Course "Empirical Evaluation in Informatics"

Data analysis techniques

Prof. Dr. Lutz Prechelt
Freie Universität Berlin, Institut für Informatik
http://www.inf.fu-berlin.de/inst/ag-se/

- Samples and populations
- The mean
- The variability
- Comparing samples
 - significance test, confidence interval
- Bootstrap
- Simple relationships of two variables
 - Plots, log-Scales
 - Correlation, linear models
 - local models (loess)
"Empirische Bewertung in der Informatik"

Techniken der Datenanalyse

Prof. Dr. Lutz Prechelt
Freie Universität Berlin, Institut für Informatik
http://www.inf.fu-berlin.de/inst/ag-se/

- Stichproben und Grundgesamtheiten
- Der Mittelwert
- Die Variabilität
- Vergleich von Stichproben
 - Signifikanztest, Vertrauensbereich
- Bootstrap
- Einfache Beziehungen zwischen zwei Variablen
 - Plots, log-Skalen
 - Korrelation, lineare Modelle
 - lokale Modelle (loess)
First note: samples and populations

• At the start of a statistical analysis, we usually have some subset ("sample", "Stichprobe") of all possible values of some kind ("population", "Grundgesamtheit")
 • e.g. data for a size 50 subset of all FUB Informatics students

• The goal of analysis is making valid statements about the population on the basis of
 • the sample alone (*frequentist approach*) or
 • the sample plus prior beliefs about the population (*Bayesian approach*)
Warning: sampling is difficult

- Both approaches will work well only if the sample is representative
 - that is, each member of the population had the same chance of being in the sample

- Obtaining a representative sample is very difficult
 - Often the boundaries of the population are unclear
 - Is a guest student a member?
 - Is a Nebenfach-student a member? etc.
 - It is unknown how to sample randomly with even chances
 - e.g. just catching people when passing the foyer is insufficient
 - Often the member we picked for our sample will refuse to cooperate

- So all conclusions must be considered with care
 - The conclusions are only "estimates"
Again: Possible tasks of data analysis

- Measure a variable
- Compare two (or more) variables
- Model a relationship
Measure a variable: what does the mean mean?

• Given: a set of measurements of the variable
• So we have a sample of a population. Which population?

• **Case 1**: There is a single "true" value and we have a set of measurements with errors.
 • e.g. 10 measurements of the length of the same road
 • Case **a)**: We are perhaps interested in the true value only, not in the population of measurements
 • The sample mean is an estimate of the true value
 • Case **b)**: But maybe we try to understand the measurement method, not the road.
 • (e.g. for research on software inspection techniques)

Then we are interested in the population, not the true value
• The *error* in the measurements is what we want to characterize
What does the mean mean? (2)

- **Case 1:** There is a single "true" value and we have a set of measurements with errors. [...]

- **Case 2:** There is a stochastic variable (i.e. it has variability) and we have a sample of its values
 - e.g. each person's age in a sample from a population of people
 - We are interested in the "average" or "expected" case
 - The sample mean is an estimate of the mean age
 - There is a true value of the mean age of the population, but not a true value of the age of the population
 - The age of the population can be partially characterized by looking at the mean plus the variation of the age
What we need

- Estimates of the "expected" value of the variable
 - mean, median, mode, etc. (measures of "location")
- Estimates of the variation ("variance") of the variable
 - standard deviation, median absolute deviation, quantile ranges, etc. (measures of "scale")
- Estimates of the error in the estimates
 - e.g. standard error of the mean, confidence limits

Note: There are different ways of defining "error", too
- They lead to different measures and methods
- They are appropriate in different situations
- But most of this is beyond the scope of this lecture
Estimators for expected value

- Arithmetic mean
 - Most common
 - Can be used only on a difference scale or ratio scale
- Median (the 50/50 cut point)
 - Required if all we have is an ordinal scale
 - Also useful if we want to be robust against few extreme values
 - Ignores distance; inefficient (i.e. much information remains unused)
- Mode (the most frequent value)
 - Required if we only have nominal data (unordered)
 - Sometimes useful for ordinal scales with few values
- Trimmed mean (leave out a top/bottom fraction of the data points)
 - Robust against outliers, without ignoring distance
- M-estimators
 - Very advanced technique, robust and efficient
Expected value estimation example

