Course "Empirical Evaluation in Informatics"

Surveys

Lutz Prechelt
Freie Universität Berlin, Institut für Informatik

- Example: SE education
- Method:
 - Set study goals
 - Select target population
 - Design questionnaire
 - Conduct survey
 - Evaluate results

- Example: Peer review
"Empirische Bewertung in der Informatik"

Umfragen

Lutz Prechelt
Freie Universität Berlin, Institut für Informatik

• Beispiel: Relevanz der Informatik-Ausbildung

• Methode:
 • Auswahl der Ziele
 • Auswahl der Zielgruppe
 • Fragebogenentwurf
 • Durchführung
 • Auswertung
Example 1: Relevance of CS and SE education

- Source: T. Lethbridge: "What Knowledge Is Important to a Software Professional?", IEEE Computer, May 2000
 - see also http://www.site.uottawa.ca/~tcl/edrel/

- Research questions:
 Which parts of their education are considered how relevant by software engineering practitioners? Do they perceive their education as misaligned?

- Study format: Survey

T. Lethbridge
Approach

- Uses a list of 75 topics from Computer Science (CS) and Software Engineering (SE) education
 - e.g. data structures, physics, project management, VLSI

- For each topic, asks 4 questions:
 - (1) how much was learned in education,
 - (2) how much was learned (or forgotten) since ,
 - (3) how useful the knowledge on the topic has been, and
 - (4) how influential on one's thinking the topic has been

- Determines the topics that are
 - deemed important but not taught widely ("knowledge gap")
 - deemed unimportant but taught widely
Survey population

- Web-based survey
 - employees of various companies (approached via mgmt)
 - postal mailing lists (e.g. university alumni)
 - email lists, Usenet newsgroups
- Over 200 participants
 - 186 participants were selected to form a balanced sample
- 54% from USA, 23% from Canada; 24 countries overall
 - 42% from software companies
- Education of participants:
 - 15% high school or college level (without degree); 48% bachelor; 37% postgraduate
 - >60% CS, SE, or IS degrees; 50% other science or engineering; 20% other disciplines
 - Many had more than one degree
Question 1

- How much did you learn about this in your formal education (e.g. University or College)?
 - 0 = Learned nothing at all
 - 1 = Became vaguely familiar
 - 2 = Learned the basics
 - 3 = Became functional (moderate working knowledge)
 - 4 = Learned a lot
 - 5 = Learned in depth; became expert (Learned almost everything)
Question 2

- What is your **current knowledge** about this, considering what you have learned on the job as well as forgotten?

 - 0=Know nothing
 - 1=Am vaguely familiar
 - 2=Know the basics
 - 3=Am functional (moderate working knowledge)
 - 4=Know a lot
 - 5=Know in depth / am expert (Know almost everything)
Question 3

• How useful have the details of this **specific material** been to you in your career as a software developer or software manager?

Please leave blank if you know little about the material.

• 0=Completely **Useless**
• 1=**Almost never** useful
• 2=**Occasionally** useful
• 3=**Moderately useful**, but perhaps only in certain activities
• 4=**Very useful**
• 5=**Essential**
Question 4

- How much **influence** has learning the material had **on your thinking** (i.e. your approach to problems and your general intellectual maturity), **whether or not you have directly used the details of the material**?

Please consider influence on both your career and other aspects of your life.

Please leave blank if you know little about the material.

- 0=No influence at all
- 1=Almost no influence
- 2=Occasional influence
- 3=Moderate influence in some activities
- 4=Significant influence in many activities
- 5=Profound influence on almost everything I do
Results: SE topics

