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Other methods 

•Simulation
• example: P2P scalability

•Legacy data analysis
• example: code decay

•Literature study
• example: model for review 

effectiveness
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Sonstige Methoden 

•Simulation
• Bsp: P2P-Skalierung

•Analyse vorhandener Daten
• Bsp: Code-Verfall

•Literaturstudie
• Bsp: Modell f. Effektivität

von Durchsichten
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The methods landscape

• Again, we look at
M. Zelkowitz and D. Wallace: 
"Experimental Models for Validating Technology", 
IEEE Computer 31(5), May 1998.

• Considers three broad categories of validation methods:
• Observational: 

Observe a process as it unfolds, but influence it hardly or 
not at all

• Case Study
• Historical: 

Observe evidence of a process after the fact
• Survey, Legacy Data Analysis, Literature Study

• Controlled: 
Observe a process, with purposeful influence on 
the process characteristics

• Controlled Experiment, Quasi-Experiment, Benchmarking, Simulation

http://doi.ieeecomputersociety.org/10.1109/2.675630
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Simulation

• Approach:
• Formulate a model of some process or system
• Implement that model as a program
• Set parameters and run the model; vary parameters
• Observe behavioral variables of interest

• Advantages:
• Can produce lots of data for fairly complex situations at low cost
• Allows to study emergent properties that are beyond analytical 

understanding and to describe the conditions under which they 
emerge

• Disadvantages:
• It is very difficult to validate that the model is 

appropriate/right/valid with respect to the variables of interest
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Simulation: Application areas

• Study systems that do not (yet) exist
or are hard to observe
• e.g. proposed hardware architectures
• e.g. networks of 10000 new mobile devices
• e.g. the whole Internet

• Study systems that evolve only slowly
• e.g. software process simulation for project planning

• (this is how the weather forecast is computed)

• Study effects of impossible or impractical manipulations
• e.g. disaster studies of the Internet infrastructure
• e.g. studying certain traffic situations for a class of 

potential future networks
• e.g. what-if studies of software project dynamics
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Simulation example: 
Scaling a P2P network

• Yatin Chawathe, Sylvia Ratnasamy, Lee Breslau, 
Nick Lanham, Scott Shenker: 
"Making Gnutella-like P2P systems scalable", 
Proc. ACM SIGCOMM 2003

• Proposes a system called GIA that improves scaling behavior
• http://www.planet-lab.org/

Chawathe Ratnasamy Breslau Shenker

https://doi.org/10.1145/863955.864000
http://www.planet-lab.org/


7 / 52 Lutz Prechelt, prechelt@inf.fu-berlin.de

Peer-to-peer networks

• Standard client/server networks have disadvantages:
• Restricted scalability: Server overload in high-traffic situations
• Limited availability: Single point of failure
• Servers are expensive and require much maintenance and 

administration effort

• Peer-to-peer (P2P) networks try to avoid this:
• Each node is client and server at once
• Network is totally de-centralized: 

Structure, reliability, administration
• P2P networks are typically overlay networks: 

a logical network layered on top of an existing network
• (The Internet is also an overlay network)
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P2P applications

• P2P networks have many applications
• end-user file sharing (e.g. Gnutella)
• ad-hoc networks of mobile devices
• distributed databases
• electronic currency (e.g. Bitcoin)
• etc.

• We only look at file sharing here
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P2P approaches

• Solution 1: Flooding (e.g. Gnutella)
• Performs searches by recursively asking all neighbors in the 

network
• Up to a maximum distance of hops (time-to-live parameter)

• Requires O(n) steps with n nodes to find a file
• Potentially bad scaling behavior: at high load, the network 

quickly becomes globally overloaded

• Solution 2: Distributed Hash Tables (DHTs)
• De-centralized solution for mapping a filename to a host
• Can locate the node holding a file in O(log n) steps for n nodes
• Potentially much better scaling behavior
• However, keyword searching is not directly supported
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P2P file sharing phenomena

Mass file sharing is a rather specific P2P problem:
1. Extremely transient node participation

• e.g. average uptime of 60 minutes in Gnutella
• No problem for flooding; expensive for maintaining DHTs 

2. Very heterogeneous node capacity (connection bandwith)
3. Many more keyword searches than full-filename queries

• Because exact file names are rarely known
• This is no problem for flooding, but requires complex additional 

mechanisms to be accomodated by DHTs
4. Most queries are for highly replicated files

• What is in popular demand is also offered frequently
• This means flooding can actually be much cheaper on average

than expected
• and DHTs biggest strength is not so important at all
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Improving flooding: GIA

• Replace flooding by random walk
• e.g. consider only 1 random neighbor instead of all

• Problems:
• Random walk is blind: does not consider that some neighbors 

might be more promising than others
• If it hits an overloaded node, it will be stalled

• GIA improvement suggestions:
• TADAPT: Give high-capacity nodes more neighbors

• So that those nodes receive most queries that are best up to 
handle them

• BIAS: Bias the random walk towards high-capacity nodes
• FLWCTL: Active flow control to avoid overloaded nodes
• OHR: Replication of file name lists to one-hop neighbors

• so that high-capacity nodes can answer very many queries
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Protocol variants considered

The study now investigates four variants of Gnutella-style file
sharing protocols:

• FLOOD:
• The standard Gnutella protocol

• RWRT:
• Random walks over random topologies

• SUPER:
• Discriminate supernodes and non-supernodes. 

