
1 / 52 Lutz Prechelt, prechelt@inf.fu-berlin.de

Course "Empirical Evaluation in Informatics"

Lutz Prechelt
Freie Universität Berlin, Institut für Informatik

Other methods 

•Simulation
• example: P2P scalability

•Legacy data analysis
• example: code decay

•Literature study
• example: model for review 

effectiveness



2 / 52 Lutz Prechelt, prechelt@inf.fu-berlin.de

"Empirische Bewertung in der Informatik"

Prof. Dr. Lutz Prechelt
Freie Universität Berlin, Institut für Informatik

Sonstige Methoden 

•Simulation
• Bsp: P2P-Skalierung

•Analyse vorhandener Daten
• Bsp: Code-Verfall

•Literaturstudie
• Bsp: Modell f. Effektivität

von Durchsichten



3 / 52 Lutz Prechelt, prechelt@inf.fu-berlin.de

The methods landscape

• Again, we look at
M. Zelkowitz and D. Wallace: 
"Experimental Models for Validating Technology", 
IEEE Computer 31(5), May 1998.

• Considers three broad categories of validation methods:
• Observational: 

Observe a process as it unfolds, but influence it hardly or 
not at all

• Case Study
• Historical: 

Observe evidence of a process after the fact
• Survey, Legacy Data Analysis, Literature Study

• Controlled: 
Observe a process, with purposeful influence on 
the process characteristics

• Controlled Experiment, Quasi-Experiment, Benchmarking, Simulation

http://doi.ieeecomputersociety.org/10.1109/2.675630


4 / 52 Lutz Prechelt, prechelt@inf.fu-berlin.de

Simulation

• Approach:
• Formulate a model of some process or system
• Implement that model as a program
• Set parameters and run the model; vary parameters
• Observe behavioral variables of interest

• Advantages:
• Can produce lots of data for fairly complex situations at low cost
• Allows to study emergent properties that are beyond analytical 

understanding and to describe the conditions under which they 
emerge

• Disadvantages:
• It is very difficult to validate that the model is 

appropriate/right/valid with respect to the variables of interest



5 / 52 Lutz Prechelt, prechelt@inf.fu-berlin.de

Simulation: Application areas

• Study systems that do not (yet) exist
or are hard to observe
• e.g. proposed hardware architectures
• e.g. networks of 10000 new mobile devices
• e.g. the whole Internet

• Study systems that evolve only slowly
• e.g. software process simulation for project planning

• (this is how the weather forecast is computed)

• Study effects of impossible or impractical manipulations
• e.g. disaster studies of the Internet infrastructure
• e.g. studying certain traffic situations for a class of 

potential future networks
• e.g. what-if studies of software project dynamics



6 / 52 Lutz Prechelt, prechelt@inf.fu-berlin.de

Simulation example: 
Scaling a P2P network

• Yatin Chawathe, Sylvia Ratnasamy, Lee Breslau, 
Nick Lanham, Scott Shenker: 
"Making Gnutella-like P2P systems scalable", 
Proc. ACM SIGCOMM 2003

• Proposes a system called GIA that improves scaling behavior
• http://www.planet-lab.org/

Chawathe Ratnasamy Breslau Shenker

https://doi.org/10.1145/863955.864000
http://www.planet-lab.org/


7 / 52 Lutz Prechelt, prechelt@inf.fu-berlin.de

Peer-to-peer networks

• Standard client/server networks have disadvantages:
• Restricted scalability: Server overload in high-traffic situations
• Limited availability: Single point of failure
• Servers are expensive and require much maintenance and 

administration effort

• Peer-to-peer (P2P) networks try to avoid this:
• Each node is client and server at once
• Network is totally de-centralized: 

Structure, reliability, administration
• P2P networks are typically overlay networks: 

a logical network layered on top of an existing network
• (The Internet is also an overlay network)



8 / 52 Lutz Prechelt, prechelt@inf.fu-berlin.de

P2P applications

• P2P networks have many applications
• end-user file sharing (e.g. Gnutella)
• ad-hoc networks of mobile devices
• distributed databases
• electronic currency (e.g. Bitcoin)
• etc.

