
Institute of Computer Science
Department of Mathematics and Computer Science

Summer Term 2023 | 26.04.2023
Barry Linnert

Algorithms and Programming IV
Concurrency

2

Objectives of Today‘s Lecture

• Concurrency through processes
• Interrupts and process switching
• Concurrency and effects on determinism
• Atomic and non-atomic operations

ALP IV: Concepts of Non-sequential and Distributed Programming Summer Term 2023

3

CONCURRENCY
Concepts of Non-Sequential and Distributed Programming

ALP IV: Concepts of Non-sequential and Distributed Programming Summer Term 2023

4

• A program should do what it is expected to do!
− Functional requirements, such as

− Scope of functions
− Correctness

• A program should comply with certain requirements about its behavior.

− Non-functional requirements, such as
− Performance
− Usability
− Security
− …

ALP IV: Concepts of Non-sequential and Distributed Programming Summer Term 2023

Requirements for Programs

5

Performance
• There are (at least) two different perspectives to discuss the topic performance:

• Perspective of the service provider

− use all resources to run as many programs as possible
− maximum utilization of resources – especially CPU

• Perspective of the user

− the fastest possible processing of your own program
− short response time

ALP IV: Concepts of Non-sequential and Distributed Programming Summer Term 2023

What is the most important
perspective?

Are there any dependencies
between these two perspectives?

6

Limitations to Performance

• Programs often use resources other than CPU or the main memory only.
• These other resources may have an impact on performance too.

• These other resources frequently consists of Input/Output devices.
• Thus I/O operations may have a significant impact on the performance since they

are depending on
− the access times to the input/output device
− events that are introduced by the input/output devices

− e.g. input by user

ALP IV: Concepts of Non-sequential and Distributed Programming Summer Term 2023

What is the perspective I/O
does impact?

7

Repeat: Process
• The fact having our programming model

corresponding with the machine model is ensured
by the concept of the process.

• The operations of our program are translated to
machine instruction manipulating the state of the
system.

• The sequential execution of the machine
instructions corresponds to the sequential
execution of our operations programmed.

ALP IV: Concepts of Non-sequential and Distributed Programming Summer Term 2023

8

Machine Model
• With respect to performance of the

whole system we have to consider the
I/O operations, too.

• Our machine model needs to be
extended.

• While waiting on response of the I/O
device the process cannot run:

 The process is blocked.

ALP IV: Concepts of Non-sequential and Distributed Programming Summer Term 2023

9

Process States
• The process states describe how the system handles the process based on the

process execution, i.e. I/O operation, and the system’s properties and preferences.
• You discussed this in the lecture course “Betriebs- und Kommunikationssysteme“

(BKS/TI3) already.

ALP IV: Concepts of Non-sequential and Distributed Programming Summer Term 2023

LV BKS (TI3)

10

Concurrency
• The introduction of concurrent process

execution helps to reduce idle time of the CPU
as another process can be executed, if the first
process is blocked.

• Concurrency comes with some requirements to
the system:
− Separation of memory areas by introducing address

spaces
− Ability of process generation

− via System call

ALP IV: Concepts of Non-sequential and Distributed Programming Summer Term 2023

11

Process Generation

ALP IV: Concepts of Non-sequential and Distributed Programming Summer Term 2023

LV BKS

// Program in C forking another process

int main(void) {

}

12

Process Generation

ALP IV: Concepts of Non-sequential and Distributed Programming Summer Term 2023

LV BKS

// Program in C forking another process
#include <stdlib.h>

int main(void) {

 pid_t pid;

 pid = fork();

}

13

Process Generation

ALP IV: Concepts of Non-sequential and Distributed Programming Summer Term 2023

LV BKS

// Program in C forking another process
#include <stdlib.h>

#include <stdio.h>

int main(void) {

 pid_t pid;

 pid = fork();

 if (pid == 0) {
 printf("Child process running.\n");

 // Do something...

 printf("Child process done.\n");

 }

 else if (pid > 0) {
 printf("Parent process, waiting for
 child %d...\n", pid);

 printf("Child process %d
 terminated, %d.\n", pid,
);

 }
 else {
 printf("fork() failed\n");

 }
}

14

Process Generation

ALP IV: Concepts of Non-sequential and Distributed Programming Summer Term 2023

LV BKS

// Program in C forking another process
#include <stdlib.h>
#include <sys/wait.h>
#include <stdio.h>

int main(void) {
 int status;
 pid_t pid;

 pid = fork();

 if (pid == 0) {
 printf("Child process running.\n");

