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Introduction to data analysis
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e Conclusions are not obvious e Quality criteria
® Possible tasks of data analysis: ® Steps:
e Exploring e make data available
e Measuring, Comparing e validate
e Modeling for prediction e explore
e Modeling for understanding e analyze
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"Empirische Bewertung in der Informatik"
Datenanalyse: Einfuhrung

Prof. Dr. Lutz Prechelt
Freie Universitat Berlin, Institut fur Informatik

e Schlusse sind oft nicht klar ® Qualitatskriterien
* MOogliche Aufgaben e Schritte:
e Erkunden e Daten verfugbar machen
e Messen, Vergleichen - Validieren
e Modellieren zur Vorhersage e Erkunden
e Modellieren fur Verstandnis e Analysieren
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Drawing conclusions from data

Consider the following statements:

® "The average consumption of A is 2.9 for the C++ group,
but 5.7 for the Java group.”

e Conclusion?
How clear is this conclusion?

* "The average consumption of B is 0.9 for the C++ group,
but 0.38 for the Java group."

e Conclusion?
How clear is this conclusion?

e "The average consumption of A is 2.9 for the C++ group
(standard deviation 6.3),
but 5.7 for the Java group (std.dev. 11.1)."

e Conclusion?
How clear is this conclusion?
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Drawing conclusions from data (2)

* "There is no significant difference in the average consumption
of D between the C++ group and the Java group (p=0.36)"

e Conclusion?
How clear is this conclusion?

* These statements all refer to the same pair of groups
from the same quasi-experiment:

e C++: N=11
e Java: N=24
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Drawing conclusions from data (3)

e "Except for a few more outliers in the (much larger) Java
group, the boxplots for the consumption of F in the Java vs.
C++ group look fairly similar"

e Conclusion?

How clear is
this conclusion?
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What we have looked at:
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You had even
seen this data previously
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The problem:
Conclusions are not obvious
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What we learn from this example:
* |Looking at only one aspect of real data is not enough
e |Looking at the whole is difficult

e \We can often see certain tendencies

e Dbut is not always clear what they mean
or if they mean anything at all

® => Great care must be taken when analyzing data

* Note we have only compared the values of two different
samples of one variable!

* Analysis becomes much more difficult for
more complex situations

e such as comparing relationships between several variables
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Possible tasks of data analysis

There are several different kinds of general goal when analyzing
data:

. Exploring something

. Measuring something

. Modeling something for explanation
. Modeling something for prediction

. Comparing two or more somethings

ab~hwdNPE

See also http://www.itl.nist.gov/div898/handbook/
e The NIST/SEMATECH e-Handbook of Statistical Methods

= Note this uses the perspective of analog domains (like
manufacturing), not digital domains (like software)

Let's look at each goal:
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1 Exploring something

e You do not know in advance what to expect in the data
® You try to get an overview of the data you have and
to find interesting structure Iin the data

e distributions of samples of individual variables

e relationships between samples of variables

e salient characteristics; unexpected characteristics
e Typical goals:

e creating hypotheses for later investigation

= finding artifacts, problems, peculiarities in the data_

* This is called "Exploratory data analysis" (EDA)
e almost always a good idea when starting

06 |

any data analysis o4 [
e it is more an attitude and work style than 2o -
a concrete task or goal f .
e.g. emphasizing visualization . %?
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2 Measuring something

* You know exactly what aspect of an object you are -
Interested in

e e.g. the number of defects in a particular design

® But the characteristics of the object may make it difficult to
measure that aspect precisely:

e random fluctuations in the measurements (stochastic error)

e.g. because your defect detection/estimation method is unreliable
(e.g. because it is performed by a human being)

e systematic measurement error

e.g. because certain kinds of defects
are almost always overlooked

e corruption of individual data points

e.g. because some part of
a defect list has been lost

Lutz Prechelt, prechelt@inf.fu-berlin.de 11 / 40



Freie Universitit (| Sl 1\

2 Measuring something (2)

The goals:
1. Determining the measurement value
e if derived from a sample, this is called a 'point estimate'