• We only look at file sharing here



9 / 52 Lutz Prechelt, prechelt@inf.fu-berlin.de

P2P approaches

• Solution 1: Flooding (e.g. Gnutella)
• Performs searches by recursively asking all neighbors in the 

network
• Up to a maximum distance of hops (time-to-live parameter)

• Requires O(n) steps with n nodes to find a file
• Potentially bad scaling behavior: at high load, the network 

quickly becomes globally overloaded

• Solution 2: Distributed Hash Tables (DHTs)
• De-centralized solution for mapping a filename to a host
• Can locate the node holding a file in O(log n) steps for n nodes
• Potentially much better scaling behavior
• However, keyword searching is not directly supported



10 / 52 Lutz Prechelt, prechelt@inf.fu-berlin.de

P2P file sharing phenomena

Mass file sharing is a rather specific P2P problem:
1. Extremely transient node participation

• e.g. average uptime of 60 minutes in Gnutella
• No problem for flooding; expensive for maintaining DHTs 

2. Very heterogeneous node capacity (connection bandwith)
3. Many more keyword searches than full-filename queries

• Because exact file names are rarely known
• This is no problem for flooding, but requires complex additional 

mechanisms to be accomodated by DHTs
4. Most queries are for highly replicated files

• What is in popular demand is also offered frequently
• This means flooding can actually be much cheaper on average

than expected
• and DHTs biggest strength is not so important at all



11 / 52 Lutz Prechelt, prechelt@inf.fu-berlin.de

Improving flooding: GIA

• Replace flooding by random walk
• e.g. consider only 1 random neighbor instead of all

• Problems:
• Random walk is blind: does not consider that some neighbors 

might be more promising than others
• If it hits an overloaded node, it will be stalled

• GIA improvement suggestions:
• TADAPT: Give high-capacity nodes more neighbors

• So that those nodes receive most queries that are best up to 
handle them

• BIAS: Bias the random walk towards high-capacity nodes
• FLWCTL: Active flow control to avoid overloaded nodes
• OHR: Replication of file name lists to one-hop neighbors

• so that high-capacity nodes can answer very many queries



12 / 52 Lutz Prechelt, prechelt@inf.fu-berlin.de

Protocol variants considered

The study now investigates four variants of Gnutella-style file
sharing protocols:

• FLOOD:
• The standard Gnutella protocol

• RWRT:
• Random walks over random topologies

• SUPER:
• Discriminate supernodes and non-supernodes. 

Do flooding only over the supernodes
• Not discussed here

• GIA:
• All four improvements as described before

• Now set up a simulation



13 / 52 Lutz Prechelt, prechelt@inf.fu-berlin.de

Setting simulation parameters

• Take distribution of node
capacity from another study
• and simplify it to make it

practical
• Assign the 1000x and 10000x 

levels to be the supernodes (high-capacity nodes)
• Not discussed here

• Assume constant query-generation rates for each node
• bounded by node capacity

• Topology: Set number of neighbors in range 3…128
• average degree is 8
• limit neighbors for low-capacity nodes
• average resulting network diameter is 7

• Time-to-live: 
• 10 for FLOOD/SUPER, 
• 1024 for RWRT/GIA



14 / 52 Lutz Prechelt, prechelt@inf.fu-berlin.de

Setting simulation parameters (2)

• Consider different (fixed) "replication factors": 
The fraction of 
nodes that 
can fulfill a 
given query

• derived 
from 
separate 
mini-study 
of actual 
Gnutella 
replication 
and query 
behavior



15 / 52 Lutz Prechelt, prechelt@inf.fu-berlin.de

Performance measures

The simulation considers three measures of goodness:
• success rate:

• Fraction of queries that locate the file (which always exists)
• hop count:

• Number of communication steps required for a query
• delay:

• Time until a query returns its result

• query load = 0.1 means that in each time unit, each node 
issues 0.1 queries (0.1 qps/node)



16 / 52 Lutz Prechelt, prechelt@inf.fu-berlin.de

Simulation results: 
Collapse point effect

• Is similar for 
all protocols
• only earlier

• Is roughly 
inverse for delay

GIA



17 / 52 Lutz Prechelt, prechelt@inf.fu-berlin.de

Simulation results: 
Collapse point comparison

0.00001

0.001

0.1

10

1000

0.01 0.1 1
Replication Rate (percentage)

C
ol

la
ps

e 
Po

in
t (

qp
s/

no
de

)

GIA: N=10,000

SUPER: N=10,000

RWRT: N=10,000
FLOOD: N=10,000

% % %


Chart1

		0.01		0.01		0.01		0.01

		0.05		0.05		0.05		0.05

		0.1		0.1		0.1		0.1

		0.5		0.5		0.5		0.5

		1		1		1		1



GIA: N=10,000

SUPER: N=10,000

RWRT: N=10,000

FLOOD: N=10,000

Replication Rate (percentage)