<table>
<thead>
<tr>
<th>Category</th>
<th>Topic</th>
<th>Overall importance (Q3 + Q4)</th>
<th>Learned in education (Q1)</th>
<th>Learned on the job (or forgotten since education) (Q2 – Q1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>General software design</td>
<td>Data structures</td>
<td>🟢</td>
<td>🟢</td>
<td>🟢</td>
</tr>
<tr>
<td></td>
<td>Algorithm design</td>
<td>🟡</td>
<td>🟡</td>
<td>🟡</td>
</tr>
<tr>
<td></td>
<td>Software design and patterns</td>
<td>🟢</td>
<td></td>
<td>🟢</td>
</tr>
<tr>
<td></td>
<td>Software architecture</td>
<td>🟢</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Object-oriented concepts and technology</td>
<td>🟢</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Specific programming languages</td>
<td>🟢</td>
<td>🟢</td>
<td></td>
</tr>
<tr>
<td>Software engineering methods</td>
<td>Requirements gathering and analysis</td>
<td>🟢</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Formal specification methods</td>
<td>🟡</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Analysis and design methods</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Performance measurement and analysis</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Testing, verification, and quality assurance</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Software reliability and fault tolerance</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Maintenance, reengineering, and reverse engineering</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Results: SE topics (2)

<table>
<thead>
<tr>
<th>Software management</th>
<th>Project management</th>
</tr>
</thead>
<tbody>
<tr>
<td>Software metrics</td>
<td></td>
</tr>
<tr>
<td>Software cost estimation</td>
<td></td>
</tr>
<tr>
<td>Configuration and release management</td>
<td></td>
</tr>
<tr>
<td>Process standards such as CMM, ISO9000</td>
<td></td>
</tr>
<tr>
<td>Essential subsystem design</td>
<td>Human-computer interaction/user interfaces</td>
</tr>
<tr>
<td>Databases</td>
<td></td>
</tr>
<tr>
<td>File management</td>
<td></td>
</tr>
<tr>
<td>Specialized application techniques</td>
<td>Computational methods for numerical problems</td>
</tr>
<tr>
<td>Simulation</td>
<td></td>
</tr>
<tr>
<td>Artificial intelligence</td>
<td></td>
</tr>
<tr>
<td>Pattern recognition and image processing</td>
<td></td>
</tr>
<tr>
<td>Computer graphics</td>
<td></td>
</tr>
<tr>
<td>Parsing and compiler design</td>
<td></td>
</tr>
<tr>
<td>Information retrieval</td>
<td></td>
</tr>
<tr>
<td>Security and cryptography</td>
<td></td>
</tr>
</tbody>
</table>
Results: CS and science topics

<table>
<thead>
<tr>
<th>Category</th>
<th>Topics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Real-time and systems programming</td>
<td>Operating systems, Systems programming, Data transmission and networks, Parallel and distributed processing, Real-time system design</td>
</tr>
<tr>
<td>Computer hardware</td>
<td>Digital electronics and digital logic, Microprocessor architecture, Computer system architecture, Network architecture and data transmission, Telephony and telecommunications</td>
</tr>
<tr>
<td>Other electrical and computer engineering</td>
<td>Analog electronics, Digital signal processing, Data acquisition, Robotics, VLSI</td>
</tr>
<tr>
<td>Computer science theory</td>
<td>Programming language theory, Formal languages, Computational complexity and algorithm analysis, Information theory</td>
</tr>
</tbody>
</table>
Results: CS and science topics (2)

<table>
<thead>
<tr>
<th>Section</th>
<th>Sub-section</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Discrete mathematics</td>
<td>Predicate logic</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Set theory</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Graph theory</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Automata theory</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Queuing theory</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Combinatorics</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Probability and statistics</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Linear algebra and matrices</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Continuous mathematics</td>
<td>Differential and integral calculus</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Differential equations</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Control theory</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Laplace and Fourier transforms</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Natural science</td>
<td>Physics</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Chemistry</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Results: Other topics

<table>
<thead>
<tr>
<th>Business</th>
<th>Economics</th>
<th>Accounting</th>
<th>Marketing</th>
<th>Management</th>
<th>Entrepreneurship</th>
</tr>
</thead>
<tbody>
<tr>
<td>Psychology and philosophy</td>
<td>Psychology</td>
<td>Philosophy</td>
<td>Ethics and professionalism</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Technical writing</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>People skills</td>
<td>Giving presentations to an audience</td>
<td>Leadership</td>
<td>Negotiation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Second language other than English</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Results summary

• Some topics appear to be much over-emphasized in the formal education compared to perceived later usefulness
 • e.g. calculus (dt.: Analysis)

• Others appear much more important in practice than the education reflects, in particular
 • software management
 • people skills
 • requirements gathering
 • quality assurance
Validity problems: Internal and construct

- Self-selection bias
 - Maybe many participants just wanted to lament about their education?
- Subjective answers
 - Real amount of knowledge or usefulness is unknown
- 15% answers from respondents without formal degree
- Scale violations:
 - Taking the difference $Q_2 - Q_1$ (knowledge now minus originally learned) requires equal-sized difference scales
 - Forming the sum $Q_3 + Q_4$ (usefulness plus influence) requires equal-sized ratio scales
 - What does the sum mean anyway?

