
1 

Institute of Computer Science 
Department of Mathematics and Computer Science 

Summer Term 2023 | 24.04.2023 
Barry Linnert 

Algorithms and Programming IV 
Determinism 



2 

Objectives of Today‘s Lecture 
 

• Defining the Requirements on Programming 
• Specifying the Meaning of Correctness 
• Identifying the sequential Processing as Foundation of Determinism 
• Exploring existing Models to support Programming 

 

ALP IV: Concepts of Non-Sequential and Distributed Programming Summer Term 2023 



3 

DETERMINISM 
Concepts of Non-Sequential and Distributed Programming 

ALP IV: Concepts of Non-Sequential and Distributed Programming Summer Term 2023 



4 

Programming Paradigms 

ALP IV: Concepts of Non-Sequential and Distributed Programming Summer Term 2023 



5 

Requirements for Programs 
• A program should do what it is expected to do! 

− Functional requirements, such as  
− Scope of functions 
− Correctness 
 
 

• A program should comply with certain requirements about its behavior. 
− Non-functional requirements, such as 

− Performance 
− Usability 
− Security 
− … 
 

ALP IV: Concepts of Non-Sequential and Distributed Programming Summer Term 2023 



6 

Functional Characteristics 
• Scope of Service 

− Requirements elicitation, design, project management, quality assurance 
−  LV (lecture course) Software Engineering 

 

• Correctness 
− Hoare logic (calculus), Simulation via pen and paper (Handsimulation) and Testing 

− select input values 
− apply algorithm 
− execute program 
− compare results 
 
 Problem: it works with existing program only  

ALP IV: Concepts of Non-Sequential and Distributed Programming Summer Term 2023 



7 

Foundations of Building Correct Programs 
1. Amount of operations changing the current state of the system in a known way 

− We have an idea (model) of the change of state of the system by the operation in a 
specific context (previous state of the system). 

− The operations are identified explicitly by a command (of the current programming 
language). 

− So, we do have a model of the execution (change of state of the system) of the 
commands. 
 

2. Selection and order (sequence) of the operations (represented by the commands) 
based on the algorithm to be implemented 
− By connecting the operations together we build a model of the execution of the program. 
− The sequence of the commands represents this model of program execution. 
 

ALP IV: Concepts of Non-Sequential and Distributed Programming Summer Term 2023 



8 

Ordered Execution of a Set of Commands 
• Sequential processing of the commands using numerical ordering 
 
• Example BASIC 

10 REM This is a test program 
20 PRINT "Hello World!" 
30 INPUT "Please enter your name"; A$  
40 PRINT "Hello, "; A$ 

How about other (imperative) 
programming languages? 

ALP IV: Concepts of Non-Sequential and Distributed Programming Summer Term 2023 



9 

Sequential Processing 
• Example C 

 
 
 
 
 
 
 
 
 

• How is sequential processing ensured? 

// first C-program 
 
int main (void) 
{ 
  int a = 0; 
  int b = 0; 
 
  a = 2; 
  b = 3; 
 
  a = a * b; 
 
  return a; 
} 

ALP IV: Concepts of Non-Sequential and Distributed Programming Summer Term 2023 



10 

Programming 
• With selection and the sequential order of the operations the state of the system 

and the state change can be anticipated in our minds. 
− That’s called Programming model!  
− Building a (correct) programming model is called Programming. 
− It’s the same approach as to check correctness of the program. 
− So, building a correct execution model of the program ensures the implementation of a 

correct program. 
− … but is only the first step – Testing, testing, testing is also needed. 

 

• But… 
 … how is it ensured that the sequence of commands will be executed as expected? 
 … where does the knowledge about the change of system’s state by the  
  commands comes from? 

