
1 / 41Lutz Prechelt, prechelt@inf.fu-berlin.de

Course "Empirical Evaluation in Informatics"
Introduction 

• The notion of Empirical 
Evaluation

• Theory, Construction, 
Empiricism

• Status of empiricism in 
Informatics

• Hypothetical examples
• Quality criteria:

• credibility
• relevance

• Note on scale types

Prof. Dr. Lutz Prechelt
Freie Universität Berlin, Institut für Informatik

http://www.inf.fu-berlin.de/inst/ag-se/



2 / 41Lutz Prechelt, prechelt@inf.fu-berlin.de

"Empirische Bewertung in der Informatik"
Einführung 

• Begriff 
• Theorie, Konstruktion, Empirie
• Status der Empirie in der 

Informatik

• Hypothetische 
Anwendungsbeispiele

• Qualitätsmaßstäbe:
• Glaubwürdigkeit
• Relevanz

• Hinweis: Skalentypen

Prof. Dr. Lutz Prechelt
Freie Universität Berlin, Institut für Informatik

http://www.inf.fu-berlin.de/inst/ag-se/



3 / 41Lutz Prechelt, prechelt@inf.fu-berlin.de

Science

• Science is the belief in the ignorance of experts.
• Richard Feynman (1918-1988) 

(The pleasure of finding things out, 
1999, p.187)

• (Ignorance: Unwissen)



4 / 41Lutz Prechelt, prechelt@inf.fu-berlin.de

Technology

• For a successful technology, 
reality must take precedence over public relations, 
for nature cannot be fooled.
• Richard Feynman

(last sentence of the Rogers Commission Report into the 
Challenger Crash, Appendix F: Personal Observations on the 
Reliability of the Shuttle)

• http://science.ksc.nasa.gov/shuttle/missions/51-l/docs/rogers-
commission/Appendix-F.txt

• (Things are as they are. 
Just claiming something does not make it true.)



5 / 41Lutz Prechelt, prechelt@inf.fu-berlin.de

"Empirical" / "empirisch"

• Based on observation
• (greek-latin origin)

• As opposed to being based on 
• theoretical considerations
• intuition
• random selection



6 / 41Lutz Prechelt, prechelt@inf.fu-berlin.de

"Evaluation" / "Bewertung"

• "to evaluate": auswerten, bewerten

• Assigning measures of goodness to something
• The purpose is typically making some kind of decision:

• deciding yes or no
• Should I do it or not (in my context)?
• e.g. starting or stopping a project, 

introducing a technology or not, etc.
• selecting among solution candidates

• Which one is best for my purposes?
• e.g. systems, methods

• understanding characteristics and priorities
• What characteristics does a certain method/tool have in my context?
• Which of these are most relevant for me?
• e.g. in business process automation, user interface design, etc.



7 / 41Lutz Prechelt, prechelt@inf.fu-berlin.de

"Informatics" / "Informatik"

• The science and engineering of information and 
information processing systems

• Very broad area

Note:
• Many of the same principles presented in this course can be 

applied to other areas as well
• Hence, this course is relevant far beyond where software is 

created or selected



8 / 41Lutz Prechelt, prechelt@inf.fu-berlin.de

Partitioning Informatics: 
Technical, Applied, Theoretical

Work in Informatics is often discriminated into being either
• Technical ("Technische Informatik")

• having to do more or less closely with hardware
• Applied ("Praktische Informatik")

• having to do mostly with software
• Theoretical ("Theoretische Informatik")

• having to do mostly with mathematics
• Furthermore: Applications ("Angewandte Informatik")

• having to do mostly with software in actual usage contexts

• Problem: Discrimination hardly relevant for practitioners
• Problem: The boundaries have long disappeared



9 / 41Lutz Prechelt, prechelt@inf.fu-berlin.de

Partitioning again: Theory, 
Construction, Empiricism (T,C,E)

A better discrimination would be by work method:
• Theory

• produces formalisms, derives results about them, 
revolves around logical issues

• Construction
• produces systems designs, constructs systems, 

revolves around practical issues
• Empiricism

• produces observations of systems and interprets them, 
revolves around behavior in and of the real world

• At any one time, any work in Informatics is primarily in only 
one of these modes
• whether practitioner work or research work
• but good work switches mode frequently



10 / 41Lutz Prechelt, prechelt@inf.fu-berlin.de

T, C, E: What they are used for

(Our focus is solving practical Informatics problems)

• Theory:
• structuring and understanding a domain
• if done well, can much simplify construction

• "There is nothing more practical than a good theory"

• Construction:
• build a useful technical artifact, such as a software system

• Empiricism:
• in an early phase: Understanding requirements
• in a later phase: Understanding the characteristics of a system

• This is the topic of the present course!