How good is the credibility overall?
External validity problems

- Some of the answers strongly reflect north-american curricula

- Importance of topics is continually shifting over time!
 - some parts of the snapshot are obsolete
 - e.g. AI is now much more important

- What mix of software industry branches is represented in the sample?
Generic survey method

1. Decide on objectives
2. Select a target population
3. Design the survey instrument (questionnaire)
4. Administer the survey
 • supervised, unsupervised, or semi-supervised
5. Collect, validate and analyze the data
6. Answer the research questions
1. Decide on objectives

- A good understanding of the survey goals is required to select a compact set of questions
 - Too-long questionnaire will reduce number of respondents and may reduce the quality of the answers
- Surveys are suitable for measuring attitudes, much less suitable for determining factual situations

Basic types of objectives:

- Cross-sectional: snapshot \(\rightarrow\) most common type
 - What is the status now?
- Longitudinal: cohort observation
 - How does the status change over time?
 - Requires multiple rounds of surveying with the same participants
- Retrospective: explanation
 - What are the reasons for the status?
2. Select a target population

Check questions:

- What kind of respondents do I need to reach my goals?
 - Need to use language/terminology appropriate for them
- How many such respondents do I need?
 - Is that realistic with acceptable effort?
- How can I reach these people?
- How can I motivate them to participate?
 - What response rate should I expect?

- What kinds of irrelevant or distortive participants should I expect?
 - Can I recognize these from their answers and sort them out?
- So where and how should I advertise my study?
3. Design the survey instrument (questionnaire)

• Search for similar, previously used questionnaires
 • Psychometricians call them "instrument": development is difficult
 • Analyze them (and the experience made) and adapt them
 • Piece your questionnaire together from multiple sources

If you need to design your own:

• Minimize the number of questions
 • Standardize the response format where possible
 • e.g. strongly agree, agree, disagree, strongly disagree

• Design each question carefully (see next slide)

• Put the demographic questions at the end
 • So people already know what information they have provided
 • So they are less likely to drop out near the end

• Ask for global comments on both the topic of the survey and the survey itself
Design the instrument: questions

For each question, make sure you have:

- **Clear purpose**
 - Respondent must understand the role of the question in the context of the survey and for the goals of the survey

- **Single purpose**
 - A question must not mix two issues

- **Complete, precise, unambiguous formulation**
 - Use simple and complete sentences
 - What is simple depends on the population
 - Avoid jargon and specialized terminology
 - e.g.: "How would you rate your training/education experiences regarding co-occurring disorder clients to date?"
 - Avoid negations
 - What exactly does the question refer to?
 - time, context, entity/attribute
 - What not?
Design the instrument: question types

- **Open questions:**
 - Respondents formulate their own answer
 - Advantages:
 - wider spectrum of possible insights
 - less dependent on prior knowledge of questionnaire designers

- **Closed questions:**
 - Respondents choose among fixed answer categories
 - e.g. single choice, multiple choice, numeric, date
 - Never forget the category
 "don't know"/"none of these"/"does not apply"
 - Advantages:
 - easy quantitative evaluation
 - reduced ambiguity, less danger of irrelevant answers
Design the instrument: validation

Any questionnaire **must** be pilot-tested (e.g. by exit interviews):

- (in particular for unsupervised surveys)
- Find out whether overall purpose is clear
 - and why the participant should be motivated
- Find out whether purpose and formulation of all questions are clear
 - Detect ambiguities
 - Detect obscure terminology etc.
- Find out if time to complete is acceptable
- Find out whether layout and user interface are acceptable

Pilot-test again after the very last 'correction'
Design the instrument: validity, reliability

