Course "Empirical Evaluation in Informatics"

The Scientific Method

Prof. Dr. Lutz Prechelt
Freie Universität Berlin, Institut für Informatik
http://www.inf.fu-berlin.de/inst/ag-se/

- Science and insight
- Informatics on the landscape of sciences
- The scientific method
- Variables, hypotheses, control
- Internal and external validity
- Validity, credibility, and relevance
"Empirische Bewertung in der Informatik"

Die wissenschaftliche Methode

Prof. Dr. Lutz Prechelt
Freie Universität Berlin, Institut für Informatik
http://www.inf.fu-berlin.de/inst/ag-se/

- Wissenschaft und Erkenntnismethoden
- Einordnung der Informatik
- Die wissenschaftliche Methode
- Variablen, Hypothesen, Kontrolle
- Interne und externe Gültigkeit
- Gültigkeit, Glaubwürdigkeit und Relevanz
Our goal

• In empirical evaluation, we have given a certain artifact or situation, e.g.
 • - a new (or old) design method or
 • - a new kind of hard disk, etc.

• and want to obtain an understanding of it
 • often with respect to specific attributes, e.g.
 • - the effort for accommodating later requirements changes
 • - or the bandwidth and latency of data transfer to/from the disk
Obtaining understanding

- There are different ways how people obtain understanding
 - by intuition (direct insight)
 - from some authority (tradition, teacher, book etc.)
 - by rational thought (reasoning, deduction)
 - by direct observation combined with induction
 - via the scientific method

- Each method can produce valid understanding

- No method can make *totally* sure that the understanding is valid
 - but the scientific method comes closest
 - and, just as important, has the best chance of convincing other people to accept the same understanding
The landscape of knowledge and science

• The arts
 • "Geisteswissenschaften"
 • Special case: Mathematics
 • pure logic: principles of deduction are fixed, anything else is arbitrary

• The (natural) sciences
 • "Naturwissenschaften"
 • examines characteristics and behavior of the real world
 • Special case: the social sciences
 • "Sozialwissenschaften"
 • examines human behavior

• Engineering
 • "Ingenieurwissenschaften"
 • solves practical problems; interested in usefulness and cost
The landscape and T, C, E

T, C, E: Theory, Construction, Empiricism

- Mathematics
 - Mostly T
 - Auxiliary C and E have entered recently (computational math.)
- The (natural) sciences
 - T and E fertilize each other
 - Construction is purely auxiliary
- The social sciences
 - E drives T
 - Construction is purely auxiliary (at least mostly, at least today)
- Engineering
 - T, C, and E fertilize each other
 - Much T is borrowed from the natural sciences
 - C is the goal
Informatics on the landscape

- Informatics has its roots in
 - Mathematics: logic, formal languages
 - Engineering: constructing computers

- Today, the larger part is clearly engineering
 - (In this course, we look at this part only)

- However, the engineering is not purely technical:
 - The artifacts have to be used by people
 - and building them involves people, too
 - Brings psychology, sociology, and politics into play

- Hence, Informatics needs a lot of empiricism
Mathematics vs. natural science

- Historically, all of science was philosophy
 - at least in the western culture
 - Greek philosophers
- and much of that was mathematics

- The notion that nature could be understood by pure thought (rationalism) was prevalent in the middle ages

- The idea that observation and experimentation was necessary to understand the world began to get accepted during the renaissance
Early empiricists

- Some of the earliest modern empiricists were the astronomers **Kopernikus**, **Kepler**, **Brahe**, and **Galilei**
 - around 1500–1600

- One of the first modern experimental scientists was Galileo Galilei
 - At the time, it was generally accepted that heavy objects fell down faster than lighter ones
 - as claimed by **Aristotle** (384–322 BC)
 - Galilei did not believe this and experimented with brass spheres, inclined planes, and water clocks (1589–1604)
 - He systematically varied the weight of the ball and the steepness of the plane and found weight-independent acceleration
 - These were controlled experiments
Galilei's experiments

- Weight of the sphere is **not** relevant

- large ball
 - steep angle

- small ball
 - low angle

Lutz Prechelt, prechelt@inf.fu-berlin.de
The scientific method

- Since Galilei, physics and other sciences work according to this model:
 - Formulate a theory T about how (some aspect of) the real world behaves
 - Design and conduct experiments X for testing this theory

- Is accepted in all subjects where experimentation is possible
 - Natural sciences: Physics, chemistry, biology, medicine etc.
 - Engineering
 - Parts of many social sciences (such as economics, sociology, etc.)

- Is problematic where experiments cannot be performed
 - for technical or ethical reasons
The scientific method (2)

- Note the following:
 - T is called a *scientific theory* only if it predicts something specifically and hence can be tested.
 - Even if T is wrong, it may happen that the results of X are as expected.
 - But if X contradicts predictions of T, then T must be false.