 // Do something...

 printf("Child process done.\n");
 exit(123);
 }

 else if (pid > 0) {
 printf("Parent process, waiting for
 child %d...\n", pid);

 pid = wait(&status);

 printf("Child process %d
 terminated, status %d.\n", pid,
 WEXITSTATUS(status));

 exit(EXIT_SUCCESS);
 }
 else {
 printf("fork() failed\n");
 exit(EXIT_FAILURE);
 }
}

15

Process Generation

ALP IV: Concepts of Non-sequential and Distributed Programming Summer Term 2023

LV BKS

// Program in C forking another process
#include <stdlib.h>
#include <sys/wait.h>
#include <stdio.h>

int main(void) {
 int status;
 pid_t pid;

 pid = fork();

 if (pid == 0) {
 printf("Child process running.\n");

 // Do something...

 printf("Child process done.\n");
 exit(123);
 }

 else if (pid > 0) {
 printf("Parent process, waiting for
 child %d...\n", pid);

 pid = wait(&status);

 printf("Child process %d
 terminated, status %d.\n", pid,
 WEXITSTATUS(status));

 exit(EXIT_SUCCESS);
 }
 else {
 printf("fork() failed\n");
 exit(EXIT_FAILURE);
 }
}

16

Process Generation with fork ()

• With fork() two identical processes are created.
− fork() is a call to the operating system – system call
− It’s defined in the POSIX standard.
− It creates a new address space (within the main memory) for the child process with a copy

of the address space of the parent process.

• The processing of the process starts or continues after fork().

ALP IV: Concepts of Non-sequential and Distributed Programming Summer Term 2023

17

Controlling Processes after Generation with fork ()

• Processes can be distinct by return value:
− process ID (pid) of the child process current process is parent process
− process ID (pid) == 0 current process is the child process

• End of the child process and feedback to parent process can be given with

exit(status).

• Parent process can wait for the termination of the child process with

wait(&status)

ALP IV: Concepts of Non-sequential and Distributed Programming Summer Term 2023

18

Example: two Programs running two Processes

ALP IV: Concepts of Non-sequential and Distributed Programming Summer Term 2023

// first program in C

int main (void)
{
 int a = 0;
 int b = 0;

 a = 2;
 b = 3;

 a = a * b;

 return a;
}

// second program in C

int main (void)
{
 int a = 0;
 int b = 0;

 a = 3;
 b = 4;

 a = a * b;

 return a;
}

19

Example: one Program runs two Processes

ALP IV: Concepts of Non-sequential and Distributed Programming Summer Term 2023

// Program in C forking another process
#include <stdlib.h>
#include <sys/wait.h>
#include <stdio.h>

int main(void) {
 int status;
 pid_t pid;
 int a, b = 0;

 pid = fork();
 if (pid == 0) {
 // child process is calculating
 a = 2;
 b = 3;
 a = a * b;
 printf (" result of child
 process: %d \n", a);
 exit(123);
 }

 else if (pid > 0) {
 // parent process is calculating
 a = 3;
 b = 4;
 a = a * b;
 printf (" result of parent
 process: %d \n", a);

 pid = wait(&status);
 printf("Child process %d
 terminated, status %d.\n", pid,
 WEXITSTATUS(status));
 exit(EXIT_SUCCESS);
 }
 else {
 printf("fork() failed\n");
 exit(EXIT_FAILURE);
 }
}

20

Example: one Program runs two Processes

ALP IV: Concepts of Non-sequential and Distributed Programming Summer Term 2023

// Program in C forking another process
#include <stdlib.h>
#include <sys/wait.h>
#include <stdio.h>

int main(void) {
 int status;
 pid_t pid;
 int a, b = 0;

 pid = fork();
 if (pid == 0) {
 // child process is calculating
 a = 2;
 b = 3;
 a = a * b;
 printf (" result of child
 process: %d \n", a);
 exit(123);
 }

 else if (pid > 0) {
 // parent process is calculating
 a = 3;
 b = 4;
 a = a * b;
 printf (" result of parent
 process: %d \n", a);

 pid = wait(&status);
 printf("Child process %d
 terminated, status %d.\n", pid,
 WEXITSTATUS(status));
 exit(EXIT_SUCCESS);
 }
 else {
 printf("fork() failed\n");
 exit(EXIT_FAILURE);
 }
}

The two processes are programmed
using the same variables.
Does the write operation executed by
one process have any effect to the
value of the variable of the other
process?