2. Determining the expected structure, size, and direction
of the error components
- {stochastic, systematic, corruption}

e in order to produce a precise and accurate estimate of the aspect
of interest

® These activities are particularly important at the very
beginning of each data analysis

e when validating the input data
e or when the measurement itself is the aim of the study
e and also during modeling (see below)
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3 Modeling something for explanation

e You want to describe the mechanism
that has produced the data

e "replace" many numbers by a small data generation rule
e so that the rule makes sense in your domain

e Example: "WorkTime = UnderstandingTime + ConstructionTime.
UnderstandingTime is 17 minutes per requirements document
page on average. ConstructionTime is ..."

e Such models are the | P
quantitative ingredients of theories :

e (most theory elements will be qualitative)
® Theories are fundamental for progress in
software engineering methods

e Once a theory has been validated, it tells you
where the most progress can be made

e and provides a framework of thinking for practitioners
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4 Modeling something for prediction

® You consider your data to be examples
e inputs and outputs

* You want to find out how to predict
output values given the input values
< by multivariate statistics, machine learning (Y Outputs
» despite the automation, it involves a lot of manual analysis

® Prediction models are often much more complex than
explanation models

e because no interpretation of the model is required

e Rarely important for evaluation

e But useful for project management
e cost estimation, scheduling, staffing, quality management etc.
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5 Comparing something
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You have two or more "things" and want to compare them
with respect to one or more attributes

- which is larger, smaller, faster, ... : }—l o ® I—( )

’l_ o ’E

This is a rather typical scenario in evaluation
e in particular with experiments
e but often also for surveys, benchmarking, etc.

Notes
1. Comparing is very similar to measuring
namely measuring a difference or ratio

2. Comparing is the main realm of significance testing and
confidence intervals
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How to do Iit?

. Exploring something

. Measuring something

. Modeling something for explanation
. Modeling something for prediction

. Comparing something

a b wiNPE

Next week, we will shortly talk about some techniques for
performing these tasks

e Today, we only wanted to understand
e the tasks themselves
e their differences
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Quality criteria for data analysis

e Data analysis has to support the primary quality attributes of
the empirical study overall:

e credibility and relevance

® |t can usually not do much for relevance
e Exception: Exploratory quantitative studies

* To support credibility, the following properties are required.
Data analysis must be

e correct: Data has not been mis-collected nor mis-processed and
we trust the analysis (and hence its results)

e illustrative (""anschaulich™): It is easy to understand
(a) what the results say, (b) how they came to be from the data
The analysis makes us understand the data itself

e informative: The analysis reports results that are relevant and
helpful for answering the study question
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Problems with the quality attributes

® (Correctness:

e Complex analyses almost always require assumptions that can
not be fully validated

e.g. normality or even just representativeness
- understand the assumptions of your analyses!

e Weaknesses in the data may be pronounced by the analysis

e |llustrativeness:

e "Most illustrative" is a different thing to different people

e |Informativeness:

e The more detailed and the more validated the results are, the
harder to understand they tend to become

e But difficulties in understanding reduce the informativeness

e Hence, there is a tradeoff between precision and simplicity
Trade off very consciously! (Perhaps report in multiple formats)

Lutz Prechelt, prechelt@inf.fu-berlin.de
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Where are we?

e Conclusions are not obvious e Quality criteria

® Possible tasks of data analysis: ® Steps: _
= Exploring - make data available
» Measuring, Comparing - validate
 Modeling for prediction * explore
e Modeling for understanding - analyse

We will now look at:
e these four tasks and

e some practical advice for
performing them
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Make data available

e Data can be collected in many different ways
e by hand on paper :
e by hand with some collection software tool
e automatically by some mechanism
e or data may already exist

* |Initially, the data is often not in a form directly suitable for
the analysis software

e May need encoding (e.g. anonymize personal information)
e May need collection (when it comes from different sources)
e May need collating (when it is distributed over many files)
e May need syntactical processing (to match a target format)
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Make data available (2) %

e Manual data-collection work is error-prone
e Manual data-transformation work is error-prone