- \(x = (1:10)^2 = c(1,4,9,16,25,36, \quad 49,64,81,100) \)
- \(\text{median}(x) = (25+36)/2 = 30.5 \)
- \(\text{mean}(x, tr=0.1) = \text{mean}(c(4,9,16, \quad 25,36,49,64,81)) = 35.5 \)
- \(\text{mean}(x) = 38.5 \)

- Base plot: `plot(x, rep(1, length(x)), type="h")`
Expected value estimation example (2)

- From the TPC data:
 - median=6.1
 - 0.1-trimmed mean=8.5
 - mean=48
Estimators for variation

- **Standard deviation**
 - mean distance of a value from the mean
 - R: `sd(x)` or `sqrt(var(x))` or `mean(abs(mean(x)-x))`

- **Median absolute deviation**
 - median distance of a value from the median
 - R: `mad(x, constant=1)` or `median(abs(median(x)-x))`
 - normal-consistent estimate is `mad(x)`
 - (i.e. equal to `sd(x)` for large samples from normal distributions)
 - less efficient estimator than std.dev., but robust to outliers

- **Interquartile range**
 - difference of the 0.75 and 0.25 quantiles
 - R: `IQR(x)` or `diff(quantiles(x, c(0.75,0.25)))`
 - normal-consistent estimate is `IQR(x)/1.349`
 - Note: interquartile range is related to the median, (not to the trimmed mean)
Variation estimation example

- \(x = (1:10)^2 = c(1, 4, 9, 16, 25, 36, 49, 64, 81, 100) \)
- \(\sqrt{\text{var}(x)} = \text{sd}(x) = 34 \)
- \(\text{mad}(x) = 36 \)
- \(\text{IQR}(x) / 1.349 = 37 \)
- \(\text{mad}(x, \text{const}=1) = 24 \)
- \(\text{IQR}(x) = 49.5 \)
Variation estimation example (2)

- From the TPC data:
 \[x = \text{dollarPerTpmC} \]

- \[\text{sd}(x) = 214 \]
- \[\text{mad}(x) = 4.1 \]
- \[\text{IQR}(x)/1.349 = 6.5 \]
The standard normal ("Gaussian") distribution

- 68%/95%/99.7% of all values fall within 1/2/3 standard deviations around the mean
 - R: `pnorm(1)-pnorm(-1)=0.683`
 - `pnorm(1:3)-pnorm(-1:-3) = 0.683 0.954 0.997`

The diagram shows the probability of the normal distribution (integral over `dnorm`) and the density of the normal distribution. The standard normal distribution is defined with a mean of 0 and a standard deviation of 1.
Estimators for error: standard error

- **Standard error (se, stderr) of the mean**
 - is the standard deviation of the mean-estimates that are based on samples of size N from the same distribution
 - R: $se = \frac{sd(x)}{\sqrt{\text{length}(x)}} = \sqrt{\frac{\text{var}(x)}{\text{length}(x)}}$

- **The best way of expressing estimated errors is by means of a confidence interval:**
 - e.g. with 68% probability, the true mean will be in the range $\text{mean}-se...\text{mean}+se$
 - so we have 68% confidence the mean will be in this range
 - $[\text{mean}-se, \text{mean}+se]$ is called a 68% confidence interval for the mean
 - $[\text{mean}-2*se, \text{mean}+2*se]$ is a 95% confidence interval for the mean, etc.

- **TPC dollarPerTpmC:** mean=48, std.err=19
Estimators for error: bootstrap

- Generally, estimating errors and confidence intervals is mathematically very challenging
 - std.err of the mean is one of the few simpler exceptions

- One possible replacement for strong theory is bootstrapping
 - More formally known as Bootstrap resampling
 - Bootstrapping means simulating many trials by
 - treating the sample as if it was the population
 - computing many replicates of the statistic of interest
 - and observing the variation.

