

Course "Empirical Evaluation in Informatics"

Data analysis techniques

Prof. Dr. Lutz Prechelt Freie Universität Berlin, Institut für Informatik http://www.inf.fu-berlin.de/inst/ag-se/

- Samples and populations
- The mean
- The variability
- Comparing samples
 - significance test, confidence interval

- Bootstrap
- Simple relationships of two variables
 - Plots, log-Scales
 - Correlation, linear models
 - local models (loess)

"Empirische Bewertung in der Informatik"

Techniken der Datenanalyse

Prof. Dr. Lutz Prechelt Freie Universität Berlin, Institut für Informatik http://www.inf.fu-berlin.de/inst/ag-se/

- Stichproben und Grundgesamtheiten
- Der Mittelwert
- Die Variabilität
- Vergleich von Stichproben
 - Signifikanztest,
 Vertrauensbereich

- Bootstrap
- Einfache Beziehungen zwischen zwei Variablen
 - Plots, log-Skalen
 - Korrelation, lineare Modelle
 - lokale Modelle (loess)

First note: samples and populations

- At the start of a statistical analysis, we usually have some subset ("sample", "Stichprobe") of all possible values of some kind ("population", "Grundgesamtheit")
 - · e.g. data for a size 50 subset of all FUB Informatics students
- The goal of analysis is making valid statements about the population on the basis of
 - the sample alone (frequentist approach) or
 - the sample plus prior beliefs about the population (Bayesian approach)

Warning: sampling is difficult

- Both approaches will work well only if the sample is representative
 - that is, each member of the population had the same chance of being in the sample
- Obtaining a representative sample is very difficult
 - Often the boundaries of the population are unclear
 - Is a guest student a member?
 - Is a Nebenfach-student a member? etc.
 - It is unknown how to sample randomly with even chances
 - e.g. just catching people when passing the foyer is insufficient
 - Often the member we picked for our sample will refuse to cooperate
- So all conclusions must be considered with care
 - The conclusions are only "estimates"

Again: Possible tasks of data analysis

- Measure a variable
- Compare two (or more) variables
- Model a relationship

Measure a variable: what does the mean mean?

- Given: a set of measurements of the variable
- So we have a sample of a population. Which population?
- Case 1: There is a single "true" value and we have a set of measurements with errors.
 - e.g. 10 measurements of the length of the same road
 - Case a): We are perhaps interested in the true value only, not in the population of measurements
 - The sample mean is an estimate of the true value
 - Case b): But maybe we try to understand the measurement method, not the road.
 - (e.g. for research on software inspection techniques)

Then we are interested in the population, not the true value

The error in the measurements is what we want to characterize

What does the mean mean? (2)

- Case 1: There is a single "true" value and we have a set of measurements with errors.
- Case 2: There is a stochastic variable (i.e. it has variability) and we have a sample of its values
 - e.g. each person's age in a sample from a population of people
 - We are interested in the "average" or "expected" case
 - · The sample mean is an estimate of the mean age
 - There is a true value of the mean age of the population, but not a true value of the age of the population
 - The age of the population can be partially characterized by looking at the mean plus the *variation* of the age

What we need

- Estimates of the "expected" value of the variable
 - mean, median, mode, etc. (measures of "location")
- Estimates of the variation ("variance") of the variable
 - standard deviation, median absolute deviation, quantile ranges, etc. (measures of "scale")
- Estimates of the error in the estimates
 - e.g. standard error of the mean, confidence limits
- Note: There are different ways of defining "error", too
 - They lead to different measures and methods
 - They are appropriate in different situations
 - But most of this is beyond the scope of this lecture

Estimators for expected value

- Arithmetic mean
 - Most common
 - Can be used only on a difference scale or ratio scale
- Median (the 50/50 cut point)
 - Required if all we have is an ordinal scale
 - Also useful if we want to be robust against few extreme values
 - Ignores distance; inefficient (i.e. much information remains unused)
- Mode (the most frequent value)
 - Required if we only have nominal data (unordered)
 - Sometimes useful for ordinal scales with few values
- Trimmed mean (leave out a top/bottom fraction of the data points)
 - Robust against outliers, without ignoring distance
- M-estimators
 - very advanced technique, robust <u>and</u> efficient