* Use automation whereever possible
e Manual processes make individual mistakes:
hard to catch

e Automated processes make systematic mistakes:
can be found by testing
Starting over from scratch is cheap!

e Furthermore, automation scripts serve as an audit trail

* Double-check your data whenever possible
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Make data available (3): Encoding

® Principles:
e Remove superfluous information
Keep only relevant (or potentially relevant) information
This helps avoid confusion-based mistakes
e Choose analysis-friendly representations
Perhaps encode redundantly in more than one form
e Redundancy helps find many kinds of mistakes

e Making data anonymous:
= Just removing all names etc. makes many analyses impossible
because many relationships between data records are lost

e Better solution: Pseudonyms

Consistently replace Meier, Mduller, Huber, Schmidt by
subjl, subj2, subj3, subj4

Then throw away the mapping
Or collect your data in this form right from the start
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Validate data

e Typical problems when making data available:
e Some data is lost
e Some data is corrupted
e Some data is confused or mis-labeled

* |In the validation step, we try to recognize these events:
e Always compare actual and expected data counts

e Check for impossible or unlikely values
continuous data: very low, very high values
discrete data: very frequent, very rare values
e Check the consistency of any redundant information
Having redundancy is a very good idea!
e Hand-check a few random data points against the earliest
possible form of the data source they come from
and keep checking if any problems were found
errors tend to cluster; repairing errors may introduce new ones
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Validation: example

e Are these data correct?

e they were computed and typed-in by two persons
half each

e If not, what may have gone wrong?

ﬁ“\ / & ‘84

0 20 40 60 80 100
Fehlerquote [%]
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Validation: example (2)

* Are these manually collected data correct?

e What would you do to find out?
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Explore data

e Get an overview of the whole dataset

e | ook at individual variables

® Look at pairs of variables

* Quick-check specific expectations, if any

e We use an example data set to illustrate the ideas:
http://www.tpc.org/tpcc/results/tpcc_results.txt (as of 2004-04)

e TPC: Transaction Processing Council
e tpmC: Transactions-per-minute (type C)
an RDBMS benchmark

e The data set tpc used here is tpcc_results.txt after a number of
encoding steps

e Concrete commands for the steps in R syntax are shown
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Explore:
Get an overview of the dataset
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e |s all data in one set or are there multiple connected sets?

e e.g. one set describing experimental subjects and another
containing four records of observations for each subject

« If there were multiple data sets, we would need JOIN operations
for some analyses (like in a relational database)

merge() in R; in this case we do not

* How many observations are there?

e tpc = read.delim("tpcc_results.txt")
e nrow(tpc) » 127

e Which variables of which types are there?

e names(tpc) =2 tpmC, dollarPerTpmC, cpus, frontEnds, cputype,
freq, ostype, tpmon, and several others

e sapply(tpc, class) -2 tpmC:numeric, cputype:factor, etc.
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Types of variables

* The R type of a variable is related to its scale type:

* Nominal variables:
- factor (or logical)
- often used to segment the dataset into parts
® QOrdinal variables:
e ordered (a special kind of factor)
e Variables on difference scales:
e numeric
e for times and dates: POSIXct etc.
e Variables on ratio scales:
e numeric
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Explore: Look at individual variables
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e For nominal and ordinal data:

e Review levels and frequencies of the factor

e e.g. sort(table(tpc$cputype)):

Xeon Pentium3 Itanium2 RS64 other ...