ALP IV: Concepts of Non-Sequential and Distributed Programming Summer Term 2023 



11 

From Program to Process 

ALP IV: Concepts of Non-Sequential and Distributed Programming Summer Term 2023 



12 

From Program to Machine Program 
// first program in C 
 
int main (void) 
{ 
  int a = 0; 
  int b = 0; 
 
  a = 2; 
  b = 3; 
 
  a = a * b; 
 
  return a; 
} 

00000000 <main>: 
   0:   e52db004        push    {fp}; (str fp, [sp, #-4]!) 
   4:   e28db000        add     fp, sp, #0 
   8:   e24dd00c        sub     sp, sp, #12 
   c:   e3a03000        mov     r3, #0 
  10:   e50b3008        str     r3, [fp, #-8] 
  14:   e3a03000        mov     r3, #0 
  18:   e50b300c        str     r3, [fp, #-12] 
  1c:   e3a03002        mov     r3, #2 
  20:   e50b3008        str     r3, [fp, #-8] 
  24:   e3a03003        mov     r3, #3 
  28:   e50b300c        str     r3, [fp, #-12] 
  2c:   e51b3008        ldr     r3, [fp, #-8] 
  30:   e51b200c        ldr     r2, [fp, #-12] 
  34:   e0030392        mul     r3, r2, r3 
  38:   e50b3008        str     r3, [fp, #-8] 
  3c:   e51b3008        ldr     r3, [fp, #-8] 
  40:   e1a00003        mov     r0, r3 
  44:   e24bd000        sub     sp, fp, #0 
  48:   e49db004        pop     {fp}; (ldr fp, [sp], #4) 
  4c:   e12fff1e        bx      lr 

ALP IV: Concepts of Non-Sequential and Distributed Programming Summer Term 2023 



13 

From Program to Machine Program 
// first program in C 
 
int main (void) 
{ 
  int a = 0; 
  int b = 0; 
 
  a = 2; 
  b = 3; 
 
  a = a * b; 
 
  return a; 
} 

00000000 <main>: 
   0:   e3a00006        mov     r0, #6 
   4:   e12fff1e        bx      lr 
 

ALP IV: Concepts of Non-Sequential and Distributed Programming Summer Term 2023 



14 

Memory

Process 

   0:   e52db004 
   4:   e28db000 
   8:   e24dd00c 
   c:   e3a03000 
  10:   e50b3008 
  14:   e3a03000 
  18:   e50b300c 
  1c:   e3a03002 
  20:   e50b3008 
  24:   e3a03003 
  28:   e50b300c 
  2c:   e51b3008 
  30:   e51b200c 
  34:   e0030392 
  38:   e50b3008 
  3c:   e51b3008 
  40:   e1a00003 
  44:   e24bd000 
  48:   e49db004 
  4c:   e12fff1e 

CPU

Registers 

Instruction 
Pointer 

The automatic incrementation of the 
Instruction Pointer ensures the 
sequential execution of the instructions. 

ALP IV: Concepts of Non-Sequential and Distributed Programming Summer Term 2023 



15 

Execution of the Program 
• All of the following components have work correctly to ensure that the commands 

will be executed as expected and in the determined sequence: 
− Compiler or Interpreter 

− Translates the commands to machine instructions 
− Linker 

− Builds a memory image with machine instructions and initial data 
− Operating system 

− Sets up the process out of the linked image 
− Sets up the execution environment 

− Hardware 
− Executes the machine instruction in an defined environment (by the OS) 
− Increments the Instruction Pointer automatically 

 
 

ALP IV: Concepts of Non-Sequential and Distributed Programming Summer Term 2023 



16 

Machine Model 
• The representation of the technical workflow 

− von Neumann architecture 

wikipedia.org 

ALP IV: Concepts of Non-Sequential and Distributed Programming Summer Term 2023 



17 

Relations between the Models 
• If there is a way to transform all of the models from 

programming model to execution model based on the 
machine model, then the correct execution of the 
algorithm implemented by the programming model can 
be assured.  

• The transformation allows us to make statements 
about the behavior of the system controlled by the 
execution of our program. 

• Based on these statements we can (mentally) 
anticipate the program execution and write our 
program. 

