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Data analysis techniques 

• Samples and populations
• The mean
• The variability
• Comparing samples

• significance test,
confidence interval

• Bootstrap 
• Simple relationships of two 

variables
• Plots, log-Scales
• Correlation, linear models
• local models (loess)



2 / 39Lutz Prechelt, prechelt@inf.fu-berlin.de

"Empirische Bewertung in der Informatik"

Prof. Dr. Lutz Prechelt
Freie Universität Berlin, Institut für Informatik

http://www.inf.fu-berlin.de/inst/ag-se/

Techniken der Datenanalyse 

• Stichproben und 
Grundgesamtheiten

• Der Mittelwert
• Die Variabilität
• Vergleich von Stichproben

• Signifikanztest, 
Vertrauensbereich

• Bootstrap 
• Einfache Beziehungen zwischen 

zwei Variablen
• Plots, log-Skalen
• Korrelation, lineare Modelle
• lokale Modelle (loess)
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First note: samples and populations

• At the start of a statistical analysis, we usually have 
some subset ("sample", "Stichprobe") of all possible 
values of some kind ("population", "Grundgesamtheit")
• e.g. data for a size 50 subset of all FUB Informatics students

• The goal of analysis is making valid statements about the 
population on the basis of 
• the sample alone (frequentist approach) or
• the sample plus prior beliefs about the population 

(Bayesian approach)
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Warning: sampling is difficult

• Both approaches will work well only if the sample is 
representative
• that is, each member of the population had the same chance of 

being in the sample

• Obtaining a representative sample is very difficult
• Often the boundaries of the population are unclear

• Is a guest student a member? 
• Is a Nebenfach-student a member? etc.

• It is unknown how to sample randomly with even chances
• e.g. just catching people when passing the foyer is insufficient

• Often the member we picked for our sample will refuse to 
cooperate

• So all conclusions must be considered with care
• The conclusions are only "estimates"
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Again: Possible tasks of data analysis

• Measure a variable

• Compare two (or more) variables

• Model a relationship
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Measure a variable: 
what does the mean mean?

• Given: a set of measurements of the variable
• So we have a sample of a population. Which population?

• Case 1: There is a single "true" value and we have a set of 
measurements with errors.
• e.g. 10 measurements of the length of the same road
• Case a): We are perhaps interested in the true value only, 

not in the population of measurements
• The sample mean is an estimate of the true value

• Case b): But maybe we try to understand the measurement 
method, not the road.

• (e.g. for research on software inspection techniques)

Then we are interested in the population, not the true value
• The error in the measurements is what we want to characterize
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What does the mean mean? (2)

• Case 1: There is a single "true" value and we have a set of 
measurements with errors. […]

• Case 2: There is a stochastic variable (i.e. it has variability) 
and we have a sample of its values
• e.g. each person's age in a sample from a population of people
• We are interested in the "average" or "expected" case

• The sample mean is an estimate of the mean age
• There is a true value of the mean age of the population, 

but not a true value of the age of the population
• The age of the population can be partially characterized by looking at 

the mean plus the variation of the age
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What we need

• Estimates of the "expected" value of the variable
• mean, median, mode, etc. (measures of "location")

• Estimates of the variation ("variance") of the variable
• standard deviation, median absolute deviation, quantile ranges, 

etc. (measures of "scale")
• Estimates of the error in the estimates

• e.g. standard error of the mean, confidence limits

• Note: There are different ways of defining "error", too
• They lead to different measures and methods
• They are appropriate in different situations
• But most of this is beyond the scope of this lecture
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Estimators for expected value

• Arithmetic mean
• Most common
• Can be used only on a difference scale or ratio scale

• Median (the 50/50 cut point)
• Required if all we have is an ordinal scale
• Also useful if we want to be robust against few extreme values

• Ignores distance; inefficient (i.e. much information remains unused)

• Mode (the most frequent value)
• Required if we only have nominal data (unordered)
• Sometimes useful for ordinal scales with few values

• Trimmed mean (leave out a top/bottom fraction of the data 
points)
• Robust against outliers, without ignoring distance

• M-estimators
• very advanced technique, robust and efficient
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Expected value estimation example

• x=(1:10)^2=
c(1,4,9,16,25,36,
49,64,81,100)

• median(x)=
(25+36)/2=
30.5

• mean(x,tr=0.1)=
mean(c(4,9,16,
25,36,49,64,81)
=35.5

• mean(x)=38.5

• Base plot: plot(x, rep(1, length(x)), type="h")
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Expected 
value estimation example (2)