- However, for many kinds of statistics, further considerations are required
 - in particular, compensating for bias
 - again, this is beyond the scope of this lecture
Bootstrap example

- We bootstrap the median of dollarPerTpmC:
 - \(xx = \text{tpc}\$\text{dollarPerTpmC} \)
 - \(\text{repl} = \text{replicate}(1000, \text{median}(\text{sample}(xx, \text{replace}=T))) \)
 - \(\text{mean}(xx)=48, \text{se}_{\text{mean}}=19, \text{median}(xx)=6.1, \text{se}_{\text{median}}=\text{sd}(\text{repl})=0.54 \)
 - \(\text{bias} = \text{mean}(\text{repl})-\text{median}(xx) = -0.02 \)

- R support:
 - library(boot)

Density plot with box plot

80% confidence interval for the median of dollarPerTpmC
Compare two or more samples

- We often want to compare two or more different samples of a variable (e.g. from 2 experiment groups)

- Essentially what we want is a confidence interval for the difference of the means
 - rather than the much more common, but much less informative p-value (as produced by a significance test)

- The meaning of the p-value is this:
 - If there is in fact really no difference between the groups...
 - ...then the probability of obtaining a difference at least as large as the one you have seen is p.

- If p is small, the difference is called "statistically significant"
 - (which basically tells you that the sample was large enough)

- If the samples are both from a normal distribution, the R procedure \texttt{t.test} computes such an interval
 - iff you are sure that both distributions have the same variance, set \texttt{var.equal=TRUE}; makes the test more efficient
Example: Comparing two pure normal distributions

- for each block of two pairs of samples (bottom to top):
 - $n=10, 50, 50$, $\mu_b=6, 6, 5.1$, $\mu_a=5, 5, 5$, $\sigma=1, 1, 0.2$
 - t-test, assuming unequal variance

<table>
<thead>
<tr>
<th>p-value</th>
<th>80% confidence interval</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.138</td>
<td>0.01...0.12</td>
</tr>
<tr>
<td>0.000</td>
<td>0.87...1.36</td>
</tr>
<tr>
<td>0.000</td>
<td>0.85...1.39</td>
</tr>
<tr>
<td>0.036</td>
<td>0.44...1.70</td>
</tr>
<tr>
<td>0.176</td>
<td>0.05...1.28</td>
</tr>
</tbody>
</table>

σ
Example:
Comparing tpmC per processor

- Now consider the tpmC performance per processor:
 - How large is the Windows/Unix difference and its 95% confidence interval?
Example, using normal distribution theory

- $x = \frac{tpc$tpmC}{tpc$cpus}[tpc$ostype=="Windows"]$
- $y = \frac{tpc$tpmC}{tpc$cpus}[tpc$ostype=="Unix"]$

- `t.test(x,y): df = 43.62, p-value = 0.016`

 alternative hypothesis: true difference in means is not equal to 0

 95 percent confidence interval: 803 7258

 sample estimates: mean(x)=16544, mean(y)=12514

- or, assuming equal variances in the populations:
 - `t.test(x,y,var.equal=T): df = 125, p-value = 0.0079`

 95 percent confidence interval: 1078 6983
Example, using bootstrap

- Bootstrapping is a general method for computing conf. interv.
 - making fewer assumptions (in particular: no normality needed)
- library(boot)
- dat = cbind(c(x,y), c(rep(1,length(x)),rep(0,length(y))))
- bb=boot(dat, function(d,i) mean(d[i,1][d[i,2]==1])-mean(d[i,1][d[i,2]==0]), R=1000)
- boot.ci(bb)

Intervals:

<table>
<thead>
<tr>
<th>Level</th>
<th>Normal</th>
<th>Basic</th>
</tr>
</thead>
<tbody>
<tr>
<td>95%</td>
<td>(953, 7195)</td>
<td>(1094, 7446)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Level</th>
<th>Percentile</th>
<th>BCa</th>
</tr>
</thead>
<tbody>
<tr>
<td>95%</td>
<td>(615, 6967)</td>
<td>(406, 6884)</td>
</tr>
</tbody>
</table>