ALP IV: Concepts of Non-Sequential and Distributed Programming Summer Term 2023 



18 

Determinism 
• The (mental) anticipation of the program execution holds for all of the runs of our 

program. 
 

• Definition: A deterministic algorithm is an algorithm which, given a specific input, 
will always produce the same specific output and will always fulfill changes to the 
state of the system in the same way (and order). 
 
− Using all of the models we can decide if an algorithm is deterministic. 
− If every step of transferring one model to another is performed correctly a deterministic 

algorithm is correctly implemented and the program will be executed correctly. 
− This program can be called a deterministic program. 

ALP IV: Concepts of Non-Sequential and Distributed Programming Summer Term 2023 



19 

Sequential Processing 
 

• One foundation for deterministic execution of the programs is the sequential 
processing of operations, commands and instructions.  
 

• Can it be assumed to have a sequential processing? 

ALP IV: Concepts of Non-Sequential and Distributed Programming Summer Term 2023 



20 

Sequential Processing and Programming Paradigms 

ALP IV: Concepts of Non-Sequential and Distributed Programming Summer Term 2023 



21 

Sequential Processing in further 
Programming Models – Loops 

 
 

// Program in C with  
// while loop 
 
int main (void) 
{ 
  int a = 0; 
  int b = 0; 
 
  b = 3; 
 
  while (b > 0) 
  { 
    a += 2; 
    b--; 
  } 
  return a; 
} 

00000000 <main>: 
   0:   ... 
   c:   e3a03000        mov     r3, #0 
  10:   e50b3008        str     r3, [fp, #-8] 
  14:   e3a03000        mov     r3, #0 
  18:   e50b300c        str     r3, [fp, #-12] 
  1c:   e3a03003        mov     r3, #3 
  20:   e50b300c        str     r3, [fp, #-12] 
  24:   ea000005        b       40 <main+0x40> 
  28:   e51b3008        ldr     r3, [fp, #-8] 
  2c:   e2833002        add     r3, r3, #2 
  30:   e50b3008        str     r3, [fp, #-8] 
  34:   e51b300c        ldr     r3, [fp, #-12] 
  38:   e2433001        sub     r3, r3, #1 
  3c:   e50b300c        str     r3, [fp, #-12] 
  40:   e51b300c        ldr     r3, [fp, #-12] 
  44:   e3530000        cmp     r3, #0 
  48:   cafffff6        bgt     28 <main+0x28> 
  4c:   e51b3008        ldr     r3, [fp, #-8] 
  50:   e1a00003        mov     r0, r3 
  54:   ... 

ALP IV: Concepts of Non-Sequential and Distributed Programming Summer Term 2023 



22 

Sequential Processing in further 
Programming Models – Loops 

 
 

// Program in C with  
// while loop 
 
int main (void) 
{ 
  int a = 0; 
  int b = 0; 
 
  b = 3; 
 
  while (b > 0) 
  { 
    a += 2; 
    b--; 
  } 
  return a; 
} 

Sequential processing of commands and 
instructions is provided even with loops and 
jumps or conditional execution. 

ALP IV: Concepts of Non-Sequential and Distributed Programming Summer Term 2023 



23 

Sequential Processing in further 
Programming Models – Functions 

// Program in C with function 
 
int foo (int a, int b) 
{ 
  return a * b; 
} 
 
int main (void) 
{ 
  int a = 0; 
  int b = 0; 
  a = 2; 
  b = 3; 
 
  a = foo (a, b); 
 