21

Processes in Execution
• After their generation, both processes

have their own address space in the
main memory and can be executed one
after another or concurrently.

• The operating system decides which of
the process is executed first.

ALP IV: Concepts of Non-sequential and Distributed Programming Summer Term 2023

22

Separated Address Spaces
• Due to the fork system call all the memory areas of the parent process are copied

containing data and program code.
• Thus parent and child process got their own copy of memory content. This is called

address space and every process works the address space that it is mapped onto.
• The same address used by different processes are represented by different parts

(addresses) of the main memory.
• Thus, a process cannot access the memory of another process, i.e., address space.

− … until there is some kind of special mechanism; please see course “Betriebssysteme”
• Separation of address spaces makes is easy to implement a multitude of processes.

• Please note, the separation of address spaces is crucial for security!

ALP IV: Concepts of Non-sequential and Distributed Programming Summer Term 2023

23

Concurrency
• The introduction of concurrent process execution helps to

reduce idle time of the CPU as another process can be
executed, if the first process is blocked.

• Concurrency comes with some requirements to the
system:
− Separation of memory areas by introducing address spaces
− Ability of process generation

− via System call

ALP IV: Concepts of Non-sequential and Distributed Programming Summer Term 2023

24

Concurrency
• The introduction of concurrent process execution helps to

reduce idle time of the CPU as another process can be
executed, if the first process is blocked.

• Concurrency comes with some requirements to the
system:
− Separation of memory areas by introducing address spaces
− Ability of process generation

− via System call
− A superordinate (parent) process takes over the process generation

and a process hierarchy can be created.
− The change between processes (of different programs) has to

be performed.

ALP IV: Concepts of Non-sequential and Distributed Programming Summer Term 2023

25

Concurrency (cont.)
• The mechanism to change between processes (of different programs) has to be

invoked when
− the process performing an I/O operation is blocked,
− the I/O operation is finished and the process should run again to receive the result of the

operation and release the I/O device.

− Without deblocking and switching of processes the using process will not release the I/O
device and no other process is able to use it as well.

− This would lead to starvation of some processes.
− Starvation means the process is not able to run as it will get access to a resource needed for

processing.

ALP IV: Concepts of Non-sequential and Distributed Programming Summer Term 2023

26

Process Change by Interrupts

ALP IV: Concepts of Non-sequential and Distributed Programming Summer Term 2023

LV BKS

27

Interrupts
• Interrupts interrupt execution of current process.

• The handling of an interrupt provides the possibility to change the state of a

process…
− Deblock the former blocked process.

• … and to schedule another process.

− Switch to another process.

ALP IV: Concepts of Non-sequential and Distributed Programming Summer Term 2023

28

Process Switch

ALP IV: Concepts of Non-sequential and Distributed Programming Summer Term 2023

29

Process Switch performed by the Operating System
• The interrupt and the interrupt handling gives control of the CPU to the operating

system.

• The operating system saves the processing status (context) of the currently
running process (e.g. content of the CPU registers).

• The OS changes the state of the process if needed.
• To continue a process, the operating system restores the saved processing status

(context) of the process.

• For the ongoing process these activities are fully transparent (not visible).

ALP IV: Concepts of Non-sequential and Distributed Programming Summer Term 2023

30

Concurrency
• The introduction of concurrent process execution helps to

reduce idle time of the CPU as another process can be
executed, if the first process is blocked.

• Concurrency comes with some requirements to the
system:
− Separation of memory areas by introducing address spaces
− Ability of process generation

− via System call
− A superordinate (parent) process takes over the process generation

and a process hierarchy can be created.
− The change between processes (of different programs) is to be

performed

 ALP IV: Concepts of Non-sequential and Distributed Programming Summer Term 2023

− by separation of the processing states and saving of the context of process.

31

Process States – extended

ALP IV: Concepts of Non-sequential and Distributed Programming Summer Term 2023

LV BKS

32

Effects on Process Execution

• Process switch caused by an interrupt can occur at any time.
− changing the running process

• What does "anytime" mean?