Collapse Point (qps/node)

0.1

0.015

0.00005

0.00005

2.5

0.015

0.00015

0.0003

7

0.015

0.0005

0.00025

75

0.015

0.003

0.00025

350

0.015

0.005

0.00025



Sheet1

		0.01		0.1		483		0.00005		8659		0.00003		15.2		0.00005		8.1		0.015		0.05		2.5		43.3		0.0002		1584		0.0005		7.9

		0.05		2.5		42.5		0.00015		1820		0.00015		14.2		0.0003		7.8		0.015		0.1		6		19.2		0.0004		1036		0.0005		7.7

		0.1		7		15		0.0005		978		0.00015		13.5		0.00025		7.6		0.015		0.5		75		2.3		0.003		196.1		0.0006		7

		0.5		75		2.3		0.003		200		0.00015		11.8		0.00025		7.1		0.015		1		350		1.41		0.0075		99.9		0.0006		7

		1		350		1.4		0.005		98.7		0.00015		9.9		0.00025		6.6		0.015

		MaxQ-10k																				MaxQ-5k







18 / 52 Lutz Prechelt, prechelt@inf.fu-berlin.de

Factor Analysis

Algorithm Collapse 
point

RWRT 0.0005

RWRT+OHR 0.005

RWRT+BIAS 0.0015

RWRT+TADAPT 0.001

RWRT+FLWCTL 0.0006

Algorithm Collapse 
point

GIA 7

GIA – OHR 0.004

GIA – BIAS 6

GIA – TADAPT 0.2

GIA – FLWCTL 2

No single component is sufficient alone; 
only the combination of all of them makes GIA scalable



19 / 52 Lutz Prechelt, prechelt@inf.fu-berlin.de

Summary of simulation example

• Topic: 
• A P2P file sharing system with severe scalability problems
• Now exploit known specific characteristics, 

• in particular heterogeneity of node capacity
• to propose four improvements

• Evaluation approach:
• Evaluate relative performance of the improvements in 

large-scale use by means of simulation
• Obtain important simulation parameters by

instrumental mini-studies
• Using the right parameters is crucial!

• Overall: Fairly complicated!



20 / 52 Lutz Prechelt, prechelt@inf.fu-berlin.de

Topics today

• Simulation

• Analysis of legacy data

• Literature study



21 / 52 Lutz Prechelt, prechelt@inf.fu-berlin.de

Analysis of legacy data

• Approach:
• Analyze existing sets of data

• initially called "software archaeology", 
now called "mining software repositories"

• very many different approaches are possible
• Investigate new questions or look at more data at once

• Advantages:
• Can sometimes use large amounts of data with low effort
• Questions only found later can often be answered just as well as

the original ones

• Disadvantages:
• If additional data is required, it may be impossible to get it
• Data quality can be hard to assess

http://www.msrconf.org/


22 / 52 Lutz Prechelt, prechelt@inf.fu-berlin.de

Analysis of legacy data example

• Stephen G. Eick, Todd L. Graves, Alan F. Karr, J. S. Marron, 
Audris Mockus: "Does code decay? Assessing the evidence 
from change management data",
IEEE Trans. on Software Engineering 27(1):1-12, 
January 2001.

Graves Karr Marron Mockus

http://doi.ieeecomputersociety.org/10.1109/32.895984


23 / 52 Lutz Prechelt, prechelt@inf.fu-berlin.de

Study question

• Do the common software engineering practices lead to code 
decay when a large software system is frequently changed 
over a long time?

• A unit of code is considered decayed if it is harder to change 
than it could be (e.g. harder than it used to be)
• measured in terms of effort, interval and quality



24 / 52 Lutz Prechelt, prechelt@inf.fu-berlin.de

Possible reasons for code decay

• Inappropriate architecture
• Code cannot accomodate a change well

• Violation of design ideas
• One change done in an inapproprate way makes further changes 

difficult
• Inadequate change environment

• e.g. maintenance tools, organizational environment,
change processes

• Programmer variability

All these are exacerbated by:
• Time pressure
• Imprecise requirements

• Producing a sequence of changes rather than just one



25 / 52 Lutz Prechelt, prechelt@inf.fu-berlin.de

Software system studied

The software of a telephone switching system

• About 100 Mio. lines of C code total
• plus 100 Mio. lines of other files (header files, make files)
• 50 major subsystems, 5000 directories
• Each release consists of about 20 Mio. lines of code