Do flooding only over the supernodes
• Not discussed here

• GIA:
• All four improvements as described before

• Now set up a simulation
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Setting simulation parameters

• Take distribution of node
capacity from another study
• and simplify it to make it

practical
• Assign the 1000x and 10000x 

levels to be the supernodes (high-capacity nodes)
• Not discussed here

• Assume constant query-generation rates for each node
• bounded by node capacity

• Topology: Set number of neighbors in range 3…128
• average degree is 8
• limit neighbors for low-capacity nodes
• average resulting network diameter is 7

• Time-to-live: 
• 10 for FLOOD/SUPER, 
• 1024 for RWRT/GIA
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Setting simulation parameters (2)

• Consider different (fixed) "replication factors": 
The fraction of 
nodes that 
can fulfill a 
given query

• derived 
from 
separate 
mini-study 
of actual 
Gnutella 
replication 
and query 
behavior



15 / 52 Lutz Prechelt, prechelt@inf.fu-berlin.de

Performance measures

The simulation considers three measures of goodness:
• success rate:

• Fraction of queries that locate the file (which always exists)
• hop count:

• Number of communication steps required for a query
• delay:

• Time until a query returns its result

• query load = 0.1 means that in each time unit, each node 
issues 0.1 queries (0.1 qps/node)
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Simulation results: 
Collapse point effect

• Is similar for 
all protocols
• only earlier

• Is roughly 
inverse for delay

GIA
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Simulation results: 
Collapse point comparison
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Factor Analysis

Algorithm Collapse 
point

RWRT 0.0005

RWRT+OHR 0.005

RWRT+BIAS 0.0015

RWRT+TADAPT 0.001

RWRT+FLWCTL 0.0006

Algorithm Collapse 
point

GIA 7

GIA – OHR 0.004

GIA – BIAS 6

GIA – TADAPT 0.2

GIA – FLWCTL 2

No single component is sufficient alone; 
only the combination of all of them makes GIA scalable
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Summary of simulation example

• Topic: 
• A P2P file sharing system with severe scalability problems
• Now exploit known specific characteristics, 

• in particular heterogeneity of node capacity
• to propose four improvements

• Evaluation approach:
• Evaluate relative performance of the improvements in 

large-scale use by means of simulation
• Obtain important simulation parameters by

instrumental mini-studies
• Using the right parameters is crucial!

• Overall: Fairly complicated!
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Topics today

• Simulation

• Analysis of legacy data

• Literature study
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Analysis of legacy data

• Approach:
• Analyze existing sets of data

• initially called "software archaeology", 
now called "mining software repositories"

• very many different approaches are possible
• Investigate new questions or look at more data at once

• Advantages:
• Can sometimes use large amounts of data with low effort
• Questions only found later can often be answered just as well as

the original ones

• Disadvantages:
• If additional data is required, it may be impossible to get it
• Data quality can be hard to assess

http://www.msrconf.org/
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Analysis of legacy data example

• Stephen G. Eick, Todd L. Graves, Alan F. Karr, J. S. Marron, 
Audris Mockus: "Does code decay? Assessing the evidence 
from change management data",
IEEE Trans. on Software Engineering 27(1):1-12, 
January 2001.

Graves Karr Marron Mockus

http://doi.ieeecomputersociety.org/10.1109/32.895984
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Study question

• Do the common software engineering practices lead to code 
decay when a large software system is frequently changed 
over a long time?

• A unit of code is considered decayed if it is harder to change 
than it could be (e.g. harder than it used to be)
• measured in terms of effort, interval and quality
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Possible reasons for code decay

• Inappropriate architecture
• Code cannot accomodate a change well

• Violation of design ideas
• One change done in an inapproprate way makes further changes 

difficult
• Inadequate change environment

• e.g. maintenance tools, organizational environment,
change processes

• Programmer variability

All these are exacerbated by:
• Time pressure
• Imprecise requirements

• Producing a sequence of changes rather than just one
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Software system studied

The software of a telephone switching system

• About 100 Mio. lines of C code total
• plus 100 Mio. lines of other files (header files, make files)
• 50 major subsystems, 5000 directories
• Each release consists of about 20 Mio. lines of code

• Under development since 15 years
• About 10000 developers have worked on it
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The data studied