• Let‘s have a look at our example of two processes:

ALP IV: Concepts of Non-sequential and Distributed Programming Summer Term 2023

33

Effects on Process Execution – Example

ALP IV: Concepts of Non-sequential and Distributed Programming Summer Term 2023

// first program in C

int main (void)
{
 int a = 0;
 int b = 0;

 a = 2;
 b = 3;

 a = a * b;

 return a;
}

// second program in C

int main (void)
{
 int a = 0;
 int b = 0;

 a = 3;
 b = 4;

 a = a * b;

 return a;
}

34

Effects on Process Execution – Example
• Execution may take place as follows:

 time

ALP IV: Concepts of Non-sequential and Distributed Programming Summer Term 2023

 a = 2;
 b = 3;
 a = a * b;
 a = 3;
 b = 4;
 a = a * b;

35

Effects on Process Execution – Example
• … or this way:

 time

ALP IV: Concepts of Non-sequential and Distributed Programming Summer Term 2023

 a = 2;
 b = 3;
 a = 3;
 a = a * b;
 b = 4;
 a = a * b;

36

Effects on Process Execution – Example
• … or this way:

 time

ALP IV: Concepts of Non-sequential and Distributed Programming Summer Term 2023

 a = 2;
 b = 3;
 a = 3;
 b = 4;
 a = a * b;
 a = a * b;

37

Effects on Process Execution – Example
• … or this way:

 time

ALP IV: Concepts of Non-sequential and Distributed Programming Summer Term 2023

 a = 2;
 b = 3;
 a = 3;
 b = 4;
 a = a * b;
 a = a * b;

38

Effects on Process Execution – Example
• … or this way:

 time

ALP IV: Concepts of Non-sequential and Distributed Programming Summer Term 2023

 a = 2;
 a = 3;
 b = 3;
 a = a * b;
 b = 4;
 a = a * b;

39

Effects on Process Execution – Example
• … or this way:

 time

ALP IV: Concepts of Non-sequential and Distributed Programming Summer Term 2023

 a = 2;
 a = 3;
 b = 4;
 b = 3;
 a = a * b;
 a = a * b;

40

Effects on Process Execution – Example
• … or this way:

 time

ALP IV: Concepts of Non-sequential and Distributed Programming Summer Term 2023

 a = 2;
 a = 3;
 b = 4;
 a = a * b;
 b = 3;
 a = a * b;

41

Effects on Process Execution – Example
• … or this way:

 time

ALP IV: Concepts of Non-sequential and Distributed Programming Summer Term 2023

 a = 3;
 a = 2;
 b = 3;
 a = a * b;
 b = 4;
 a = a * b;

42

Effects on Process Execution – Example
• … or this way:

 time

ALP IV: Concepts of Non-sequential and Distributed Programming Summer Term 2023

 a = 3;
 b = 4;
 a = 2;
 b = 3;
 a = a * b;
 a = a * b;

43

Effects on Process Execution – Example
• … or this way:

 time

ALP IV: Concepts of Non-sequential and Distributed Programming Summer Term 2023

 a = 3;
 b = 4;
 a = a * b;
 a = 2;
 b = 3;
 a = a * b;

44

Effects on Determinism
• Does the uncertainty about the sequence of execution of the instructions of the

different processes has an effect on determinism?

• Well, with respect to the system as a whole the answer is (obviously): Yes!

• But, for the single process the sequence of execution of the instructions does not
change.

• So, with a view at the single process the answer is: No!
− The state of the execution of the process is frozen while
 other processes are running and continues at the next instruction
 at the time the process gets the CPU again.

ALP IV: Concepts of Non-sequential and Distributed Programming Summer Term 2023

https://www.telegraph.co.uk/content/dam/f ilm/
Frozen/f rozen1_3139289a-xlarge.jpg

45

Virtualization of the Processor
• For every process the systems

behaves as it is the only process in
the system.

• The process can be seen as a
virtualization of the processor.
− There are as many virtual processors

available as processes running.
− That’s not the same concept as the

virtual processor of a virtual machine.
− for more see course “Betriebssysteme”

ALP IV: Concepts of Non-sequential and Distributed Programming Summer Term 2023

• Thus, we have to extend our machine model.