11 / 41Lutz Prechelt, prechelt@inf.fu-berlin.de

Example 1: Algorithms

1. Theory
• Specify the problem to be solved

• e.g. linear programming: minimize linear function given constraints
• Specify an algorithm for solving it (e.g. simplex algorithm)
• Maybe prove the algorithm correct, etc.

2. Construction
• Implement the algorithm as a concrete program

• often much longer than the theoretical algorithm because of 
optimizations, input/output, limitations of machine arithmetic, 
error handling, external interfaces, etc.

3. Empiricism
• Determine actual characteristics of the program 

for different kinds of inputs
• execution time, memory behavior, etc.
• for heuristic or approximation algorithms: quality of results



12 / 41Lutz Prechelt, prechelt@inf.fu-berlin.de

Example 2: Software design methods

1. Empiricism
• Determine the weaknesses of current design methods

2. Theory
• Maybe define some new terminology
• Maybe pose new design principles

3. Construction
• Formulate a new design method
• Perhaps construct support tools

4. Empiricism
• Evaluate the behavior of the method for concrete problems
• Probably in comparison to other methods



13 / 41Lutz Prechelt, prechelt@inf.fu-berlin.de

Informatics until recently

• Until the 1990s, Informatics research publications were often 
short on empirical evaluation
• they often provided designs of systems
• and claims for their properties
• but little or no no data on actual behavior

• In comparison, other engineering fields were much better in 
this respect

• Tichy, Lukowicz, Prechelt, 
Heinz: "Experimental Evaluation 
in Computer Science: 
A quantitative study",
Journal of Systems and 
Software 28(1), 1995.



14 / 41Lutz Prechelt, prechelt@inf.fu-berlin.de

Informatics today

• This situation has become a lot better
• It is now generally understood that proposed systems and 

methods need to be evaluated empirically

• Compared to research, practitioners' work has always been 
more empirical
• However, evaluation was often very implicit, hardly conscious 

and often not very systematical.
• Systematic empirical evaluation is becoming more and more 

common there as well



15 / 41Lutz Prechelt, prechelt@inf.fu-berlin.de

A glimpse of the improvement

• M. Zelkowitz and D. Wallace: "Experimental 
Models for Validating Technology", 
IEEE Computer 31(5), May 1998.

• Categorizes 612 research articles in software engineering 
(from 1985, 1990, 1995) according to the empirical 
evaluation method that they used (if any)

• 2 of the 14 categories describe articles providing 
- no proof ("no experimentation") or 
- only visibly biased proof ("assertion")
• 1985: 67% of the articles were in one of these two
• 1995: 47% of the articles were in one of these two
• still far from great, but a big improvement
• has presumably continued to improve



16 / 41Lutz Prechelt, prechelt@inf.fu-berlin.de

Frequency 
of evaluation methods (in SW Eng.)



17 / 41Lutz Prechelt, prechelt@inf.fu-berlin.de

Examples

• Let us look what empirical evaluations may be used for
• and what approach we might use in each case:

• Scenario 1: Introducing inspections in a SW project organization
• Scenario 2: Switching the development world
• Scenario 3: Selecting an Application Server product

In each case, we look at:
• What are the results of interest?
• What are the constraints?
• What are the most promising evaluation approaches?



18 / 41Lutz Prechelt, prechelt@inf.fu-berlin.de

Scenario 1: Introducing inspections

• A SW organization is thinking about introducing inspections 
into their process

• Constraint: is an IT service company doing information 
systems projects for varying customers
• requirements inspections, design inspections, code inspections

• Interest:
• which and how many defects will be found?
• cost of inspections
• how much effort is saved by finding the defects early?

• return-on-investment (ROI)



19 / 41Lutz Prechelt, prechelt@inf.fu-berlin.de

(Scenario 1)
Code Inspections

• Possible approach:
• inspect a number of modules; do not fix the defects found
• measure testing and debugging cost of the same modules
• (A quasi-experiment approach)

• Difficulties
• What if author and tester are the same person?

• unfair disadvantage for inspectors
• What if measurement is too difficult?

• due to interruptions, mixing with other tasks (e.g. debug with fix), 
etc.