• From the
TPC data:

• median=6.1
• 0.1-trimmed mean=8.5
• mean=48
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Estimators for variation

• Standard deviation
• mean distance of a value from the mean
• R: sd(x)  or  sqrt(var(x))  or  mean(abs(mean(x)-x))

• Median absolute deviation
• median distance of a value from the median
• R: mad(x, constant=1)  or  median(abs(median(x)-x))
• normal-consistent estimate is mad(x)

• (i.e. equal to sd(x) for large samples from normal distributions)
• less efficient estimator than std.dev., but robust to outliers

• Interquartile range
• difference of the 0.75 and 0.25 quantiles
• R: IQR(x)  or  diff(quantiles(x, c(0.75,0.25)))
• normal-consistent estimate is IQR(x)/1.349
• Note: interquartile range is related to the median, 

(not to the trimmed mean)
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Variation estimation example

• x=(1:10)^2=
c(1,4,9,16,25,36,
49,64,81,100)

• sqrt(var(x))=
sd(x)=
34

• mad(x)=
36

• IQR(x)/1.349=
37

• mad(x,const=1)=
24

• IQR(x)=
49.5
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Variation estimation example (2)

• From the
TPC data:
x=
dollarPerTpmC

• sd(x) = 214
• mad(x) = 4.1
• IQR(x)/1.349 = 6.5

dollarPerTpm C
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The standard 
normal ("Gaussian") distribution

• 68%/95%/99.7% of all values fall within 1/2/3 standard 
deviations around the mean
• R: pnorm(1)-pnorm(-1)=0.683
• pnorm(1:3)-pnorm(-1:-3) = 0.683  0.954  0.997
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Estimators for error: standard error

• Standard error (se, stderr) of the mean
• is the standard deviation of the mean-estimates that are based 

on samples of size N from the same distribution
• R: se = sd(x)/sqrt(length(x)) = sqrt(var(x)/length(x))

• The best way of expressing estimated errors is by means of a 
confidence interval:
• e.g. with 68% probability, the true mean will be in the range 

mean-se…mean+se
• so we have 68% confidence the mean will be in this range
• [mean-se,mean+se] is called a 68% confidence interval for the mean

• [mean-2*se,mean+2*se] is a 95% confidence interval for the 
mean, etc.

• TPC dollarPerTpmC: mean=48, std.err=19
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Estimators for error: bootstrap

• Generally, estimating errors and confidence intervals is 
mathematically very challenging
• std.err of the mean is one of the few simpler exceptions

• One possible replacement for strong theory is bootstrapping
• More formally known as Bootstrap resampling

• Bootstrapping means simulating many trials by 
• treating the sample as if it was the population
• computing many replicates of the statistic of interest
• and observing the variation.

• However, for many kinds of statistics, further considerations 
are required
• in particular, compensating for bias
• again, this is beyond the scope of this lecture
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Bootstrap example

• We bootstrap the median of dollarPerTpmC:
• xx = tpc$dollarPerTpmC
• repl = replicate(1000, median(sample(xx, replace=T)))
• mean(xx)=48, semean=19, median(xx)=6.1, 

semedian=sd(repl)=0.54
• bias = mean(repl)-median(xx) = -0.02

• R support:
library(boot)

repl

M

5 6 7 8

densityplot with boxplot

80% confidence interval 
for the median of dollarPerTpmC
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Compare two or more samples

• We often want to compare two or more different samples of a 
variable (e.g. from 2 experiment groups)

• Essentially what we want is a confidence interval for the 
difference of the means
• rather than the much more common, but much less informative 

p-value (as produced by a significance test)
• The meaning of the p-value is this: 

• If there is in fact really no difference between the groups…
• …then the probability of obtaining a difference at least as large 

as the one you have seen is p.
• If p is small, the difference is called "statistically significant"

• (which basically tells you that the sample was large enough)

• If the samples are both from a normal distribution, 
the R procedure t.test computes such an interval
• iff you are sure that both distributions have the same variance, 

set var.equal=TRUE; makes the test more efficient
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Example: Comparing two pure
normal distributions
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M p=0.004 0.06…0.16

p=0.138 0.01…0.12

p=0.000 0.87…1.36

p=0.000 0.85…1.39

p=0.036 0.44…1.70

p=0.176 0.05…1.28

• for each block of two pairs of samples (bottom to top): 
• n=10,50,50, b=6,6,5.1, a=5,5,5, =1,1,0.2
• t-test, assuming unequal variance p-value