Expected value estimation example

- x=(1:10)^2=
 c(1,4,9,16,25,36,49,64,81,100)
- median(x) = (25+36)/2 = 30.5
- mean(x,tr=0.1)=
 mean(c(4,9,16,
 25,36,49,64,81)
 =35.5
- mean(x) = 38.5

Base plot: plot(x, rep(1, length(x)), type="h")

Expected value estimation example (2)

From the TPC data:

- median=6.1
- 0.1-trimmed mean=8.5
- mean=48

Estimators for variation

- Standard deviation
 - mean distance of a value from the mean
 - R: sd(x) or sqrt(var(x)) or mean(abs(mean(x)-x))
- Median absolute deviation
 - median distance of a value from the median
 - R: mad(x, constant=1) or median(abs(median(x)-x))
 - normal-consistent estimate is mad(x)
 - (i.e. equal to sd(x) for large samples from normal distributions)
 - less efficient estimator than std.dev., but robust to outliers
- Interquartile range
 - difference of the 0.75 and 0.25 quantiles
 - R: IQR(x) or diff(quantiles(x, c(0.75,0.25)))
 - normal-consistent estimate is IQR(x)/1.349
 - Note: interquartile range is related to the median, (not to the trimmed mean)

Variation estimation example

- x=(1:10)^2=
 c(1,4,9,16,25,36,49,64,81,100)
- sqrt(var(x)) = sd(x) = 34
- mad(x) =36
- IQR(x)/1.349 = 37
- mad(x,const=1)=24
- IQR(x)= 49.5

Variation estimation example (2)

From the TPC data:X= dollarPerTpmC

• sd(x) =

214

• mad(x) =

- 4.1
- IQR(x)/1.349 =
- 6.5

The standard normal ("Gaussian") distribution

- 68%/95%/99.7% of all values fall within 1/2/3 standard deviations around the mean
 - R: pnorm(1)-pnorm(-1)=0.683
 - $pnorm(1:3)-pnorm(-1:-3) = 0.683 \ 0.954 \ 0.997$

Estimators for error: standard error

- Standard error (se, stderr) of the mean
 - is the standard deviation of the mean-estimates that are based on samples of size N from the same distribution
 - R: se = sd(x)/sqrt(length(x)) = sqrt(var(x)/length(x))
- The best way of expressing estimated errors is by means of a confidence interval:
 - e.g. with 68% probability, the true mean will be in the range mean-se...mean+se
 - so we have 68% confidence the mean will be in this range
 - [mean-se,mean+se] is called a 68% confidence interval for the mean
 - [mean-2*se,mean+2*se] is a 95% confidence interval for the mean, etc.
- TPC dollarPerTpmC: mean=48, std.err=19

Estimators for error: bootstrap

- Generally, estimating errors and confidence intervals is mathematically very challenging
 - std.err of the mean is one of the few simpler exceptions
- One possible replacement for strong theory is bootstrapping
 - More formally known as Bootstrap resampling
- Bootstrapping means simulating many trials by
 - treating the sample as if it was the population
 - computing many replicates of the statistic of interest
 - and observing the variation.
- However, for many kinds of statistics, further considerations are required
 - in particular, compensating for bias
 - again, this is beyond the scope of this lecture

- We bootstrap the median of dollarPerTpmC:
 - xx = tpc\$dollarPerTpmC
 - repl = replicate(1000, median(sample(xx, replace=T)))
 - mean(xx)=48, se_{mean} =19, median(xx)=6.1, se_{median} =sd(repl)=0.54
 - bias = mean(repl)-median(xx) = -0.02
- R support: library(boot)

Compare two or more samples

- We often want to compare two or more different samples of a variable (e.g. from 2 experiment groups)
- Essentially what we want is a confidence interval for the difference of the means
 - rather than the much more common, but much less informative p-value (as produced by a significance test)
 - The meaning of the p-value is this:
 - If there is in fact really no difference between the groups...
 - ...then the probability of obtaining a difference at least as large as the one you have seen is p.
 - If p is small, the difference is called "statistically significant"
 - (which basically tells you that the sample was large enough)
- If the samples are both from a normal distribution, the R procedure *t.test* computes such an interval
 - iff you are sure that both distributions have the same variance, set var.equal=TRUE; makes the test more efficient

Example: Comparing two pure normal distributions

- for each block of two pairs of samples (bottom to top):
 - $n=10,50,50, \mu_b=6,6,5.1, \mu_a=5,5,5, \sigma=1,1,0.2$
 - t-test, assuming unequal variance

p-value 80% confidence interval

$$p=0.036$$
 0.44...1.70

Example: Comparing tpmC per processor

- Now consider the tpmC performance per processor:
 - How large is the Windows/Unix difference and its 95% confidence interval?

