1: 100

In main: creating thread 0
Hello World! It's me, thread #0 !
In main: creating thread 1
Hello World! It's me, thread #1 !
account_0: 100
account_1: 100

92

Requirements for Solutions to protect the Critical Section
• The solution has to protect the critical section reliably by mutual exclusion.
• The solution should be used in higher level programming languages.

− Thus, the solution is usable on different architectures providing portability for the program
using it.

• The solution must not lead to a deadlock.

ALP IV: Concepts of Non-sequential and Distributed Programming Summer Term 2022

93

Correctness
• Correctness is ensured based on

− Correct implementation of commands and functions
− compiler/interpreter, HW

− Correct execution of the set of commands and instructions
− Sequential processing of the instructions of the critical section by mutual exclusion due to locks
− Programming model and machine model (execution model) correspond to each other

− Check with
− Hoare logic (calculus)
− Simulation
− Testing

ALP IV: Concepts of Non-sequential and Distributed Programming Summer Term 2022

94

Performance from the User Perspective
• Thread switching comes with an overhead.

• But, if the program is designed to use more resources than CPU (and memory) this usage of
the different resources may be performed in parallel (parts of the program are executed
concurrently).

• Problem has to be split into reasonable pieces (e.g. via divide and conquer approaches).

• The data representing the problem can be shared between all threads by using the same
address space.

• The usage of all of the resources may lead to a reduction of idle time as well as to a
reduction of the response time of the entire program.

• The uniform progress of the threads of the program (and all other processes) is ensured by
the operating system. It needs to correspond to goals and possibilities of the operating
system (scheduling).

ALP IV: Concepts of Non-sequential and Distributed Programming Summer Term 2022

95

• A program should do what it is expected to do!
− Functional requirements, such as

− Scope of functions
− Correctness

• A program should comply with certain requirements about its behavior.
− Non-functional requirements, such as

− Performance
− Usability
− Security
− …

ALP IV: Concepts of Non-sequential and Distributed Programming Summer Term 2022

Requirements for Programs

96

NEXT LECTURE
Concepts of Non-sequential and Distributed Programming

ALP IV: Concepts of Non-sequential and Distributed Programming Summer Term 2022

Institute of Computer Science
Department of Mathematics and Computer Science

APL IV: Concepts of Non-sequential and Distributed
Programming (Summer Term 2022)

Parallelization

	Algorithms and Programming IV�(Concurrency with) Threads
	Objectives of Today‘s Lecture
	concurrency with threads
	Requirements for Programs
	Correctness
	Requirements for Programs
	Performance
	Performance from the User Perspective
	Virtualization of the Processor
	Limits to concurrency by processes
	Program with several Processes
	Slide Number 12
	Program with several Processes
	Example: Matrix Multiplication
	Example: Matrix Multiplication
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Slide Number 21
	Slide Number 22
	Slide Number 23
	Slide Number 24
	Slide Number 25
	Slide Number 26
	Slide Number 27
	Program with several Processes
	Concurrent Work on Shared Data I
	Concurrent Work on Shared Data II
	Threads
	Threads
	Threads
	Machine Model
	Using Pthreads
	Slide Number 36
	Slide Number 37
	Slide Number 38
	Slide Number 39
	Example: Matrix Multiplication
	Slide Number 41
	Slide Number 42
	Slide Number 43
	Slide Number 44
	Slide Number 45
	Slide Number 46
	Slide Number 47
	Slide Number 48
	Slide Number 49
	Example: Matrix Multiplication – Output�
	Example: Matrix Multiplication – Conclusion
	Using shared data
	Using Shared Data for Intermediate Results
	Example: Accounting
	Slide Number 55
	Slide Number 56
	Slide Number 57
	Slide Number 58
	Slide Number 59
	Slide Number 60
	Slide Number 61
	Example: Accounting – Output
	Example: Accounting – Conclusion I�
	Example: Accounting – Conclusion II�
	Example: Accounting – Conclusion III�
	Critical Section
	Critical Section I
	Critical Section II
	Mutual Exclusion
	Requirements for Solutions to protect the Critical Section
	Lock
	Example: Accounting – Critical Section�
	Lock
	Slide Number 74
	Slide Number 75
	Example: Accounting – Lock
	Twofold Lock
	Slide Number 78
	Slide Number 79
	Slide Number 80
	Example: Accounting – Twofold Lock
	Twofold Lock with Primary Protection
	Slide Number 83
	Slide Number 84
	Twofold Lock with Primary Protection
	Requirements for Solutions to protect the Critical Section
	Twofold Lock with Primary Protection
	Twofold Lock with Mutual Precedence
	Slide Number 89
	Slide Number 90
	Twofold Lock with Mutual Precedence
	Requirements for Solutions to protect the Critical Section
	Correctness
	Performance from the User Perspective
	Slide Number 95
	Next Lecture
	Parallelization