- This view of science was suggested by Karl Popper (1904–1994).
 - It is the prevalent scientific paradigm today.
 - In this view, theories cannot be directly confirmed, only refuted.
 - If a theory cannot be refuted for a long time, it will gradually be accepted as confirmed.
 - example: special theory of relativity.
Pre-theoretical empiricism

• In many areas, too little is known for formulating a plausible, testable theory
 • Often true where people are involved and the situation is complex
 • such as in software engineering

• Even then empiricism is useful:
 • Observe things that lead to hypotheses from which one could build theories
 • Often these observations have to be qualitative rather than quantitative in order to be useful
 • Qualitative research is a large and interesting branch of research methodology
 • but not the topic of this course (half-exception: Case Studies)
Hard science vs. soft science

- Many people claim that a subject is a science only if it produces theories that are precise and reliable
 - "hard science", such as physics formulas
- and hence claim that subjects involving human behavior are not scientific
 - "soft science"
 - This attitude could be called "physics envy"
- This is not true: The scientific principle can be applied
 - but the theories will be more complex and make weaker (e.g. probabilistic) predictions
- Hard science is simpler than soft science
 - That is why it is farther advanced

Lutz Prechelt, prechelt@inf.fu-berlin.de
Terminology of Empiricism

• When we empirically investigate something
 • we characterize the situation by a set of input variables
 • usually quantitative or categorial
 • e.g. "team size = 4" or "design method used = A"
 • and the observations by a set of output variables
 • If we choose the value of at least one input variable, the study is called an experiment

• The act of consciously manipulating the values of input variables is called control

• Every empirical study assumes that there is some systematic relationship between inputs and outputs
 • If we have a certain expectation about this relationship, this is called a hypothesis
 • Any additional factors influencing the outputs are called extraneous variables
Example: Case study

- Assume we want to evaluate a design method A
- We pick a representative team of people
 - a capable, but not unrealistically clever team
- We pick a task of interest
 - a "normal" one: not unusually small or large or difficult or ...
- We have them do the design using method A
 - (hopefully they receive some training beforehand...)
- We see what happens (using many sources of observations):
 - What goes well?
 - What goes not so well?
 - How good is the resulting design?
This case study has little control
 - We have controlled the task to be done and the method to be used
 - (and even this is unusual for a case study)
 - but not the capabilities of the people
 - Precisely how intelligent, knowledgable, interested etc. are they?
 - Worse, we cannot judge the results without comparing them to other results

Hence, it is not so clear what the results mean
Example: Controlled experiment

- This time, we compare design methods A and B

- Again, we pick a task T and a set of people P
 - but this time a large set of people
 - we train all of them equally well in both methods

- But now we use separate teams working with A or with B
 - and have 20 different teams solve T with each method
 - People are assigned to the teams at random

- We compare the average result obtained by the method A teams and method B teams
Control in the controlled experiment

• This time we have controlled all variables:
 • task and method as before
 • the comparison to method B allows for interpreting the results
 • replication turns all kinds of individual differences into a noise signal
 • we will get different results for different teams although they are using the same condition
 • but given enough teams, the differences cancel out
 • random group assignment avoids systematic accumulations of individual differences
 • e.g. if more capable people favor working with method A

• Hence, we can decide whether A works better than B
 • at least for this kind of people, in this setting, and for this task
Internal and external validity

- **Internal validity**
 - the degree to which the observed results were caused by only the intended input variables
 - rather than extraneous variables

- **External validity**
 - the degree to which the results can be generalized to other circumstances
 - in our example: other people, settings, and tasks

- Improving external validity *tends* to reduce internal validity
 - because it will often strengthen the influence of extraneous variables
Threats to internal validity

- Have all plausible extraneous variables been controlled completely?
- Has the act of observing influenced the observations?
- Are the measurements done correctly?
- Are the results that are compared really comparable?

A related concept is **construct validity**:

- Do my measurements really represent the characteristic that I want to observe?
 - e.g. does the number of pages of a design document really represent the size of a design task?
 - (Construct validity can be considered to encompass both internal and external validity. We do not use the term much.)
Threats to external validity

• The results rely on specific characteristics of the task
 • and these are uncommon
 • e.g. task is unusually well suited for method A, but not for B

• The results rely on specific characteristics of the people
 • and these are uncommon
 • e.g. they have an unrealistically good understanding of the ideas of method A, because they were thoroughly taught by its inventor

• The results rely on specific characteristics of the experimental setting
 • and these are uncommon
 • e.g. the subjects were enthusiastic about A, but not B.
Credibility, relevance, validity

- Credibility is achieved when
 - there is high internal validity
 - there is a reasonable amount of external validity
 - in particular: no bias of the task
 - there is no doubt that both is the case

- Relevance is achieved when
 - the question investigated is of general interest and
 - there is high external validity
Judging empirical results

- Some fraction of the empirical results in scientific publications is dubious or even plain wrong
- Outside of science, this is even much worse

- How can we discriminate valid results from dubious ones?
- The following questions help:
 - How do they know this?
 - in particular: Are the conclusions warranted by the facts?
 - What has not been said (but should have)?
 - Is this information really relevant?

(More about this in the next lecture)
Summary

- Our goal is insight into objective facts and relationships

- The most powerful method for this is the scientific method:
 - Formulate a theory, derive hypotheses
 - Test them by experiments
 - Can only refute the theory, not prove it!

- It is accepted wherever experiments are possible
 - and can be approximated in many further settings
 - In Informatics, control in the experiments is often incomplete

- The goal is high internal and external validity
 - because they are key to good credibility and relevance

- Results should be judged by these criteria
Thank you!