Example, using normal distribution theory

- x = (tpc\$tpmC/tpc\$cpus)[tpc\$ostype=="Windows"]
- y = (tpc\$tpmC/tpc\$cpus)[tpc\$ostype=="Unix"]
- t.test(x,y): df = 43.62, p-value = 0.016 alternative hypothesis: true difference in means is not equal to 0 95 percent confidence interval: 803 7258 sample estimates: mean(x)=16544, mean(y)=12514
- or, assuming equal variances in the populations:
- t.test(x,y,var.equal=T): df = 125, p-value = 0.0079
 95 percent confidence interval: 1078 6983

Example, using bootstrap

- Bootstrapping is a general method for computing conf. interv.
 - making fewer assumptions (in particular: no normality needed)
- library(boot)
- dat = cbind(c(x,y), c(rep(1,length(x)),rep(0,length(y))))
- bb=boot(dat, function(d,i) mean(d[i,1][d[i,2]==1])mean(d[i,1][d[i,2]==0]), R=1000)
- boot.ci(bb)

t-test:

• Intervals : 803 7258

```
Level Normal Basic 95% (953, 7195) (1094, 7446) Level Percentile BCa 95% (615, 6967) (406, 6884)
```

 When in doubt, the BCa interval ("bias-corrected and accelerated") may be your safest bet

Model a relationship

- Often we want to know whether there is a relationship between two or more variables
 - and what this relationship is
 - Its nature may be causal or purely correlational
- The basic case is two variables on a ratio scale
- The basic approach is the scatter plot
 - Example: tpmc vs. total clock speed
 - plot(cpus*freq, tpmC)
 - Is there a relationship?
 Probably yes, but the data cluster too much near the small values
 - Let us use a log scale instead

Log-log scale scatter plot, correlation

- plot(log(cpus*freq,2), log(tpmC,2))
- Yes, there is is quite obviously a strong linear relationship between these parameters
- The strength can be quantified by means of the correlation coefficient r
 - cor(log(cpus*freq,2), log(tpmC,2)) = 0.95
 - Watch out: Correlation is sensitive to the scale:
 - cor(cpus*freq, tpmC) = 0.88
 - Note: The computation assumes that the deviations from the relationship follow a normal distribution
 - So the non-log cor is not valid in this case

More on correlation

- cor(log(cpus*freq,2), log(tpmC,2)) = 0.95
- cor(cpus*freq, tpmC) = 0.88
- You can ignore scale entirely by using rank correlation:
 - cor(rank(cpus*freq), rank(tpmC)) = 0.94
 - uses rank numbers instead of actual data values (for data on less than a difference scale, this is the only allowed way)
- For less nice examples (with outliers), the results can be quite different
 - cor(freq, tpmC) = -0.195
 - cor(rank(freq), rank(tpmC))= -0.28
 - because the normality assumption is violated

Confidence interval for the correlation coefficient

- cor(log(cpus*freq,2), log(tpmC,2)) = 0.95
- cor(cpus*freq, tpmC) = 0.88
- Again we use the Bootstrap:
 - xx = cbind(log(cpus*freq,2), log(tpmC,2))
 bb=boot(xx, function(d,i) cor(d[i,1], d[i,2]), R=1000)
 boot.ci(bb)
 - 95% BCa interval: 0.929 0.964
- The other example:
 - cor(freq, tpmC) = -0.195
 - xx = cbind(freq, tpmC). . .
 - 95% BCa interval: -0.285 -0.099

Note: Impressing laymen

- Some studies contain statements like this:
 - "The Pearson correlation coefficient is significant at level alpha = 0.05"
 - This talks about a hypothesis test against the null hypothesis that
 r = 0
- This sounds impressive, but means nothing more than that there may be some correlation (however small)
 - precisely: it means that if there is no correlation at all in the population, it is unlikely (<5%) to obtain such samples
 - Hence if you had previous grounds to believe in correlation, the data does not suggest you need to drop that belief
 - In most cases this is of very little interest
- When you see such a statement, the best reaction is usually to be very heavily unimpressed