66 21 11

e Perhaps visualize the i
proportions graphically

e e.g. plot(tpc$cputype)
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Explore:
Look at individual variables (2)
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® For numerical data: Review the distribution

e Numerically as a summary

e.g. summary(tpc$freq):
Min. 1st Qu. Median Mean 3rd Qu. Max.
464 1000 1700 1860 2800 3200
e Graphically as a barplot, stripplot, boxplot, density plot or
combination thereof

boxplot
(box-and- _
| | | | whiskers plot) whisker
stripplot
of raw | ™ |
- . »
data %® 8380 8 P o ® B 80 o ° 8 8 o P 88 8
500 1000 1500 2000 2500 3000

freq
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Boxplot explained

arithmetic mean

25-percentile, +/- 1 stderr  75-percentile, _
0.25 quantile, median, 0.75 quantile 90-percentile,
firsthuartile - 0.5 que}ntile | third quartile 0.9 quantile
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0.1 quantile —
J |7 oY M 4| I
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* The above is a flexible, non-standard type of boxplot
e library(agsemisc); bwplot(..., panel=panel.bwstrip)

e Conventionally, whiskers extend up to 2 iqr beyond the box
e and end at a data point; igr: interquartile range (box width)

e Conventionally, stripplot and meanplot are missing
= except for "outliers" (data values beyond the whiskers)

31/ 40
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Explore:
Look at individual variables (3)
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densityplot with boxplot and stripplot
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Explore:
Look at individual variables (4)
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® Look for "unnatural” phenomena:

e in this case: "round" numbers (10, 12, 15, 20) are suspiciously
more frequent than others (9, 11, 13, 19, 21,

14

(this data is from a
completely different
data set)

= - IIIIII‘|I||“\“\ll“\“\ll“\|||IIIII‘|III“\Illl\IIIIIIIIIIIIIIIIII

9 10 12 12 14 15 16 17 18 19 20 21 22 23 24 25 29 30 32 35

I am programming since ... years

Anzahl
5] 8 10 12
| |

4
|

2
|

Lutz Prechelt, prechelt@inf.fu-berlin.de 33 / 40



Freie Universitat ([l Sel

Explore: Look at pairs of variables

0 20 40 60 80 100 120

e For the numerical . . | &
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Explore:
Quick-check specific expectations
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e expectation: "The Unix machines have lower clock rates™
(because of their RISC architectures at that time)

e Approach: Comparative boxplots

o] ®® © O 00 ¢] 8 0

500 1000 1500 2000 2500 3000
freq
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Explore: Y <
Quick-check specific expectations (2) -~ i,

® expectation: "Faster clocks and more CPUs lead to
proportionally higher tpmC"
e Approach: Scatterplot of tpmC versus fregq*cpus
e xyplot(tpmC — freg*cpus, data=tpc)
e xyplot(sgrt(tpmC) — sqgrt(freg*cpus), data=tpc,
groups ostype, panel=function(...) { panel.Imline(...);
panel.superpose(...) })

Windows %)
c n
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E/ @ /_
@ —
® n
//‘“ ® @ I
| | |
200 250 300

sgrt(freq * cpus)
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Perform analysis:
measure, model, or compare
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* |In principle, exploration and analysis both use
the same techniques

= Exploration tends to prefer graphical visualization techniques
e.g. a scatterplot
Because they are quick to review and understand
Because unexpected characteristics are easily seen
= Analysis tends to prefer quantitative, numerical techniques
e.g. a correlation coefficient
...because they are "more precise"
Attention: The precision can be misleading!
...because they focus on one aspect
but that can be a disadvantage, too. Use visualization as well.

e Techniques will be covered in more detail in
next week's presentation
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A note on plotting in R
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R has three groups of plotting
operations:

® The basic group consists of
high-level operations for
producing complete plots
e plot, boxplot, and others
e and low-level operations for
adding to plots
e points, lines, text etc.

log(zinc): universal kriging using sqrt{dist to Meuse)

(unrelated
plot)

P— 1

The other is known as Lattice

(formerly Trellis) and uses

high-level operations for

producing complete plots

- xyplot, bwplot, etc.

(panel.xyplot etc. do the actual
work)

and low-level operations for

use in panel functions

e Ipoint, llines, Itext etc.
Lattice specializes in producing
many plots at once:

e library(lattice);
xyplot(tpmC~freq|tpmon,
data=tpc)

The third one, called grid, is
the basis for Lattice

e very flexible, cumbersome

furthermore: ggplot2 38 /40



"lattice" example:

xyplot(tpmC—freqg|tpmon, data=tpc)
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Thank you!
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