80% confidence interval
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tpmC/cpus
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Example: 
Comparing tpmC per processor

• Now consider the tpmC performance per processor:
• How large is the Windows/Unix difference 

and its 95% confidence interval?
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Example, 
using normal distribution theory

• x = (tpc$tpmC/tpc$cpus)[tpc$ostype=="Windows"]
• y = (tpc$tpmC/tpc$cpus)[tpc$ostype=="Unix"]

• t.test(x,y): df = 43.62, p-value = 0.016
alternative hypothesis: true difference in means is 
not equal to 0 
95 percent confidence interval:  803 7258
sample estimates: mean(x)=16544, mean(y)=12514 

• or, assuming equal variances in the populations:
• t.test(x,y,var.equal=T): df = 125, p-value = 0.0079

95 percent confidence interval: 1078 6983
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Example, using bootstrap

• Bootstrapping is a general method for computing conf. interv.
• making fewer assumptions (in particular: no normality needed)

• library(boot)
• dat = cbind(c(x,y), c(rep(1,length(x)),rep(0,length(y))))
• bb=boot(dat, function(d,i) mean(d[i,1][d[i,2]==1])-

mean(d[i,1][d[i,2]==0]),
R=1000)

• boot.ci(bb)
• Intervals : 

Level      Normal              Basic         
95%   ( 953, 7195 )   (1094, 7446 )  
Level     Percentile            BCa          
95%   ( 615, 6967 )   ( 406, 6884 )  

• When in doubt, the BCa interval ("bias-corrected and 
accelerated") may be your safest bet

t-test:
803 7258



24 / 39Lutz Prechelt, prechelt@inf.fu-berlin.de

Model a relationship

• Often we want to know whether there is a relationship 
between two or more variables
• and what this relationship is
• Its nature may be causal or purely correlational

• The basic case is two variables on a ratio scale

• The basic approach is the 
scatter plot
• Example: tpmc vs. 

total clock speed
• plot(cpus*freq, tpmC)
• Is there a relationship?

Probably yes, but the data
cluster too much near the 
small values

• Let us use a log scale instead 0 20000 40000 60000 80000
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Log-log scale scatter plot, correlation

• plot(log(cpus*freq,2), log(tpmC,2))

• Yes, there is is quite obviously a strong linear relationship 
between these parameters

• The strength can be quantified by means of the correlation 
coefficient r
• cor(log(cpus*freq,2), 

log(tpmC,2)) = 0.95
• Watch out: Correlation is

sensitive to the scale:
• cor(cpus*freq, tpmC) = 0.88
• Note: The computation assumes

that the deviations from the
relationship follow a 
normal distribution

• So the non-log cor is not valid 
in this case
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More on correlation

• cor(log(cpus*freq,2), log(tpmC,2)) = 0.95
• cor(cpus*freq, tpmC) = 0.88

• You can ignore scale entirely by using rank correlation:
• cor(rank(cpus*freq), rank(tpmC)) = 0.94

• uses rank numbers instead of actual data values (for data on less 
than a difference scale, this is the only allowed way)

• For less nice examples (with 
outliers), the results can be 
quite different
• cor(freq, tpmC) = -0.195
• cor(rank(freq), rank(tpmC)) 

= -0.28
• because the normality assumption

is violated
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Confidence interval 
for the correlation coefficient

• cor(log(cpus*freq,2), log(tpmC,2)) = 0.95
• cor(cpus*freq, tpmC) = 0.88

• Again we use the Bootstrap:
• xx = cbind(log(cpus*freq,2), log(tpmC,2))

bb=boot(xx, function(d,i) cor(d[i,1], d[i,2]), R=1000)
boot.ci(bb)

• 95% BCa interval: 0.929 0.964

• The other example:
• cor(freq, tpmC) = -0.195
• xx = cbind(freq, tpmC)

. . .
• 95% BCa interval: -0.285 -0.099
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Note: Impressing laymen

• Some studies contain statements like this:
• "The Pearson correlation coefficient is significant 

at level alpha = 0.05"
• This talks about a hypothesis test against the null hypothesis that 

r = 0

• This sounds impressive, but means nothing more than that 
there may be some correlation (however small)
• precisely: it means that if there is no correlation at all in the 

population, it is unlikely (<5%) to obtain such samples
• Hence if you had previous grounds to believe in correlation, 

the data does not suggest you need to drop that belief
• In most cases this is of very little interest