• Other approaches
• search the literature on this subject
• controlled experiment: many people inspect or test the same 

program



20 / 41Lutz Prechelt, prechelt@inf.fu-berlin.de

(Scenario 1)
Requirements and design inspections

• Approach:
• ???

• Difficulties:
• Cannot afford not to fix problems found
• If we fix them, cannot measure would-be cost for comparison
• Estimates may be very imprecise



21 / 41Lutz Prechelt, prechelt@inf.fu-berlin.de

Scenario 2: 
Switching from C to Embedded Java

• A SW organization is producing car control devices
• motor control, ABS, ESP, distance control, etc.

• Development is done in C (since many years)

• The organization considers switching to Embedded Java
• object-oriented rather than procedural,

garbage collection rather than manual memory mgmt,
VM rather than bare machine, etc.

• Interest:
• What/how much would our engineers have to learn?
• What would become better or easier?
• What would become worse or more difficult?
• What risks are involved?



22 / 41Lutz Prechelt, prechelt@inf.fu-berlin.de

(Scenario 2)
A laboratory study approach

• Approach:
• Select one team, let them build one prior system again

• or a part of it
• Evaluate relative to the experience from the original project
• (A case study approach)

• Problems:
• The team may be too inexperienced with Embedded Java
• Many important differences can hardly be observed, because 

fundamental problems with requirements or design need not be 
solved again

• (Alternative: build the system in both languages side-by-side; 
also a case study approach)

• The retrospective view of the previous project may be too 
imprecise



23 / 41Lutz Prechelt, prechelt@inf.fu-berlin.de

(Scenario 2)
Field study approach

• Approach:
• Introduce Embedded Java in a (real) pilot project
• Compare to 'usual' projects
• (A case study approach)

• Problems:
• The issues may be too project-specific for a sound comparison
• All participants may be too busy doing the project

• and will perhaps not really create a useful comparison
• High risk of project failure (because of lack of experience)

• Compensating this risk may result in an overly well-staffed, well-
budgeted project and produce overly optimistic results



24 / 41Lutz Prechelt, prechelt@inf.fu-berlin.de

Scenario 3: Selecting 
an Application Server product

• A SW organization building distributed information systems 
wants to start using a Java Enterprise Edition (Java EE) 
application server

• An application server is a very complex middleware product 
(a programming platform)
• Several vendors offer such servers
• In principle, they all conform to the Java EE standards 

and should be interchangeable

• Interest (for each product):
• How scalable and efficient is it?
• How stable, robust, easy-to-use is it?
• How will it evolve in the future?



25 / 41Lutz Prechelt, prechelt@inf.fu-berlin.de

(Scenario 3)
How scalable and efficient is it?

• Possible approach:
• Use several existing applications
• Set them up for load test measurements
• Measure and compare across the various Application Servers
• (A benchmarking approach)

• Problems:
• Where to get the applications from 

if this is the first application server we will use?
• How to make sure each server is configured well?



26 / 41Lutz Prechelt, prechelt@inf.fu-berlin.de

(Scenario 3)
How stable, robust, easy-to-use is it?

• Possible approach:
• Write one application on each server, then port it to all others
• Protocol all interesting events (defects detected, usability and 

documentation traps, etc.)
• Mostly qualitative rather than quantitative
• (A case study or quasi-experiment approach)

• Problems:
• This is a huge effort
• The results depend critically on the (prior?) knowledge of the 

engineers
• many will not apply to routine usage



27 / 41Lutz Prechelt, prechelt@inf.fu-berlin.de

(Scenario 3)
How will it evolve in the future?

• Answering this question requires a market analysis

• It cannot be answered technically-empirically



28 / 41Lutz Prechelt, prechelt@inf.fu-berlin.de

Lessons learned from examples

• There is a range of different empirical techniques
• e.g. controlled experiment, quasi-experiment, case study, 

benchmarking, literature study

• Each evaluation problem has different characteristics
• Often suggesting a particular technique
• Or several techniques, with different tradeoffs

• There are usually some difficulties in an evaluation problem 
that cannot be fully solved
• Most evaluations are only an approximation to the ideal one
• But good approximations are much more useful than bad ones



29 / 41Lutz Prechelt, prechelt@inf.fu-berlin.de

Quality measures 
for empirical evaluations

The two primary quality dimensions of empirical evaluations are:

• Credibility
• How trustworthy are the results?