• Under development since 15 years
• About 10000 developers have worked on it



26 / 52 Lutz Prechelt, prechelt@inf.fu-berlin.de

The data studied

• The full change history of the code of one subsystem
• as recorded in the version management system
• 100 directories, 2500 files

• Changes are described on four levels of increasing granularity
• delta: a change to one file from one revision to the next
• modification request (MR): description of a solution to a problem
• initial modification request (IMR): description of a problem to 

be solved
• feature: a marketable function of the system as a whole

• Change history is available for files, MRs, IMRs, features
• 130 000 deltas, 27 000 MRs, 6 000 IMRs
• 500 people making changes



27 / 52 Lutz Prechelt, prechelt@inf.fu-berlin.de

Plausible symptoms of decay

• Excessively complex ("bloated") code
• A history of frequent changes ("code churn")
• A history of faults
• Widely dispersed modifications within one change
• Kludges
• Numerous interfaces (e.g. many entry points)

• The study defines CDIs (code decay indices) 
for some of these symptoms 
• The indices are based directly on the 

version management data churning



28 / 52 Lutz Prechelt, prechelt@inf.fu-berlin.de

Risk factors for decay

A code unit has a higher probability of decaying
if the following factors are high:
• Size

• large units tend to decay more easily
• Age

• although very stable code can be rather old without decay
• Inherent complexity, e.g. due to requirements load

• code that must do many things or difficult things
• Organizational churn or inexperienced developers

• makes design violations more likely
• Porting or reuse

• Like before, CDIs are defined for some of these



29 / 52 Lutz Prechelt, prechelt@inf.fu-berlin.de

Results

There is code decay in this system, as indicated by:
• The span of changes increases over time

• loess smooths w. span 0.3 (purple), 1.5 (r/p/b), 7.5 (blue)

red: decrease, statistically significant
blue: increase, statistically significant
purple: direction is not statistically significant



30 / 52 Lutz Prechelt, prechelt@inf.fu-berlin.de

Results (2)

• The increase in span is accompanied by a breakdown of 
modularity in the code
• each point (pin head)

represents one 
directory

• positions are such 
that dirs often changed
together are close
together

• the tail indicates the 
position one year 
before

• there are two clear
clusters

• and then some



31 / 52 Lutz Prechelt, prechelt@inf.fu-berlin.de

Results (3)

• 8 years later, the
large-scale modularity
has almost completely
disappeared

(a very good visualization!)



32 / 52 Lutz Prechelt, prechelt@inf.fu-berlin.de

A side note: SeeSoft

• A tool for visualizing aspects of source code lines
• rectangle: file,  line: line,  color: age of line

• many other visualizations are available as well



33 / 52 Lutz Prechelt, prechelt@inf.fu-berlin.de

Summary of legacy data example

• Analyzing legacy data allows for evaluating 
large-scale situations
• extending over a long time
• representing an immense number of events

• If done carefully, such analyses can be very credible
• although we have not discussed the details of the 

arguments used here
• External validity may be difficult to obtain, though



34 / 52 Lutz Prechelt, prechelt@inf.fu-berlin.de

Topics today

• Simulation

• Analysis of legacy data

• Literature study



35 / 52 Lutz Prechelt, prechelt@inf.fu-berlin.de

Literature study

• Approach:
• Review multiple published empirical studies on a similar topic
• Draw conclusions based on the union of the data or results

• Conclusions that are not possible from any one study alone
• If this follows a rigorous protocol, such studies are now called

Systematic Literature Reviews (SLRs)

• Advantages:
• Relatively low effort
• Can in principle provide a very broad empirical basis

• Disadvantages:
• There are rarely enough similar studies on one topic
• "file drawer problem": Unsuccessful studies remain published

• Hence the unified picture from a literature search may be biased
• Publications often lack important detail information



36 / 52 Lutz Prechelt, prechelt@inf.fu-berlin.de

Example for Literature Study

• C. Sauer, D.R. Jeffery, L. Land, Ph. Yetton: 
"The Effectiveness of Software Development Technical 
Reviews: A Behaviorally Motivated Program of Research"
IEEE Transactions on Software Engineering 26(1): 1-14, 
January 2000.

http://doi.ieeecomputersociety.org/10.1109/32.825763


37 / 52 Lutz Prechelt, prechelt@inf.fu-berlin.de

Definition 
"Software Dev. Technical Review"

• Software Development Technical Reviews (SDTRs) are 
• an organizational device 
• for detecting defects in software products 
• at any stage of the life cycle 
• and for obtaining secondary benefits 
• through a two-stage process 
• in which software engineers first independently inspect the 

software product for defects and then 
• combine their efforts in a group meeting 
• in which the participants adopt roles 
• with the goal of producing a report 
• in which all the defects agreed upon by the group are identified.