• The full change history of the code of one subsystem
• as recorded in the version management system
• 100 directories, 2500 files

• Changes are described on four levels of increasing granularity
• delta: a change to one file from one revision to the next
• modification request (MR): description of a solution to a problem
• initial modification request (IMR): description of a problem to 

be solved
• feature: a marketable function of the system as a whole

• Change history is available for files, MRs, IMRs, features
• 130 000 deltas, 27 000 MRs, 6 000 IMRs
• 500 people making changes
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Plausible symptoms of decay

• Excessively complex ("bloated") code
• A history of frequent changes ("code churn")
• A history of faults
• Widely dispersed modifications within one change
• Kludges
• Numerous interfaces (e.g. many entry points)

• The study defines CDIs (code decay indices) 
for some of these symptoms 
• The indices are based directly on the 

version management data churning
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Risk factors for decay

A code unit has a higher probability of decaying
if the following factors are high:
• Size

• large units tend to decay more easily
• Age

• although very stable code can be rather old without decay
• Inherent complexity, e.g. due to requirements load

• code that must do many things or difficult things
• Organizational churn or inexperienced developers

• makes design violations more likely
• Porting or reuse

• Like before, CDIs are defined for some of these
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Results

There is code decay in this system, as indicated by:
• The span of changes increases over time

• loess smooths w. span 0.3 (purple), 1.5 (r/p/b), 7.5 (blue)

red: decrease, statistically significant
blue: increase, statistically significant
purple: direction is not statistically significant
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Results (2)

• The increase in span is accompanied by a breakdown of 
modularity in the code
• each point (pin head)

represents one 
directory

• positions are such 
that dirs often changed
together are close
together

• the tail indicates the 
position one year 
before

• there are two clear
clusters

• and then some
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Results (3)

• 8 years later, the
large-scale modularity
has almost completely
disappeared

(a very good visualization!)
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A side note: SeeSoft

• A tool for visualizing aspects of source code lines
• rectangle: file,  line: line,  color: age of line

• many other visualizations are available as well
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Summary of legacy data example

• Analyzing legacy data allows for evaluating 
large-scale situations
• extending over a long time
• representing an immense number of events

• If done carefully, such analyses can be very credible
• although we have not discussed the details of the 

arguments used here
• External validity may be difficult to obtain, though
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Topics today

• Simulation

• Analysis of legacy data

• Literature study
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Literature study

• Approach:
• Review multiple published empirical studies on a similar topic
• Draw conclusions based on the union of the data or results

• Conclusions that are not possible from any one study alone
• If this follows a rigorous protocol, such studies are now called

Systematic Literature Reviews (SLRs)

• Advantages:
• Relatively low effort
• Can in principle provide a very broad empirical basis

• Disadvantages:
• There are rarely enough similar studies on one topic
• "file drawer problem": Unsuccessful studies remain published

• Hence the unified picture from a literature search may be biased
• Publications often lack important detail information
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Example for Literature Study

• C. Sauer, D.R. Jeffery, L. Land, Ph. Yetton: 
"The Effectiveness of Software Development Technical 
Reviews: A Behaviorally Motivated Program of Research"
IEEE Transactions on Software Engineering 26(1): 1-14, 
January 2000.

http://doi.ieeecomputersociety.org/10.1109/32.825763
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Definition 
"Software Dev. Technical Review"

• Software Development Technical Reviews (SDTRs) are 
• an organizational device 
• for detecting defects in software products 
• at any stage of the life cycle 
• and for obtaining secondary benefits 
• through a two-stage process 
• in which software engineers first independently inspect the 

software product for defects and then 
• combine their efforts in a group meeting 
• in which the participants adopt roles 
• with the goal of producing a report 
• in which all the defects agreed upon by the group are identified.

• This includes inspections, reviews, walkthroughs, etc.
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Goals of the study

• Long-term goal
• Obtain a validated theory explaining the effectiveness of SDTRs 

in terms of a number of influencing factors

• Goal of the current work
• Formulate a set of propositions that outline such a theory
• Some of these propositions may be entirely unvalidated
• Most are only partially validated
• Therefore, the propositions describe a research program

• Thus the title of the article
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Approach of the study

Approach:
• Take an existing theory of group behavior for 

a class of two-stage decision tasks
• developed by research on social psychology

• Apply this theory to SDTRs and 
formulate according propositions

• Review all previous studies on technical reviews to find 
support for the propositions -- or lack thereof
• The article has 88 literature references
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The existing theory: Tasks studied

• Group research has investigated empirically a class of 
problems like the following ("Lost in the desert"):
• Members of a group are told to imagine they were stranded in 

the desert with a limited number of implements available to 
them, e.g., knife, string, mirror, etc.