46

Atomic Operations and Machine Model

ALP IV: Concepts of Non-sequential and Distributed Programming Summer Term 2023

// first program in C

int main (void)
{
 int a = 0;
 int b = 0;

 a = 2;
 b = 3;

 a = a * b;

 return a;
}

00000000 <main>:
 0: e52db004 push {fp}; (str fp, [sp, #-4]!)
 4: e28db000 add fp, sp, #0
 8: e24dd00c sub sp, sp, #12
 c: e3a03000 mov r3, #0
 10: e50b3008 str r3, [fp, #-8]
 14: e3a03000 mov r3, #0
 18: e50b300c str r3, [fp, #-12]
 1c: e3a03002 mov r3, #2
 20: e50b3008 str r3, [fp, #-8]
 24: e3a03003 mov r3, #3
 28: e50b300c str r3, [fp, #-12]
 2c: e51b3008 ldr r3, [fp, #-8]
 30: e51b200c ldr r2, [fp, #-12]
 34: e0030392 mul r3, r2, r3
 38: e50b3008 str r3, [fp, #-8]
 3c: e51b3008 ldr r3, [fp, #-8]
 40: e1a00003 mov r0, r3
 44: e24bd000 sub sp, fp, #0
 48: e49db004 pop {fp}; (ldr fp, [sp], #4)
 4c: e12fff1e bx lr

47

Atomic and Non-Atomic Operations

• Atomic (indivisible) operations are executed completely before the process can be
interrupted.

• Non-atomic operations can be interrupted before the their execution is completed.
− These operations usually consist of more than one machine instruction. But that may differ

with the architecture of the processor.

• Processor architectures often offer the possibility to execute certain operations
atomically.

ALP IV: Concepts of Non-sequential and Distributed Programming Summer Term 2023

48

SUMMARY

ALP IV: Concepts of Non-sequential and Distributed Programming Summer Term 2023

49

• A program should do what it is expected to do!
− Functional requirements, such as

− Scope of functions
− Correctness

• A program should comply with certain

requirements about its behavior!
− Non-functional requirements, such as

− Performance
− Usability
− Security
− …

ALP IV: Concepts of Non-sequential and Distributed Programming Summer Term 2023

Do we meet the Requirements for Programs?

50

Correctness
• Correctness is ensured based on

− Correct implementation of commands and functions
− compiler/interpreter, HW

− Correct execution of the set of commands and instructions

− Sequential processing of the instructions of the programs as separate processes
− Programming model and machine model (execution model) correspond to each other

− Check with
− Hoare logic (calculus)
− Simulation
− Testing

ALP IV: Concepts of Non-sequential and Distributed Programming Summer Term 2023

51

• A program should do what it is expected to do!
− Functional requirements, such as

− Scope of functions
− Correctness

• A program should comply with certain requirements

about its behavior.
− Non-functional requirements, such as

− Performance
− Usability
− Security
− …

ALP IV: Concepts of Non-sequential and Distributed Programming Summer Term 2023

Requirements for Programs

52

Performance
• There are (at least) two different perspectives on performance:

• Perspective of the service provider

− use all resources to run as many programs as possible
− maximum utilization of resources – especially CPU

• Perspective of the user

− the fastest possible processing of your own program
− short response time

ALP IV: Concepts of Non-sequential and Distributed Programming Summer Term 2023

53

Performance Perspective of the Service Provider

• While one process is blocked due to an I/O
operation another process can use the CPU.

• Therefore, no resources are wasted and all
processes are able to continue their work.

ALP IV: Concepts of Non-sequential and Distributed Programming Summer Term 2023

54

Performance
• There are (at least) two different perspectives on performance:

• Perspective of the service provider

− use all resources to run as many programs as possible
− maximum utilization of resources – especially CPU

• Perspective of the user

− the fastest possible processing of your own program
− short response time

ALP IV: Concepts of Non-sequential and Distributed Programming Summer Term 2023

55

Performance from the User Perspective
• Process switching comes with an overhead.

• But, if the program is designed to use more resources than CPU (and memory)
this usage of the different resources may be performed in parallel.
− Parts of the program are executed concurrently.

• Problem has to be split into reasonable pieces.
− Divide and conquer approaches

• The usage of all of the resources may lead to a reduction of idle time.
− Reduction of the response time of the entire program.