• When you see such a statement, the best reaction is usually 
to be very heavily unimpressed
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Correlation and causation

• Warning: Remember that a correlation need not indicate 
causality
• cor(freq, tpmC) = -0.285…-0.099 (95% ci)

means that increasing processor clock rate correlates with a 
decreasing rate of transactions per minute

• This correlation can clearly not be causal: everything else the same, a 
faster clock would increase the transaction rate

• So?
• You need to know enough about your data:

• The real reason is that the faster-clock (Windows) systems tend 
to have much fewer processors than the slower-clock (Unix) 
systems

• The decreasing transaction rate is a property of the tpc data set, not 
of the clock frequency



30 / 39Lutz Prechelt, prechelt@inf.fu-berlin.de

freq and tpmC versus freq and cpus
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• xyplot(log(cpus,2)~freq, data=tpc,
panel=panel.superpose, groups=ostype)
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Problems with summary statistics

• A further warning: The correlation, even in conjunction with 
other summary statistics, does not tell much about the nature 
of a relationship

• The following plots 
all share the same 
correlation (0.82), 
means (x=9, y=7.5) 
and standard 
deviations (x=3.3, 
y=2)
• data(anscombe)

• 'stack' for 
repackaging

• xyplot
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Describing 
the relationship between x and y

• Since the correlation coefficient does not provide enough 
information, a scatter plot is usually advisable

• Where appropriate(!), a linear regression line can be used to 
visualize a trend in the data
• use panel.lmline or type="r" with panel.xyplot
• the function that computes the regression is lm

• lm: "linear model"

• lm can also compute regressions for more than one predictor 
variable or results other than straight lines
• linear models are the most important technique of professional 

statisticians
• Again, this is beyond the scope of this lecture
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Attention with linear models!

• Assume we have a sample of pairs (x,y) and we assume there 
is a systematic relationship (linear, for now)
• Case 1: For any x, there is a single "true" value of y

• Case 1A: Our x are precise, but the y are measurements with errors 
(and those errors have normal distribution!)

• Case 1B: The x have errors as well
• Case 2: The relationship is stochastic. For any x, there is a single 

expected value of y, but actual values do vary
• Case 2A: Our x are measured precisely, but the y may have errors
• Case 2B: Our y are measured precisely, but the x have errors
• Case 2C: Both x and y are measured with errors

• The standard linear regression formula makes assumptions 
that are met only by cases 1A and 2A
• 1B and 2C require advanced theoretical knowledge!
• So be careful what you do
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Non-linear trends

• Often a straight regression line is not a suitable fit

• If we know a suitable fitting function f, there are two 
approaches:
• Transform the data, using the inverse of f, so that the data fit 

with a straight line
• or fit a curve rather than a straight line

• Transforming the data may also lead to a more uniform 
distribution of the data points
• See the logarithmic transformations we have used
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Local trends

• If no appropriate curve function can be found or we do not 
want to assume a specific kind, we can fit a local regression
• loess = locally weighted regression
• at each point of the line, we perform a linear regression, but far-

away points are weighted less heavily
• Parameter span controls weighting and ignoring of points
• use e.g. panel.loess for plotting
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Example: Loess curves

x

y

 4

 6

 8

10

12

 5 10 15 20

x1 x2

x3

 4

 6

 8

10

12

x4

 5 10 15 20

blue straight line: linear regression green line: a loess curve
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Things not covered

• In many cases, numerical linear models are insufficient to 
characterize the given data
• Then advanced techniques such as nonlinear numerical models 

(e.g. neural networks) or partially qualitative models (e.g. 
classification trees) may help

• In particular, the data may have temporal aspects
• Then topics such as time series analysis, random effects models, 

and survival analysis become relevant
• Or we are looking for a measure that can only be described by 

a yet unknown combination of our variables
• Factor analysis, principal component analysis

• In many cases, the data to be analyzed is incomplete
• "missing data": an important, often difficult, and subtle matter

• …and many others
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Final note: Statistics is difficult

• The techniques presented here only scratch the surface of 
statistical data analysis
• In some cases, they are sufficient
• If not, try to get help from a professional statistician

• Rules of thumb:
• Stick to what you really understand!
• Beware of ignored assumptions!

• Violations may be OK, but you need to think about it
• Back your numbers up by informative plots!

• Plots produce much higher credibility than bare numbers
• And are not as likely to be grossly misinterpreted
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Thank you!
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