- Warning: Remember that a correlation need not indicate causality
 - cor(freq, tpmC) = -0.285...-0.099 (95% ci)
 means that increasing processor clock rate correlates with a decreasing rate of transactions per minute
 - This correlation can clearly not be causal: everything else the same, a faster clock would increase the transaction rate
 - So?
 - You need to know enough about your data:
 - The real reason is that the faster-clock (Windows) systems tend to have much fewer processors than the slower-clock (Unix) systems
 - The decreasing transaction rate is a property of the tpc data set, not of the clock frequency

freq and tpmC versus freq and cpus

 xyplot(log(cpus,2)~freq, data=tpc, panel=panel.superpose, groups=ostype)

Problems with summary statistics

 A further warning: The correlation, even in conjunction with other summary statistics, does not tell much about the nature

of a relationship

- The following plots all share the same correlation (0.82), means (x=9, y=7.5) and standard deviations (x=3.3, y=2)
 - data(anscombe)
 - 'stack' for repackaging
 - xyplot

Describing the relationship between x and y

- Since the correlation coefficient does not provide enough information, a scatter plot is usually advisable
- Where appropriate(!), a linear regression line can be used to visualize a trend in the data
 - use panel.lmline or type="r" with panel.xyplot
 - the function that computes the regression is Im
 - Im: "linear model"
- Im can also compute regressions for more than one predictor variable or results other than straight lines
 - linear models are the most important technique of professional statisticians
 - Again, this is beyond the scope of this lecture

- Assume we have a sample of pairs (x,y) and we assume there
 is a systematic relationship (linear, for now)
 - Case 1: For any x, there is a single "true" value of y
 - Case 1A: Our x are precise, but the y are measurements with errors (and those errors have normal distribution!)
 - Case 1B: The x have errors as well
 - Case 2: The relationship is stochastic. For any x, there is a single expected value of y, but actual values do vary
 - Case 2A: Our x are measured precisely, but the y may have errors
 - Case 2B: Our y are measured precisely, but the x have errors
 - Case 2C: Both x and y are measured with errors
- The standard linear regression formula makes assumptions that are met only by cases 1A and 2A
 - 1B and 2C require advanced theoretical knowledge!
 - So be careful what you do

Non-linear trends

- Often a straight regression line is not a suitable fit
- If we know a suitable fitting function f, there are two approaches:
 - Transform the data, using the inverse of f, so that the data fit with a straight line
 - or fit a curve rather than a straight line
- Transforming the data may also lead to a more uniform distribution of the data points
 - See the logarithmic transformations we have used

Local trends

- If no appropriate curve function can be found or we do not want to assume a specific kind, we can fit a local regression
 - loess = locally weighted regression
 - at each point of the line, we perform a linear regression, but faraway points are weighted less heavily
 - Parameter span controls weighting and ignoring of points
 - use e.g. panel.loess for plotting

Example: Loess curves

Things not covered

- In many cases, numerical linear models are insufficient to characterize the given data
 - Then advanced techniques such as nonlinear numerical models (e.g. neural networks) or partially qualitative models (e.g. classification trees) may help
- In particular, the data may have temporal aspects
 - Then topics such as time series analysis, random effects models, and survival analysis become relevant
- Or we are looking for a measure that can only be described by a yet unknown combination of our variables
 - Factor analysis, principal component analysis
- In many cases, the data to be analyzed is incomplete
 - "missing data": an important, often difficult, and subtle matter
- ...and many others

Final note: Statistics is difficult

- The techniques presented here only scratch the surface of statistical data analysis
 - In some cases, they are sufficient
 - If not, try to get help from a professional statistician
- Rules of thumb:
 - Stick to what you really understand!
 - Beware of ignored assumptions!
 - Violations may be OK, but you need to think about it
 - Back your numbers up by informative plots!
 - Plots produce much higher credibility than bare numbers
 - And are not as likely to be grossly misinterpreted

Thank you!

MY HOBBY: EXTRAPOLATING

http://xkcd.com/605/