  return a; 
} 

ALP IV: Concepts of Non-Sequential and Distributed Programming Summer Term 2023 



24 

Sequential Processing in further 
Programming Models – Functions 

00000030 <main>: 
  30:   e92d4800        push    {fp, lr} 
  34:   e28db004        add     fp, sp, #4 
  38:   e24dd008        sub     sp, sp, #8 
  3c:   e3a03000        mov     r3, #0 
  40:   e50b3008        str     r3, [fp, #-8] 
  44:   e3a03000        mov     r3, #0 
  48:   e50b300c        str     r3, [fp, #-12] 
  4c:   e3a03002        mov     r3, #2 
  50:   e50b3008        str     r3, [fp, #-8] 
  54:   e3a03003        mov     r3, #3 
  58:   e50b300c        str     r3, [fp, #-12] 
  5c:   e51b0008        ldr     r0, [fp, #-8] 
  60:   e51b100c        ldr     r1, [fp, #-12] 
  64:   ebfffffe        bl      0 <foo> 
  68:   e50b0008        str     r0, [fp, #-8] 
  6c:   e51b3008        ldr     r3, [fp, #-8] 
  70:   e1a00003        mov     r0, r3 
  74:   e24bd004        sub     sp, fp, #4 
  78:   e8bd4800        pop     {fp, lr} 
  7c:   e12fff1e        bx      lr 

00000000 <foo>: 
   0:   e52db004        push    {fp} 
   4:   e28db000        add     fp, sp, #0 
   8:   e24dd00c        sub     sp, sp, #12 
   c:   e50b0008        str     r0, [fp, #-8] 
  10:   e50b100c        str     r1, [fp, #-12] 
  14:   e51b3008        ldr     r3, [fp, #-8] 
  18:   e51b200c        ldr     r2, [fp, #-12] 
  1c:   e0030392        mul     r3, r2, r3 
  20:   e1a00003        mov     r0, r3 
  24:   e24bd000        sub     sp, fp, #0 
  28:   e49db004        pop     {fp} 
  2c:   e12fff1e        bx      lr 
 

ALP IV: Concepts of Non-Sequential and Distributed Programming Summer Term 2023 



25 

Sequential Processing in further 
Programming Models – Functions 

00000030 <main>: 
  30:   e92d4800        push    {fp, lr} 
  34:   e28db004        add     fp, sp, #4 
  38:   e24dd008        sub     sp, sp, #8 
  3c:   e3a03000        mov     r3, #0 
  40:   e50b3008        str     r3, [fp, #-8] 
  44:   e3a03000        mov     r3, #0 
  48:   e50b300c        str     r3, [fp, #-12] 
  4c:   e3a03002        mov     r3, #2 
  50:   e50b3008        str     r3, [fp, #-8] 
  54:   e3a03003        mov     r3, #3 
  58:   e50b300c        str     r3, [fp, #-12] 
  5c:   e51b0008        ldr     r0, [fp, #-8] 
  60:   e51b100c        ldr     r1, [fp, #-12] 
  64:   ebfffffe        bl      0 <foo> 
  68:   e50b0008        str     r0, [fp, #-8] 
  6c:   e51b3008        ldr     r3, [fp, #-8] 
  70:   e1a00003        mov     r0, r3 
  74:   e24bd004        sub     sp, fp, #4 
  78:   e8bd4800        pop     {fp, lr} 
  7c:   e12fff1e        bx      lr 

00000000 <foo>: 
   0:   e52db004        push    {fp} 
   4:   e28db000        add     fp, sp, #0 
   8:   e24dd00c        sub     sp, sp, #12 
   c:   e50b0008        str     r0, [fp, #-8] 
  10:   e50b100c        str     r1, [fp, #-12] 
  14:   e51b3008        ldr     r3, [fp, #-8] 
  18:   e51b200c        ldr     r2, [fp, #-12] 
  1c:   e0030392        mul     r3, r2, r3 
  20:   e1a00003        mov     r0, r3 
  24:   e24bd000        sub     sp, fp, #0 
  28:   e49db004        pop     {fp} 
  2c:   e12fff1e        bx      lr 
 

ALP IV: Concepts of Non-Sequential and Distributed Programming Summer Term 2023 



26 

Sequential Processing in further 
Programming Models – Functions 

// Program in C with function 
 
int foo (int a, int b) 
{ 
  return a * b; 
} 
 
int main (void) 
{ 
  int a = 0; 
  int b = 0; 
  a = 2; 
  b = 3; 
 
  a = foo (a, b); 
 
  return a; 
} 

00000000 <foo>: 
   0:   e0000091        mul     r0, r1, r0 
   4:   e12fff1e        bx      lr 
 