- When in doubt, the BCa interval ("bias-corrected and accelerated") may be your safest bet
Model a relationship

- Often we want to know whether there is a relationship between two or more variables
 - and what this relationship is
 - Its nature may be causal or purely correlational

- The basic case is two variables on a ratio scale

- The basic approach is the scatter plot
 - Example: tpmc vs. total clock speed
 - plot(cpus*freq, tpmC)
 - Is there a relationship? Probably yes, but the data cluster too much near the small values
 - Let us use a log scale instead
Log-log scale scatter plot, correlation

- plot(log(cpus*freq,2), log(tpmC,2))

- Yes, there is a quite obviously a strong linear relationship between these parameters

- The strength can be quantified by means of the correlation coefficient r
 - $\text{cor}(\log(\text{cpus} \times \text{freq}, 2), \log(\text{tpmC}, 2)) = 0.95$
 - Watch out: Correlation is sensitive to the scale:
 - $\text{cor}(\text{cpus} \times \text{freq}, \text{tpmC}) = 0.88$
 - Note: The computation assumes that the deviations from the relationship follow a normal distribution
 - So the non-log cor is not valid in this case
More on correlation

- \(\text{cor}(\log(\text{cpus*freq,2}), \log(\text{tpmC,2})) = 0.95 \)
- \(\text{cor}(\text{cpus*freq, tpmC}) = 0.88 \)

- You can ignore scale entirely by using rank correlation:
 - \(\text{cor}(\text{rank(cpus*freq)}, \text{rank(tpmC)}) = 0.94 \)
 - uses rank numbers instead of actual data values (for data on less than a difference scale, this is the only allowed way)

- For less nice examples (with outliers), the results can be quite different
 - \(\text{cor}(\text{freq, tpmC}) = -0.195 \)
 - \(\text{cor}(\text{rank(freq)}, \text{rank(tpmC)}) = -0.28 \)
 - because the normality assumption is violated
Confidence interval for the correlation coefficient

- \(\text{cor}(\log(\text{cpus*freq,2}), \log(\text{tpmC,2})) = 0.95 \)
- \(\text{cor}(\text{cpus*freq, tpmC}) = 0.88 \)

- Again we use the Bootstrap:
 - \(\text{xx} = \text{cbind}(\log(\text{cpus*freq,2}), \log(\text{tpmC,2})) \)
 - \(\text{bb} = \text{boot}((\text{xx}, \text{function(d,i} \text{ cor(d[i,1], d[i,2]), R=1000})) \)
 - \(\text{boot.ci(bb)} \)
 - 95% BCa interval: 0.929 0.964

- The other example:
 - \(\text{cor}(\text{freq, tpmC}) = -0.195 \)
 - \(\text{xx} = \text{cbind}(\text{freq, tpmC}) \)
 - \(\ldots \)
 - 95% BCa interval: -0.285 -0.099
Note: Impressing laymen

- Some studies contain statements like this:
 - "The Pearson correlation coefficient is significant at level alpha = 0.05"
 - This talks about a hypothesis test against the null hypothesis that $r = 0$

- This sounds impressive, but means nothing more than that there may be some correlation (however small)
 - precisely: it means that if there is no correlation at all in the population, it is unlikely (<5%) to obtain such samples
 - Hence if you had previous grounds to believe in correlation, the data does not suggest you need to drop that belief
 - In most cases this is of very little interest
- When you see such a statement, the best reaction is usually to be very heavily unimpressed
Correlation and causation

• **Warning:** Remember that a correlation need not indicate causality
 • \(\text{cor(freq, tpmC) = -0.285...-0.099 (95\% \text{ ci})} \)
 means that increasing processor clock rate correlates with a *decreasing* rate of transactions per minute
 • This correlation can clearly not be causal: everything else the same, a faster clock would *increase* the transaction rate

 • **So?**
 • You need to know enough about your data:
 • The real reason is that the faster-clock (Windows) systems tend to have much fewer processors than the slower-clock (Unix) systems
 • The decreasing transaction rate is a property of the tpc data set, not of the clock frequency
freq and tpmC versus freq and cpus

- `xyplot(log(cpus,2)~freq, data=tpc, panel=panel.superpose, groups=ostype)`
Problems with summary statistics

- A further warning: The correlation, even in conjunction with other summary statistics, does not tell much about the nature of a relationship.