• Validity
 • The degree to which the instrument really measures what it was designed to measure (construct validity)
 • Assessing validity is methodically quite difficult and is beyond the scope of this course
 • See a textbook on social science research methods

• Reliability
 • The degree to which the instrument will give the same results when used in the same circumstances
 • if reliability is low, validity will be limited
 • Assessing it requires a number of respondents answering the questionnaire again after some time (e.g. a few weeks)
 • questions that are difficult to decide for the respondents typically lead to low reliability
4. Administer the survey

Basic types of administration:

- **Supervised**
 - An interviewer asks questions, answers clarification questions, and records answers (one-on-one, e.g. telephone)

- **Unsupervised**
 - The participant is completely on his/her own with the questionnaire (e.g. web-based)
 - Issues: multiple participation, question misunderstandings, joke answers, random answers

- **Semi-supervised**
 - An interviewer gives some introduction to a group of participants and answers questions, but the filling-in is unsupervised
5. Collect, validate and analyze the data

Tasks:

- Collect data into machine-readable form
 - Avoid/detect mistakes when typing in paper questionnaires
- Validate data:
 - Detect and remove duplicates (e.g. sent by email or http)
 - Detect invalid responses (needs consistency check questions)
 - Detect ambiguous questions (by incoherent answer structure)
- Perhaps balance the respondent set:
 - If some subgroups are over-represented,
 - either sample a subset from each of these (if you have enough data)
 - or weight subsets differently during analysis
- Analyze
6. Answer the research questions

When drawing conclusions from a survey

• keep in mind the limitations of your sample
 • in particular non-representativeness

• keep in mind possible validity problems such as
 • bias in the questions,
 • bias in the answers,
 • ambiguities and misunderstandings
Example 2 [futreview]: Perceptions of peer review

 - Peer Review is a quality assurance mechanism: Experts (colleagues, peers) review a draft research article and recommend whether it should appear (at a given journal or conference) and what changes are needed before.
 - Question and results relevant? Sufficiently new?
 - Method and conclusions valid? (credibility)
 - (Does not work well, if reviewers
 - are not knowledgable,
 - work sloppily, or
 - make exaggerated requirements.)

- Study format: mixed quantitative/qualitative survey

Watch out: Very dense slides!
Survey overview

• 19 questions:
 - types: yes/no, 11-point scale, percentage, text

• Topics:
 - purposes of peer review and their relative importance
 - perceived quality of peer reviews (quantitative)
 • and why/how the bad ones are bad (qualitative)
 - anonymity in peer review (double-blind, ...)
 - publicness of reviews
 - compensation for reviewers ((quasi-)monetary, non-monetary)
 - age, professional status, author experience, reviewer experience
 - [computed: how the above attitudes might evolve in the future]

• Base population: the 932 authors and reviewers of the ICSE 2014, 2015, 2016 conferences
 - 29% response rate (32 countries), fewer junior people
"As an author, what percentage of the reviews that you receive is good, reasonable, unhelpful or grossly faulty?"

...then elaborates on these four terms.

Lutz Prechelt, prechelt@inf.fu-berlin.de
In your opinion, what were the main reasons for unhelpful and/or grossly faulty reviews (if any)?

- Reviewers not allocating enough time (24%)
 - e.g. "lack of time or effort"
- Reviewers being insufficiently familiar with the topic of the work (22%)
 - e.g. "In cases it is simply because the reviewer did not do his/her job, or accepted to referee a paper for which he/she was not qualified. But when you submit to good venues, with good PCs, that happens less frequently."
- and 23 other (and much less mentioned) reasons
Consider age and professional status as predictors of attitude:
- e.g. "Should reviewers know who their co-reviewers are?"
 - -5: strongly disagree, 5: strongly agree
- age sometimes plays a role, professional status rarely does
- ➔ these are generational trends, not seniority trends
- ➔ they probably predict future attitudes

Example:
Summing up: Surveys

- Surveys can be a low-cost means of collecting interesting information
 - They can be cross-sectional, longitudinal, or retrospective

- Try to reuse or adapt existing questionnaires where possible
- Consider mixing quantitative and qualitative questions

- Carefully design and validate in any case

- Watch out for sampling bias!
 - You will almost always have some
 - but if you do not understand what it is, your data becomes dubious
Thank you!