Disassembly of section .text.startup: 
 
00000000 <main>: 
   0:   e3a00006        mov     r0, #6 
   4:   e12fff1e        bx      lr 
 

ALP IV: Concepts of Non-Sequential and Distributed Programming Summer Term 2023 



27 

Sequential Processing in further 
Programming Models – Functions 

// Program in C with function 
 
int foo (int a, int b) 
{ 
  return a * b; 
} 
 
int main (void) 
{ 
  int a = 0; 
  int b = 0; 
  a = 2; 
  b = 3; 
 
  a = foo (a, b); 
 
  return a; 
} 

Sequential processing of commands and 
instructions is provided even with function calls. 

ALP IV: Concepts of Non-Sequential and Distributed Programming Summer Term 2023 



28 

Sequential Processing in Object Oriented  
Programming Models – Classes/Objects 

Methods in classes or objects correspond to 
functions. 

// simple program in Java 
public class Rectangle { 
  private int x, y; 
  private int width, height; 
 
  public Rectangle() { 
    x = y = 0; 
    width = 10; 
    height = 10; 
  } 
  // methods ... 
} 
 
public class SimpleProgram { 
  public static void main ( String[] args ) { 
    Rectangle r = new Rectangle (); 
  } 
} 

ALP IV: Concepts of Non-Sequential and Distributed Programming Summer Term 2023 



29 

Functional and Logical Languages 
• In functional and logical (declarative) languages, the runtime environment takes 

care of the translation into (sequential) machine code. 

ALP IV: Concepts of Non-Sequential and Distributed Programming Summer Term 2023 



30 

Non-Deterministic Algorithms 
• In real world applications external events often prevent the deterministic execution 

of a program. 
− user input 
− response of (external) devices 
− timers 

 

• So, the strict definition of determinism is not applicable for most of the programs. 

What does this means for programming and 
correctness of our program? 

ALP IV: Concepts of Non-Sequential and Distributed Programming Summer Term 2023 



31 

Non-Deterministic Algorithms and Programs 

• Programs can (and should) be split into reasonable pieces (modules).  
• These modules should provide a deterministic behavior by their own,  

− using distinct interfaces, 
− by encapsulating internal data 
− (see Lecture on “Software Engineering”) 

 
• Knowledge about every single step in the executing of a program is often not 

needed as long as the results are correct (and the same applies for every other 
run with the same input). 
 

ALP IV: Concepts of Non-Sequential and Distributed Programming Summer Term 2023 



32 

Determined Algorithms and Programs 
 

• Definition: A determined algorithm is an algorithm which, given a specific input, 
produces always the same specific output. 

 
− Thus, all deterministic algorithms are determined algorithms, but not all determined 

algorithms are deterministic. 
− Of course, this definition holds for programs too. 
− (It’s not always usual to distinct determined algorithms from deterministic algorithms – but 

we do.) 
 

− With a more general assumption of input data the definition can be applied to many even 
broader ranges of applications. 
 

ALP IV: Concepts of Non-Sequential and Distributed Programming Summer Term 2023 



33 

Programs with Stochastic Variables 

// Test for random variable 
#include <stdlib.h> 
#include <time.h> 
#include <stdio.h> 
 
int main (void) 
{ 
  int random_nr = 0; 
  srand ((unsigned) time (NULL)); 
  random_nr = rand (); 
  if (random_nr < RAND_MAX / 2) 
    printf ("The random number is in the lower half! \n"); 
  else 
    printf ("The random number is in the upper half! \n"); 
  return 0; 
} 

Does this program provides  
deterministic execution? 

