Course "Empirical Evaluation in Informatics"

The Scientific Method

Prof. Dr. Lutz Prechelt
Freie Universität Berlin, Institut für Informatik
http://www.inf.fu-berlin.de/inst/ag-se/

- Science and insight
- Informatics on the landscape of sciences
- The scientific method
- Variables, hypotheses, control
- Internal and external validity
- Validity, credibility, and relevance
"Empirische Bewertung in der Informatik"

Die wissenschaftliche Methode

Prof. Dr. Lutz Prechelt
Freie Universität Berlin, Institut für Informatik
http://www.inf.fu-berlin.de/inst/ag-se/

- Wissenschaft und Erkenntnismethoden
- Einordnung der Informatik
- Die wissenschaftliche Methode
- Variablen, Hypothesen, Kontrolle
- Interne und externe Gültigkeit
- Gültigkeit, Glaubwürdigkeit und Relevanz
Our goal

- In empirical evaluation, we have given a certain artifact or situation, e.g.
 - a new (or old) design method or
 - a new kind of hard disk, etc.

- and want to obtain an understanding of it
 - often with respect to specific attributes, e.g.
 - the effort for accommodating later requirements changes
 - or the bandwidth and latency of data transfer to/from the disk
Obtaining understanding

- There are different ways how people obtain understanding
 - by intuition (direct insight)
 - from some authority (tradition, teacher, book etc.)
 - by rational thought (reasoning, deduction)
 - by direct observation combined with induction
 - via the scientific method

- Each method can produce valid understanding

- No method can make totally sure that the understanding is valid
 - but the scientific method comes closest
 - and, just as importantly, has the best chance of convincing other people to accept the same understanding
The landscape of knowledge and science

- The arts
 - "Geisteswissenschaften"
 - Special case: Mathematics
 - pure logic: principles of deduction are fixed, anything else is arbitrary
- The (natural) sciences
 - "Naturwissenschaften"
 - examines characteristics and behavior of the real world
- Special case: the social sciences
 - "Sozialwissenschaften"
 - examines human behavior
- Engineering
 - "Ingenieurwissenschaften"
 - solves practical problems; interested in usefulness and cost
The landscape and T, C, E

T, C, E: Theory, Construction, Empiricism

- Mathematics
 - Mostly theory
 - Auxiliary C and E have entered recently (computational math.)
- The (natural) sciences
 - Theory and empiricism fertilize each other
 - Construction is purely auxiliary
- The social sciences
 - Empiricism drives Theory
 - Construction is purely auxiliary (at least mostly, at least today)
- Engineering
 - Theory, construction, and empiricism fertilize each other
 - Much theory is borrowed from the natural sciences
 - Construction is the goal
Informatics on the landscape

- Informatics has its roots in
 - Mathematics: logic, formal languages
 - (Electrical) Engineering: constructing computers

- Today, the larger part is clearly engineering
 - (In this course, we look at this part only)

- However, the engineering is not purely technical:
 - The artifacts have to be used by people
 - and building them involves people, too
 - Brings psychology, sociology, and politics into play

- Hence, Informatics needs a lot of empiricism
Mathematics vs. natural science

• Historically, all of science was philosophy
 • at least in the western culture
 • Greek philosophers
• and much of that was mathematics

• The notion that nature could be understood by pure thought (rationalism) was prevalent in the middle ages

• The idea that observation and experimentation was necessary to understand the world began to get accepted during the renaissance
Early empiricists

• Some of the earliest modern empiricists were the astronomers Kopernikus, Brahe, and Galilei
 • around 1500–1600

• One of the first modern experimental scientists was Galileo Galilei
 • At the time, it was generally accepted that heavy objects fell down faster than lighter ones
 • as claimed by Aristotle (384–322 BC)
 • Galilei did not believe this and experimented with brass spheres, inclined planes, and water clocks (1589–1604)
 • He systematically varied the weight of the ball and the steepness of the plane and found weight-independent acceleration
 • These were controlled experiments
Galilei's experiments

- Weight of the sphere is not relevant

- large ball
 - steep angle

- small ball
 - low angle
The scientific method

- Since Galilei, physics and other sciences work according to this model:
 - Formulate a theory T about how (some aspect of) the real world behaves
 - Design and conduct experiments E for testing this theory

- Is accepted in all subjects where experimentation is possible
 - Natural sciences: Physics, chemistry, biology, medicine etc.
 - Engineering
 - Parts of many social sciences (such as economics, sociology, etc.)

