Course "Empirical Evaluation in Informatics"

Course summary, final remarks

Lutz Prechelt
Freie Universität Berlin, Institut für Informatik

- Role of empiricism
- Generic method
- Concrete methods:
 - Benchmarking
 - Controlled experiment
 - Quasi-experiment
 - Survey
 - Case study
- Data analysis
- Presenting the results
- Checking study quality
- What we have not discussed
"Empirische Bewertung in der Informatik"

Zusammenfassung, Nachbemerkungen

Prof. Dr. Lutz Prechelt
Freie Universität Berlin, Institut für Informatik

- Rolle von Empirie
- Allgemeines Vorgehen
- Konkrete Methoden:
 - Benchmarking
 - Kontrolliertes Experiment
 - Quasi-Experiment
 - Umfrage
 - Fallstudie
- Datenanalyse
- Präsentation
- Qualitätsprüfung
- Was wir nicht besprochen haben
The role of empiricism

- Activities in Informatics research or development occur in either of three modes:
 - **T** Theory:
 Creating formal systems involving terminology and rules
 - **C** Construction:
 Creating software systems
 - **E** Empiricism:
 Learning about the characteristics of systems or processes

- Empirical methods can be applied to support both T and C

- Empirical methods can be applied to both the inputs and the outputs of T or C:
 - validating or quantifying assumptions
 - evaluating results
The role of empiricism (2)

Roles of empiricism:

• **Validation**: Empirically testing whether a theory is correct
 • by testing a prediction based on the theory

• **Quantification**: Empirically providing quantitative information about phenomena that are qualitatively known
 • by measuring phenomena

• **Exploration**: Providing insight in order to create ideas for forming theories or constructing systems
 • e.g. by exploratory case studies, exploratory quasi-experiments

• **Refinement**: Adding detail to theories or models
 • a form of exploration; e.g. via surveys and case studies
Quality criteria for empirical work

• In order to have impact, empirical work must be taken seriously by its audience
• In order to take it seriously, the audience must believe in its usefulness

• Usefulness is bounded by two phenomena:
 • Internal validity: The results are correct as they stand
 • External validity: The results are applicable to other contexts than those observed

• The audience's willingness to believe in validity (and thus take the work seriously) is described by:
 • **Credibility**: A reasonable degree of internal and external validity is reasonably obvious; the conclusions are warranted
 • **Relevance**: The results appear applicable to some situations of real interest
Generic method

How to conduct an empirical study:
1. Decide on ultimate goal
2. Formulate question for the study
3. Characterize the observations sought
4. Design the study
5. Find or create the observation context
6. Observe
7. Analyze observations
8. Interpret results

• Credibility can be ruined in any step
• Relevance can be ruined in any of 1-5
Hints: How to make a good study

• Each step is difficult and has potential for disaster
 • but mistakes in later steps are more easily repaired
 • so make sure you have a really good question

• Just like for software development, a waterfall model is often not a good approach to performing a study
 • Iterate all the design phases if you possibly can
 • Prototyping is almost always helpful to get a really good study

• Attacking the same question with more than one concrete empirical method increases the chances of meaningful and credible results.
 Example: Deciding for/against using method X:
 • Check X by a small-scale controlled experiment first,
 • then perform a medium-scale case study ("pilot project")
 • plus a broad-scale survey

"multi-method research"
Concrete methods

What we have talked about in some depth:

- Benchmarking
- Controlled experiment
- Quasi-experiment
- Survey
- Case study

What we have talked about shortly:

- Simulation studies
- Literature studies
- Analysis of legacy data ("software archeology")
Criteria for method selection

Criteria and illustrative *negative examples*:

- **Practical feasibility**
 - e.g. a controlled experiment comparing risk management methods
- **Size of potential contribution to research goal**
 - e.g. a survey on issues of the subconscious
- **Potential for answering a relevant question successfully**
 - e.g. a quasi-experiment on the project-level impact of improved compiler error messages
- **Expected cost/benefit ratio**
 - all expensive experiments that do not generalize well
- **The empiricist's skill with the method**
 - e.g. doing a case study without ever having practiced qualitative research
Benchmarking

• Description:
 1. Measure performance of a system (or method) in a meaningful and standardized way;
 2. collect many results

• Advantages:
 • Objective and repeatable; high credibility
 • Results easy to understand
 • Supports accumulation of results over many studies

• Disadvantages:
 • Not practically feasible in many areas
 • Requires a shared previous understanding of the performance criteria
 • Obtaining high relevance requires much work
Controlled experiment

• Description:
 1. Change one thing,
 2. keep everything else constant,
 3. observe what happens

• Advantages:
 • The only method for proving causal relationships
 • High credibility (if done well)
 • Supports strong quantitative statistical analysis
 • Results easy to interpret

• Disadvantages:
 • Usually rather costly
 • Does not scale to large-scale, human-related questions
 • Generalizability usually unknown, hence relevance is dubious
Quasi-experiment

• Description:
 1. Change one thing,
 2. keep everything else as constant as possible,
 3. observe what happens

• Advantages:
 • Can have very good cost/benefit ratio
 • Reasonably high credibility (if done well)

• Disadvantages:
 • Opportunistic model
 • Can often not be designed as necessary
 • Can be difficult to argue why credibility is good
 • Generalizability usually unknown, hence relevance is dubious
Survey

• Description: Ask many people what you need to know

• Advantages:
 • Cheap
 • Very flexible method

• Disadvantages:
 • Valid only for measuring attitudes
 • otherwise subjective; validating correctness is difficult
 • Hard-to-resolve credibility problems for many kinds of questions
 • Results tend to be ambiguous
Case study

- Description: Observe something specific as it happens and broadly include as many information sources as possible