• The uniform progress of the processes of the program (and all other processes) is
ensured by the operating system.
− According to the goals and possibilities of the operating system (scheduling)

ALP IV: Concepts of Non-sequential and Distributed Programming Summer Term 2023

56

Let‘s make a more reasonable Example then:

ALP IV: Concepts of Non-sequential and Distributed Programming Summer Term 2023

// Program in C forking another process
#include <stdlib.h>
#include <sys/wait.h>
#include <stdio.h>

int main(void) {
 int status;
 pid_t pid;
 int a, b = 0;

 pid = fork();
 if (pid == 0) {
 // child process is calculating
 a = 2;
 b = 3;
 a = a * b;
 printf (" result of child
 process: %d \n", a);
 exit(123);
 }

 else if (pid > 0) {
 // parent process is calculating
 a = 3;
 b = 4;
 a = a * b;
 printf (" result of parent
 process: %d \n", a);

 pid = wait(&status);
 printf("Child process %d
 terminated, status %d.\n", pid,
 WEXITSTATUS(status));
 exit(EXIT_SUCCESS);
 }
 else {
 printf("fork() failed\n");
 exit(EXIT_FAILURE);
 }
}

57 ALP IV: Concepts of Non-sequential and Distributed Programming Summer Term 2023

// Example with two processes
#include ...
int main(void) {
 int data[2][3];
 int i, j;
 int status, result = 0;
 pid_t pid;

 // init data

 pid = fork();

 if (pid == 0) {
 // child process is calculating

 exit(?);
 }

 else if (pid > 0) {
 // parent process is calculating

 }
 else {
 printf("fork() failed\n");
 exit(EXIT_FAILURE);
 }

 // handling results by remaining
 // parent process

 return 0;
}

58 ALP IV: Concepts of Non-sequential and Distributed Programming Summer Term 2023

// Example with two processes
#include ...
int main(void) {
 int data[2][3];
 int i, j;
 int status, result = 0;
 pid_t pid;

 // init data
 for (i = 0; i < 2; i++) {
 for (j = 0; j < 3; j++) {
 data[i][j] = (i + 1) * j;
 }
 }
 pid = fork();

 if (pid == 0) {
 // child process is calculating

 exit(?);
 }

 else if (pid > 0) {
 // parent process is calculating

 }
 else {
 printf("fork() failed\n");
 exit(EXIT_FAILURE);
 }

 // handling results by remaining
 // parent process

 return 0;
}

59 ALP IV: Concepts of Non-sequential and Distributed Programming Summer Term 2023

// Example with two processes
#include ...
int main(void) {
 int data[2][3];
 int i, j;
 int status, result = 0;
 pid_t pid;

 // init data
 for (i = 0; i < 2; i++) {
 for (j = 0; j < 3; j++) {
 data[i][j] = (i + 1) * j;
 }
 }
 pid = fork();

 if (pid == 0) {
 // child process is calculating
 for (j = 0; j < 3; j++) {
 result += data[0][j];
 }
 exit(?);
 }

 else if (pid > 0) {
 // parent process is calculating
 for (j = 0; j < 3; j++) {
 result += data[1][j];
 }
 }
 else {
 printf("fork() failed\n");
 exit(EXIT_FAILURE);
 }

 // handling results by remaining
 // parent process

 return 0;
}

60 ALP IV: Concepts of Non-sequential and Distributed Programming Summer Term 2023

// Example with two processes
#include ...
int main(void) {
 int data[2][3];
 int i, j;
 int status, result = 0;
 pid_t pid;

 // init data
 for (i = 0; i < 2; i++) {
 for (j = 0; j < 3; j++) {
 data[i][j] = (i + 1) * j;
 }
 }
 pid = fork();

 if (pid == 0) {
 // child process is calculating
 for (j = 0; j < 3; j++) {
 result += data[0][j];
 }
 exit(result);
 }

 else if (pid > 0) {
 // parent process is calculating
 for (j = 0; j < 3; j++) {
 result += data[1][j];
 }
 }
 else {
 printf("fork() failed\n");
 exit(EXIT_FAILURE);
 }

 // handling results by remaining
 // parent process
 pid = wait(&status);
 printf ("\n Result: %d\n",
 result + WEXITSTATUS(status));

 return 0;
}

61 ALP IV: Concepts of Non-sequential and Distributed Programming Summer Term 2023

// Example with two processes
#include ...
int main(void) {
 int data[2][3];
 int i, j;
 int status, result = 0;
 pid_t pid;

 // init data
 for (i = 0; i < 2; i++) {
 for (j = 0; j < 3; j++) {
 data[i][j] = (i + 1) * j;
 }
 }
 pid = fork();

 if (pid == 0) {
 // child process is calculating
 for (j = 0; j < 3; j++) {
 result += data[0][j];
 }
 exit(result);
 }

 else if (pid > 0) {
 // parent process is calculating
 for (j = 0; j < 3; j++) {
 result += data[1][j];
 }
 }
 else {
 printf("fork() failed\n");
 exit(EXIT_FAILURE);
 }