• This includes inspections, reviews, walkthroughs, etc.



38 / 52 Lutz Prechelt, prechelt@inf.fu-berlin.de

Goals of the study

• Long-term goal
• Obtain a validated theory explaining the effectiveness of SDTRs 

in terms of a number of influencing factors

• Goal of the current work
• Formulate a set of propositions that outline such a theory
• Some of these propositions may be entirely unvalidated
• Most are only partially validated
• Therefore, the propositions describe a research program

• Thus the title of the article



39 / 52 Lutz Prechelt, prechelt@inf.fu-berlin.de

Approach of the study

Approach:
• Take an existing theory of group behavior for 

a class of two-stage decision tasks
• developed by research on social psychology

• Apply this theory to SDTRs and 
formulate according propositions

• Review all previous studies on technical reviews to find 
support for the propositions -- or lack thereof
• The article has 88 literature references



40 / 52 Lutz Prechelt, prechelt@inf.fu-berlin.de

The existing theory: Tasks studied

• Group research has investigated empirically a class of 
problems like the following ("Lost in the desert"):
• Members of a group are told to imagine they were stranded in 

the desert with a limited number of implements available to 
them, e.g., knife, string, mirror, etc.

• Each member individually is to rank these items according to 
their survival value

• Then the group meets and decides on a common ranking

• A lot of experiments have been performed and a theory of 
decision performance has been formulated
• The theory can explain much of the variance observed

• The decision task resembles software inspections:
• First individuals make up their mind
• Then a group makes a collective decision
• Difference: The set of defects is more open than the usefulness 

ranking



41 / 52 Lutz Prechelt, prechelt@inf.fu-berlin.de

The existing theory: Graphical sketch

• Terms are 
factors

• Arrows indicate
influence



42 / 52 Lutz Prechelt, prechelt@inf.fu-berlin.de

The existing theory: 
Verbal description

• Performance is determined by effective group expertise
• If the group has a bad social decision process or other process 

flaws, its effective expertise will be below the available 
expertise
• The decision process needs to select the best task expertise 

embedded in all of the members' individual rankings
• Available group expertise is roughly the union of the 

members' expertise
• Thus, it tends to increase with group size
• and it increases with the amount of members' individual 

expertise
• and the dis-similarity of these

• Individual expertise depends on the amount of task training 
an individual has had



43 / 52 Lutz Prechelt, prechelt@inf.fu-berlin.de

Propositions and evidence for them

• Applying the existing theory to SDTRs 
leads to 11 propositions

• (We will discuss only some of them)
• For some of these there is existing empirical evidence
• For others, there is little or none

• P1: In SDTRs, task expertise is the dominant determinant of 
group performance
• Two studies find such an effect
• A few studies explicitly factor the influence out
• Most studies ignore the issue



44 / 52 Lutz Prechelt, prechelt@inf.fu-berlin.de

Propositions 
and evidence for them (2)

• P2: In SDTRs, decision schemes (plurality effects) influence
interacting group performance
• Decision is difficult if a defect candidate has been found by only

one reviewer (i.e., there is no "plurality")
• The frequency of this is unknown, but appears to be high

• P3: In SDTRs, in the absence of a plurality, interacting group
performance is a positive function of process skills
• Having different roles in the group improves performance
• No other evidence is available

• P4: In SDTRs, the interacting group meeting does not 
improve group performance over the nominal group by
discovering new defects
• Evidence (but not strong) from various studies is available



45 / 52 Lutz Prechelt, prechelt@inf.fu-berlin.de

Propositions 
and evidence for them (3)

• P5: In SDTRs, group performance is a positive function of 
task training
• The only available study reports a 90 percent user defect

reduction after training in software reading techniques

• P6: In SDTRs, the performance/size relationship is a function
of task expertise.
• No evidence is available

• P7: In SDTRs, above a critical limit, performance declines
with increasing group size
• There is evidence for process loss from a number of studies
• But there is no direct support for the proposition



46 / 52 Lutz Prechelt, prechelt@inf.fu-berlin.de

Propositions 
and evidence for them (4)