- Is problematic where experiments cannot be performed
 - for technical or ethical reasons
The scientific method (2)

• Note the following:
 • T is called a scientific theory only if it predicts something specifically and hence can be tested
 • Even if T is wrong, it may happen that the results of E are as expected
 • But if E contradicts predictions of T, then T must be false

• This view of science was suggested by Karl Popper (1904–1994)
 • It is the prevalent scientific paradigm today
 • In this view, theories cannot be directly confirmed, only refuted
 • If a theory cannot be refuted for a long time, it will gradually be accepted as confirmed
 • example: special theory of relativity
Pre-theoretical empiricism

- In many areas, too little is known for formulating a plausible, testable theory
 - Often true where people are involved and the situation is complex
 - such as in software engineering

- Even then empiricism is useful:
 - Observe things that lead to hypotheses from which one could build theories
 - Often these observations have to be qualitative rather than quantitative in order to be useful
 - Qualitative research is a large and interesting branch of research methodology
 - but not the topic of this course (half-exception: Case Studies)
Hard science vs. soft science

- Many people claim that a subject is a science only if it produces theories that are precise and reliable
 - "hard science", such as physics formulas

- and hence claim that subjects involving human behavior are not scientific
 - "soft science"
 - This attitude could be called "physics envy"

- This is not true: The scientific principle can be applied
 - but the theories will be more complex and make weaker (e.g. probabilistic) predictions

- Hard science is simpler than soft science
 - That is why it is farther advanced
Terminology of Empiricism

- When we empirically investigate something
 - we characterize the situation by a set of **input variables**
 - usually quantitative or categorial
 - e.g. "team size = 4" or "design method used = A"
 - and the observations by a set of **output variables**
 - If we **choose** the value of at least one input variable, the study is called an **experiment**

- The act of consciously manipulating the values of input variables is called **control**

- Every empirical study assumes that there is some systematic relationship between inputs and outputs
 - If we have a certain expectation about this relationship, this is called a **hypothesis**
 - Any additional factors influencing the outputs are called **extraneous variables**
Example: Case study

- Assume we want to evaluate a design method A
- We pick a representative team of people
 - a capable, but not unrealistically clever team
- We pick a task of interest
 - a "normal" one: not unusually small or large or difficult or ...
- We have them do the design using method A
 - (hopefully they receive some training beforehand...)
- We see what happens (using many sources of observations):
 - What goes well?
 - What goes not so well?
 - How good is the resulting design?
Control in the case study

• This case study has little control
 • We have controlled the task to be done and the method to be used
 • (and even this is unusual for a case study)
 • but not the capabilities of the people
 • Precisely how intelligent, knowledgable, interested etc. are they?
 • Worse, we cannot judge the results without comparing them to other results

• Hence, it is not so clear what the results mean
Example: Controlled experiment

• This time, we compare design methods A and B

• Again, we pick a task T and a set of people P
 • but this time a large set of people
 • we train all of them equally well in both methods

• But now we use separate teams working with A or with B
• and have 20 different teams solve T with each method
 • People are assigned to the teams at random

• We compare the average result obtained by the method A teams and method B teams
Control in the controlled experiment

- This time we have controlled all variables:
 - task and method as before
 - the comparison to method B allows for interpreting the results
 - replication turns all kinds of individual differences into a noise signal
 - we will get different results for different teams although they are using the same condition
 - but given enough teams, the differences cancel out
 - random group assignment avoids systematic accumulations of individual differences
 - e.g. if more capable people favor working with method A

- Hence, we can decide whether A works better than B
 - at least for this kind of people, in this setting, and for this task
Internal and external validity

• Internal validity
 • the degree to which the observed results were caused by only the intended input variables
 • rather than extraneous variables

• External validity
 • the degree to which the results can be generalized to other circumstances
 • in our example: other people, settings, and tasks

• Improving external validity tends to reduce internal validity
 • because it will strengthen the influence of extraneous variables
Threats to internal validity

• Have all plausible extraneous variables been controlled completely?
• Has the act of observing influenced the observations?
• Are the results that are compared really comparable?

A related concept is construct validity:
• Do my measurements really represent the characteristic that I want to observe?
 • e.g. does the number of pages of a design document really represent the size of a design task?
Threats to external validity

- The results rely on specific characteristics of the task
 - and these are uncommon
 - e.g. task is unusually well suited for method A, but not for B

- The results rely on specific characteristics of the people
 - and these are uncommon
 - e.g. they have an unrealistically good understanding of the ideas of method A, because they were thoroughly taught by its inventor

- The results rely on specific characteristics of the experimental setting
 - and these are uncommon
 - e.g. the subjects were enthusiastic about A, but not B.
Credibility, relevance, validity

• Credibility is achieved when
 • there is high internal validity
 • there is a reasonable amount of external validity
 • in particular: no bias of the task
 • there is no doubt that both is the case

• Relevance is achieved when
 • the question investigated is of general interest and
 • there is high external validity
Judging empirical results

- Some fraction of the empirical results in scientific publications is dubious or even plain wrong
- Outside of science, this is even much worse

- How can we discriminate valid results from dubious ones?
- The following questions help:
 - How do they know this?
 - in particular: Are the conclusions warranted by the facts?
 - What has not been said (but should have)?
 - Is this information really relevant?

(More about this in the next lecture)
Summary

• Our goal is insight into objective facts and relationships

• The most powerful method for this is the scientific method:
 • Formulate a theory, derive hypotheses
 • Test them by experiments
 • Can only refute the theory, not prove it!

• It is accepted wherever experiments are possible
 • and can be approximated in many further settings
 • In Informatics, control in the experiments is often incomplete

• The goal is high internal and external validity
 • because they are key to good credibility and relevance

• Results should be judged by these criteria
Thank you!