• Each member individually is to rank these items according to 
their survival value

• Then the group meets and decides on a common ranking

• A lot of experiments have been performed and a theory of 
decision performance has been formulated
• The theory can explain much of the variance observed

• The decision task resembles software inspections:
• First individuals make up their mind
• Then a group makes a collective decision
• Difference: The set of defects is more open than the usefulness 

ranking
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The existing theory: Graphical sketch

• Terms are 
factors

• Arrows indicate
influence
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The existing theory: 
Verbal description

• Performance is determined by effective group expertise
• If the group has a bad social decision process or other process 

flaws, its effective expertise will be below the available 
expertise
• The decision process needs to select the best task expertise 

embedded in all of the members' individual rankings
• Available group expertise is roughly the union of the 

members' expertise
• Thus, it tends to increase with group size
• and it increases with the amount of members' individual 

expertise
• and the dis-similarity of these

• Individual expertise depends on the amount of task training 
an individual has had
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Propositions and evidence for them

• Applying the existing theory to SDTRs 
leads to 11 propositions

• (We will discuss only some of them)
• For some of these there is existing empirical evidence
• For others, there is little or none

• P1: In SDTRs, task expertise is the dominant determinant of 
group performance
• Two studies find such an effect
• A few studies explicitly factor the influence out
• Most studies ignore the issue
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Propositions 
and evidence for them (2)

• P2: In SDTRs, decision schemes (plurality effects) influence
interacting group performance
• Decision is difficult if a defect candidate has been found by only

one reviewer (i.e., there is no "plurality")
• The frequency of this is unknown, but appears to be high

• P3: In SDTRs, in the absence of a plurality, interacting group
performance is a positive function of process skills
• Having different roles in the group improves performance
• No other evidence is available

• P4: In SDTRs, the interacting group meeting does not 
improve group performance over the nominal group by
discovering new defects
• Evidence (but not strong) from various studies is available
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Propositions 
and evidence for them (3)

• P5: In SDTRs, group performance is a positive function of 
task training
• The only available study reports a 90 percent user defect

reduction after training in software reading techniques

• P6: In SDTRs, the performance/size relationship is a function
of task expertise.
• No evidence is available

• P7: In SDTRs, above a critical limit, performance declines
with increasing group size
• There is evidence for process loss from a number of studies
• But there is no direct support for the proposition
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Propositions 
and evidence for them (4)

• P8: In SDTRs, the performance advantage of an interacting
group over a nominal group is a function of the level of false
positives discovered by individuals
• There is evidence that meetings do discriminate false positives 

from true defects
• But no formal test of the proposition has been performed

• P9: In SDTRs, an expert pair performs the discrimination task
as well as any larger group
• One study reports that groups of 4 were not significantly better

than groups of 2
• But no formal test of the proposition has been performed
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Propositions 
and evidence for them (5)

• P10: In SDTRs, nominal groups outperform alternatives 
(1 reviewer, best reviewer from group, review meeting) at the
discovery task
• Several studies confirm this
• BTW: Similar results exist for brainstorming

• Prepared individuals result in more overall ideas compared to only a 
brainstorming meeting

• P11: In SDTRs, the defect discovery performance/size
relationship for nominal groups is a function of task expertise
• Like P7, this has not yet been studied much
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Conclusions: 
Consequences for research

• Several propositions need to be validated
• This is a research program that can now more clearly be 

understood than before

• Reading technology research should continue
• Roles, checklists, scenarios, perspectives, …
• It can make individual reviewers more effective and can improve 

the efficiency of larger group sizes

• We need research for understanding review expertise
• So that we can develop proper reviewer trainings
• Because reviewer task expertise is the single most important 

factor for review effectiveness
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Conclusions: 
Consequences for practice

• For defect detection, one may be able to substitute expertise 
by larger numbers of reviewers

• However, too-large groups may produce insufficient 
motivation in the reviewers
• One may try incentive systems to overcome this

• Defect discrimination meetings should be abandoned
• unless false positives are frequent or harmful

• or be replaced by a single expert review-reviewer
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Summary 
of literature study example

• Re-using what is available in the literature can be 
a cost-efficient way of obtaining empirical information
• Note there are specific, well-defined methods for doing this:

systematic literature review (SLR), mapping study, 
meta-analysis, thematic synthesis, etc.

• In particular, by considering more and diverse work, 
we may be able to obtain more understanding
than any single study ever could

• A unified view of multiple studies can sometimes 
resolve credibility or relevance problems

• In the current state of software engineering research, 
theory-building should probably start by means of 
literature studies
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Summary: Other methods

• There are more approaches for empirical evaluation than 
those we have covered in a full two-hour lecture

• Examples are 
• Simulation, 

• Example: P2P query scaling behavior (GIA) study
• Analysis of legacy data, and 

• Example: code decay study
• Literature studies

• Example: theory of review effectiveness study

• Each has its specific strengths
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Thank you!
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