• P8: In SDTRs, the performance advantage of an interacting
group over a nominal group is a function of the level of false
positives discovered by individuals
• There is evidence that meetings do discriminate false positives 

from true defects
• But no formal test of the proposition has been performed

• P9: In SDTRs, an expert pair performs the discrimination task
as well as any larger group
• One study reports that groups of 4 were not significantly better

than groups of 2
• But no formal test of the proposition has been performed



47 / 52 Lutz Prechelt, prechelt@inf.fu-berlin.de

Propositions 
and evidence for them (5)

• P10: In SDTRs, nominal groups outperform alternatives 
(1 reviewer, best reviewer from group, review meeting) at the
discovery task
• Several studies confirm this
• BTW: Similar results exist for brainstorming

• Prepared individuals result in more overall ideas compared to only a 
brainstorming meeting

• P11: In SDTRs, the defect discovery performance/size
relationship for nominal groups is a function of task expertise
• Like P7, this has not yet been studied much



48 / 52 Lutz Prechelt, prechelt@inf.fu-berlin.de

Conclusions: 
Consequences for research

• Several propositions need to be validated
• This is a research program that can now more clearly be 

understood than before

• Reading technology research should continue
• Roles, checklists, scenarios, perspectives, …
• It can make individual reviewers more effective and can improve 

the efficiency of larger group sizes

• We need research for understanding review expertise
• So that we can develop proper reviewer trainings
• Because reviewer task expertise is the single most important 

factor for review effectiveness



49 / 52 Lutz Prechelt, prechelt@inf.fu-berlin.de

Conclusions: 
Consequences for practice

• For defect detection, one may be able to substitute expertise 
by larger numbers of reviewers

• However, too-large groups may produce insufficient 
motivation in the reviewers
• One may try incentive systems to overcome this

• Defect discrimination meetings should be abandoned
• unless false positives are frequent or harmful

• or be replaced by a single expert review-reviewer



50 / 52 Lutz Prechelt, prechelt@inf.fu-berlin.de

Summary 
of literature study example

• Re-using what is available in the literature can be 
a cost-efficient way of obtaining empirical information
• Note there are specific, well-defined methods for doing this:

systematic literature review (SLR), mapping study, 
meta-analysis, thematic synthesis, etc.

• In particular, by considering more and diverse work, 
we may be able to obtain more understanding
than any single study ever could

• A unified view of multiple studies can sometimes 
resolve credibility or relevance problems

• In the current state of software engineering research, 
theory-building should probably start by means of 
literature studies



51 / 52 Lutz Prechelt, prechelt@inf.fu-berlin.de

Summary: Other methods

• There are more approaches for empirical evaluation than 
those we have covered in a full two-hour lecture

• Examples are 
• Simulation, 

• Example: P2P query scaling behavior (GIA) study
• Analysis of legacy data, and 

• Example: code decay study
• Literature studies

• Example: theory of review effectiveness study

• Each has its specific strengths



52 / 52 Lutz Prechelt, prechelt@inf.fu-berlin.de

Thank you!


	�Other methods �
	Sonstige Methoden �
	The methods landscape
	Simulation
	Simulation: Application areas
	Simulation example: �Scaling a P2P network
	Peer-to-peer networks
	P2P applications
	P2P approaches
	P2P file sharing phenomena
	Improving flooding: GIA
	Protocol variants considered
	Setting simulation parameters
	Setting simulation parameters (2)
	Performance measures
	Simulation results: �Collapse point effect
	Simulation results: �Collapse point comparison
	Factor Analysis
	Summary of simulation example
	Topics today
	Analysis of legacy data
	Analysis of legacy data example
	Study question
	Possible reasons for code decay
	Software system studied
	The data studied
	Plausible symptoms of decay
	Risk factors for decay
	Results
	Results (2)
	Results (3)
	A side note: SeeSoft
	Summary of legacy data example
	Topics today
	Literature study
	Example for Literature Study
	Definition �"Software Dev. Technical Review"
	Goals of the study
	Approach of the study
	The existing theory: Tasks studied
	The existing theory: Graphical sketch
	The existing theory: �Verbal description
	Propositions and evidence for them
	Propositions �and evidence for them (2)
	Propositions �and evidence for them (3)
	Propositions �and evidence for them (4)
	Propositions �and evidence for them (5)
	Conclusions: �Consequences for research
	Conclusions: �Consequences for practice
	Summary �of literature study example
	Summary: Other methods
	Thank you!