- Advantages:
 - Very rich results
 - Highly credible (if done well)

- Disadvantages:
 - Difficult method, requires many skills
 - Generalizing any results is difficult; hence relevance is often hard to judge
Simulation

- **Description:**
 1. Create and run an executable model of something;
 2. tweak parameters;
 3. observe

- **Advantages:**
 - Can investigate questions that are otherwise unfeasible
 - Flexible, cheap, yet credible and relevant (if done well)

- **Disadvantages:**
 - Difficult to validate appropriateness of the model
Literature study (meta study)

- **Description:** Review and analyze the data and/or results of several published studies together
 - In particular: Combined statistical analysis of multiple experiments ("meta analysis")

- **Advantages:**
 - May obtain results not possible with any one study
 - May have high robustness, hence good credibility

- **Disadvantages:**
 - Limitations of the given reports can not be overcome
 - Biased by non-publication of "uninteresting" results
Studies of legacy data ("mining software repositories")

• Description:
 Analyze data gathered in some pre-existing process

• Advantages:
 • Perhaps large amount of data
 • Low cost

• Disadvantages:
 • Limitations of the data can not be overcome
 • Data may be biased in difficult-to-detect ways
Data analysis

• Process of turning raw data (as collected) into results data that directly allows drawing conclusions
 • by exploring
 • by measuring
 • by comparing
 • by modeling

• Data analysis steps:
 • Make data available
 • Collect, collate, reformat, pre-process, read
 • Validate data
 • Find and correct gaps, mistakes, and inconsistencies
 • Explore data
 • Check for expected and unexpected coarse characteristics
 • Perform analysis: measure, model, or compare
Data validation advice

Be very sceptical:

- Have some redundancy in your data
- Check redundancy
 - e.g. invariants, impossible combinations etc.
- Double-check manually entered data
- Check expectations
 - e.g. counts, frequencies, ranges, limits, etc.
- Mistrust unexpected regularities
- Mistrust unexpected irregularities
- Mistrust outliers
- Mistrust data anywhere near where you found an error
Data exploration advice

Use your common sense as much as possible!

• Make sure you understand what your variables really mean
• Formulate your expectation **before** you look at the data
• Graphics! Graphics! Graphics!
• Try out many things
• Explain to outsiders what the data are
 • Ask them what they think the data mean
 • Ask them for ideas what to analyze
Data analysis advice

• Stick to techniques you understand
 • Make sure you know (and respect) the assumptions of the techniques you use
 • If you need to think hard about what the result would mean, this is not an appropriate analysis
 • Graphics! Graphics! Graphics!

• Credibility is much more important than precision
• Validity is much more important than precision
• Illustrativeness is much more important than precision

• Get professional help if you can
Conclusion-drawing advice

Checklist:

• Do all your conclusions contribute to answering the research question?
 • If not, are they worth mentioning?
 • At least separate them from the others ("Further results")

• Are all your conclusions solidly backed up by your data?
 • If not, formulate them very weakly

• Credibility check: Can all conclusions clearly be traced backwards through the study?
 • Back to the analysis results,
 • from there to the analysis technique,
 • from there to the raw data,
 • from there to the study design and setup?
Conclusion-drawing advice (2)

- Do you really trust all your conclusions?
 - If not, why should anybody else?

- Can you characterize to where you presume your conclusions generalize? (Or where they do not?)
 - And why you think so? (plausibility, evidence)
Presentation of results

A good writeup (article, technical report) or interactive presentation of an empirical study

• ...makes the elements of the generic method clearly visible
 1. Decide on ultimate goal
 2. Formulate question for the study
 3. Characterize the observations sought
 4. Design the study
 5. Find or create the observation context
 6. Observe
 7. Analyze observations
 8. Interpret results

• ...provides much detail about setup and raw data
 • perhaps in appendices and/or online repositories (open science)
Presentation of results (2)

- ...uses plain, simple language wherever possible
- ...presents the data analysis in an easy-to-grasp manner
 - using graphical presentation whenever appropriate
- ...openly discusses strengths and weaknesses of the study
 - threats to internal validity
 - limitations to generalizability
- ...lists newly found open questions
- ...summarizes the results in the Abstract
 - rather than just announcing them

Advice:
- Prepare a rather long, detailed, comprehensive report first
- then a short version, focused on the most interesting parts.
Quick-check for empirical study quality

- The quality of an empirical study is determined by its credibility and its relevance
 - If they are high, remaining deficiencies can be tolerated
 - If they are low, technical perfection does not help

- Good studies can often be recognized quickly by these simple checks
 - Is there a clear research question at the beginning?
 - Is there a clear study result at the end?
 - Note this does not mean a clear answer. A good study may well be inconclusive.
 - Can the result easily be traced back to the data analysis result(s)?
 - Is the connection from analysis results to conclusion convincing?

Most bad studies are clearly bad in at least one of these aspects
Things not covered in this course

What we have not (or almost not) talked about:

• Plenty of methodological details of the individual methods, e.g.
 • experiments: design of experiments
 • when manipulating more than one variable
 • surveys: systematic instrument development
 • case studies: annotating and analyzing qualitative data

• Practical technical issues of the methods, e.g.
 • measurement infrastructure
 • calibration and validation of measurements
 • data handling and archiving
 • ethical considerations
 (e.g. privacy, copyright, informed consent)

• ...and more
So what?

Where will you apply empirical methods?

Note:

• Most master's theses can benefit a lot from a good empirical evaluation

• In fact, most would be essentially worthless without one
 • In fact, some are worthless for that reason
 • And some of these would never even have been done, had an evaluation been planned from the start

• Please consider this when you choose a thesis topic
Thank you!