- The following plots all share the same correlation (0.82), means (x=9, y=7.5) and standard deviations (x=3.3, y=2)
 - `data(anscombe)`
 - 'stack' for repackaging
 - `xyplot`
Describing the relationship between x and y

• Since the correlation coefficient does not provide enough information, a scatter plot is usually advisable

• Where appropriate(!), a linear regression line can be used to visualize a trend in the data
 • use panel.lmline or type="r" with panel.xyplot
 • the function that computes the regression is lm
 • lm: "linear model"

• lm can also compute regressions for more than one predictor variable or results other than straight lines
 • linear models are the most important technique of professional statisticians
 • Again, this is beyond the scope of this lecture
Attention with linear models!

- Assume we have a sample of pairs \((x,y)\) and we assume there is a systematic relationship (linear, for now)
 - Case 1: For any \(x\), there is a single "true" value of \(y\)
 - Case 1A: Our \(x\) are precise, but the \(y\) are measurements with errors (and those errors have normal distribution!)
 - Case 1B: The \(x\) have errors as well
 - Case 2: The relationship is stochastic. For any \(x\), there is a single expected value of \(y\), but actual values do vary
 - Case 2A: Our \(x\) are measured precisely, but the \(y\) may have errors
 - Case 2B: Our \(y\) are measured precisely, but the \(x\) have errors
 - Case 2C: Both \(x\) and \(y\) are measured with errors

- The standard linear regression formula makes assumptions that are met only by cases 1A and 2A
 - 1B and 2C require advanced theoretical knowledge!
 - So be careful what you do
Non-linear trends

- Often a straight regression line is not a suitable fit

- If we know a suitable fitting function f, there are two approaches:
 - Transform the data, using the inverse of f, so that the data fit with a straight line
 - or fit a curve rather than a straight line

- Transforming the data may also lead to a more uniform distribution of the data points
 - See the logarithmic transformations we have used
Local trends

- If no appropriate curve function can be found or we do not want to assume a specific kind, we can fit a local regression
 - *loess* = locally weighted linear regression
 - at each point of the line, we perform a linear regression, but far-away points are weighted less heavily
 - Parameter *span* controls weighting and ignoring of points
 - use e.g. *panel.loess* for plotting
Example: Loess curves

blue straight line: linear regression
green line: a loess curve
Things not covered

- In many cases, numerical linear models are insufficient to characterize the given data
 - Then advanced techniques such as nonlinear numerical models (e.g. *neural networks*) or partially qualitative models (e.g. *classification trees*) may help
- In particular, the data may have temporal aspects
 - Then topics such as *time series analysis*, *random effects models*, and *survival analysis* become relevant
- Or we are looking for a measure that can only be described by a yet unknown combination of our variables
 - *Factor analysis, principal component analysis*
- In many cases, the data to be analyzed is incomplete
 - "*missing data*": an important, often difficult, and subtle matter
- ...and many others
Final note: Statistics is difficult

- The techniques presented here only scratch the surface of statistical data analysis
 - In some cases, they are sufficient
 - If not, try to get help from a professional statistician

Rules of thumb:
- Stick to what you really understand!
- Beware of ignored assumptions!
 - Violations may be OK, but you need to think about it
- Back your numbers up by informative plots!
 - Plots produce much higher credibility than bare numbers
 - And are not as likely to be grossly misinterpreted
Thank you!

MY HOBBY: EXTRAPOLATING

AS YOU CAN SEE, BY LATE NEXT MONTH YOU’LL HAVE OVER FOUR DOZEN HUSBANDS.
BETTER GET A BULK RATE ON WEDDING CAKE.