 // handling results by remaining
 // parent process
 pid = wait(&status);
 printf ("\n Result: %d\n",
 result + WEXITSTATUS(status));

 return 0;
}

62 ALP IV: Concepts of Non-sequential and Distributed Programming Summer Term 2023

// Example with two processes
#include ...
int main(void) {
 int data[2][3];
 int i, j;
 int status, result = 0;
 pid_t pid;

 // init data
 for (i = 0; i < 2; i++) {
 for (j = 0; j < 3; j++) {
 data[i][j] = (i + 1) * j;
 }
 }
 pid = fork();

 if (pid == 0) {
 // child process is calculating
 for (j = 0; j < 3; j++) {
 result += data[0][j];
 }
 exit(result);
 }

 else if (pid > 0) {
 // parent process is calculating
 for (j = 0; j < 3; j++) {
 result += data[1][j];
 }
 }
 else {
 printf("fork() failed\n");
 exit(EXIT_FAILURE);
 }

 // handling results by remaining
 // parent process
 pid = wait(&status);
 printf ("\n Result: %d\n",
 result + WEXITSTATUS(status));

 return 0;
}

How does this implementation have
any impact on the performance of the
program?

63

• A program should do what it is expected to do!
− Functional requirements, such as

− Scope of functions
− Correctness

• A program should comply with certain

requirements about its behavior.
− Non-functional requirements, such as

− Performance
− Usability
− Security
− …

ALP IV: Concepts of Non-sequential and Distributed Programming Summer Term 2023

Requirements for Programs

64

TAKE AWAYS
Concepts of Non-sequential and Distributed Programming

ALP IV: Concepts of Non-sequential and Distributed Programming Summer Term 2023

65

You should know…
• that the concurrent execution of processes have an impact on performance of the

system and the program,

• that you can use the fork() system call to create new processes,

• that the concurrent execution of the processes has an effect to determinism and
determined execution of the program, but not from the view of the process,

• that there is a difference between atomic and non-atomic operations.

ALP IV: Concepts of Non-sequential and Distributed Programming Summer Term 2023

66

NEXT LECTURE
Concepts of Non-sequential and Distributed Programming

ALP IV: Concepts of Non-sequential and Distributed Programming Summer Term 2023

Institute of Computer Science
Department of Mathematics and Computer Science

APL IV: Concepts of Non-sequential and Distributed
Programming (Summer Term 2023)

Concurrency with Threads

	Algorithms and Programming IV�Concurrency
	Objectives of Today‘s Lecture
	CONCURRENCY
	Foliennummer 4
	Performance
	Limitations to Performance
	Repeat: Process
	Machine Model
	Process States
	Concurrency
	Process Generation�
	Process Generation�
	Process Generation�
	Process Generation�
	Process Generation�
	Process Generation with fork ()
	Controlling Processes after Generation with fork ()
	Example: two Programs running two Processes
	Example: one Program runs two Processes�
	Example: one Program runs two Processes�
	Processes in Execution
	Separated Address Spaces
	Concurrency
	Concurrency
	Concurrency (cont.)
	Process Change by Interrupts
	Interrupts
	Process Switch
	Process Switch performed by the Operating System
	Concurrency
	Process States – extended
	Effects on Process Execution
	Effects on Process Execution – Example
	Effects on Process Execution – Example
	Effects on Process Execution – Example
	Effects on Process Execution – Example
	Effects on Process Execution – Example
	Effects on Process Execution – Example
	Effects on Process Execution – Example
	Effects on Process Execution – Example
	Effects on Process Execution – Example
	Effects on Process Execution – Example
	Effects on Process Execution – Example
	Effects on Determinism
	Virtualization of the Processor
	Atomic Operations and Machine Model
	Atomic and Non-Atomic Operations
	SUMMARY
	Foliennummer 49
	Correctness
	Foliennummer 51
	Performance
	Performance Perspective of the Service Provider
	Performance
	Performance from the User Perspective
	Let‘s make a more reasonable Example then:�
	Foliennummer 57
	Foliennummer 58
	Foliennummer 59
	Foliennummer 60
	Foliennummer 61
	Foliennummer 62
	Foliennummer 63
	Take aways
	You should know…
	Next Lecture
	Concurrency with Threads