ALP IV: Concepts of Non-Sequential and Distributed Programming Summer Term 2023 



34 

Programs with Stochastic Variables 

// Test for random variable 
#include <stdlib.h> 
#include <time.h> 
#include <stdio.h> 
 
int main (void) 
{ 
  int random_nr = 0; 
  srand ((unsigned) time (NULL)); 
  random_nr = rand (); 
  if (random_nr < RAND_MAX / 2) 
    printf ("The random number is in the lower half! \n"); 
  else 
    printf ("The random number is in the upper half! \n"); 
  return 0; 
} 

With the same start parameters (input data), 
each program run provides the same results 
and the same final state with respect to the 
distribution(s) of the random variables! 

 
 

ALP IV: Concepts of Non-Sequential and Distributed Programming Summer Term 2023 

With these preconditions we do have a 
determined program. 



35 

Programs using ML Algorithms 
• Artificial Intelligence 

− Yes, but… 
− The amount of input data is the amount of all data 

ever processed as input data! 
 
 
 

 
https://www.newscientist.com/article/mg24132214-
100-the-best-image-recognition-ais-are-fooled-by-
slightly-rotated-images/ 

ALP IV: Concepts of Non-Sequential and Distributed Programming Summer Term 2023 



36 

SUMMARY AND TAKE AWAYS 
Concepts of Non-Sequential and Distributed Programming 

ALP IV: Concepts of Non-Sequential and Distributed Programming Summer Term 2023 



37 

Correctness and Determined Program Execution 
• With correct transformation of all of the models from programming model to 

execution model based on machine model the correct and determined (sometimes 
even deterministic) execution of the program can be assured.  
− The program given a specific input, will always produce the same specific output. 
− The sequential execution of the commands and instructions are one foundation of the 

reliable change of the system’s state. 
− We can make reasonable assumptions about the program behavior at the process of 

programming. 
− Afterwards the program can be tested and checked with respect to the machine model. 
 

• Models help us to abstract from real world and provide reasonable assumptions 
about the system and the state changes of the system. 
 

ALP IV: Concepts of Non-Sequential and Distributed Programming Summer Term 2023 



38 

Requirements for Programs 
• A program should do what it is expected to do! 

− Functional requirements, such as  
− Scope of functions 
− Correctness 
 
 

• A program should comply with certain requirements about its behavior. 
− Non-functional requirements, such as 

− Performance 
− Usability 
− Security 
− … 

ALP IV: Concepts of Non-Sequential and Distributed Programming Summer Term 2023 



39 

NEXT LECTURE 
Concepts of Non-Sequential and Distributed Programming 

ALP IV: Concepts of Non-Sequential and Distributed Programming Summer Term 2023 



40 

Institute of Computer Science 
Department of Mathematics and Computer Science 

Summer Term 2023 | 26.04.2023 
Barry Linnert 

Algorithms and Programming IV 
Concurrency 


	Algorithms and Programming IV�Determinism
	Objectives of Today‘s Lecture
	Determinism
	Programming Paradigms
	Requirements for Programs
	Functional Characteristics
	Foundations of Building Correct Programs
	Ordered Execution of a Set of Commands
	Sequential Processing
	Programming
	From Program to Process
	From Program to Machine Program
	From Program to Machine Program
	Process
	Execution of the Program
	Machine Model
	Relations between the Models
	Determinism
	Sequential Processing
	Sequential Processing and Programming Paradigms
	Sequential Processing in further�Programming Models – Loops
	Sequential Processing in further�Programming Models – Loops
	Sequential Processing in further�Programming Models – Functions
	Sequential Processing in further�Programming Models – Functions
	Sequential Processing in further�Programming Models – Functions
	Sequential Processing in further�Programming Models – Functions
	Sequential Processing in further�Programming Models – Functions
	Sequential Processing in Object Oriented �Programming Models – Classes/Objects
	Functional and Logical Languages
	Non-Deterministic Algorithms
	Non-Deterministic Algorithms and Programs
	Determined Algorithms and Programs
	Programs with Stochastic Variables
	Programs with Stochastic Variables
	Programs using ML Algorithms
	Summary AND Take aways
	Correctness and Determined Program Execution
	Requirements for Programs
	Next lecture
	Algorithms and Programming IV�Concurrency