• Relevance
• How interested are we in these results? 

How beneficial is it to have them?

• Subsequently we will often assume we are looking at a 
technical report about the study



30 / 41Lutz Prechelt, prechelt@inf.fu-berlin.de

Where does credibility come from?

1. Authors are open towards any result
 rather than "We will now show that our new X is superior."

2. Setup is described in detail and is easy to understand
3. Work has been performed carefully
4. Description discusses the limitations of the evaluation

 rather than glossing over even its obvious flaws
5. There is no leap-of-faith or jumping to conclusions
6. Purpose and results are clear

 rather than vague or, for results, weak
7. Results are easy to grasp ("anschaulich")

 rather than abstract or contrived

• (Some of these aspects are known as "Internal Validity")



31 / 41Lutz Prechelt, prechelt@inf.fu-berlin.de

Where does relevance come from?

1. The target of the evaluation (i.e. the question asked) is of 
sufficient interest
• rather than overly specialized

2. We can generalize the results from the specific setup of the 
evaluation to those situations where we want to apply them
• this is also known as "External Validity"



32 / 41Lutz Prechelt, prechelt@inf.fu-berlin.de

Qualitative vs. quantitative

• Empirical evaluations need not always be quantitative
• i.e. counting and measuring something;

providing numbers, graphs and calculations

• They can also be qualitative
• describing non-quantifiable characteristics; describing contexts; 

describing events and their consequences; providing subjective 
judgements obtained from relevant people

• or can combine both approaches
• which is almost always a good idea



33 / 41Lutz Prechelt, prechelt@inf.fu-berlin.de

Qualitative vs. quantitative: Examples

E.g. for applying a design method:
• Quantitative questions:

• How long does it take?
• time in minutes

• How many mistakes are made in the process?
• number of changes during work

• How good is the result?
• number of defects

• Corresponding qualitative questions:
• What activities is the work time spent on?
• Which kinds of mistake happen frequently? Why?
• What are the typical kinds of flaws in the result? 

Why do they occur?
What might be done to prevent them?



34 / 41Lutz Prechelt, prechelt@inf.fu-berlin.de

A word of warning: scale types

• An advantage of quantitative data is that it can be processed 
using mathematical operations
• This can allow easy summarization or can provide additional 

insights

• However, not all computations are valid for all kinds of 
quantitative data
• The data must be on a sufficient scale type

• otherwise, an operation may be invalid and not make sense
• See the next slide



35 / 41Lutz Prechelt, prechelt@inf.fu-berlin.de

The scale types

• Categorical/categorial scale (nominal scale)
• Qualitative data: The values are just names
• Example: Design method A, design method B

• Ordinal scale (rank scale)
• Ordered nominal data: One value is larger than another, but 

we cannot characterize the size of the difference
• Example: very good, good, OK, not so good, bad

• Difference scale (interval scale)
• We can compute differences, but 0 is not equal to 'nothing'
• Example: degrees centigrade

• Ratio scale ("Verhältnisskala")
• We can compute ratios: 20 is twice as much as 10
• Most physical quantities, degrees Kelvin

• Absolute scale: 1 is also special (counting)



36 / 41Lutz Prechelt, prechelt@inf.fu-berlin.de

What often 
goes wrong with scale types

• "Oh, 20 degrees. That's twice as warm as yesterday."
• A difference scale is not a ratio scale
• 20 degrees centigrade is 293 Kelvin. 

That is only 3.5% more than 283 Kelvin.

• When something qualitative is measured using an 
ordinal scale
• e.g. "How well did you like using the tool?"

very well, well, OK, not so well, did not like it
• Often such scales are coded with numbers: 5, 4, 3, 2, 1
• Wrong (however tempting and common it may be): 

"average satisfaction was 3.8"
• Even worse: "average satisfaction in group B was 30% higher 

than in group A"
• This is utter nonsense!
• Assume you would have coded using 2, 1, 0, -1, -2?



37 / 41Lutz Prechelt, prechelt@inf.fu-berlin.de

Primary nonsense candidates

• There are a number of important attributes in informatics for 
which no good ratio scales are known

• These are frequent places of scale type mis-use

Namely
• Quality

• And all quality attributes such as comprehensibility, usability, 
portability, maintainability etc. etc,

• Complexity



38 / 41Lutz Prechelt, prechelt@inf.fu-berlin.de

"There's more than one way to do it"

• Even if you do have a 
ratio scale, things may 
go wrong:

Established

Elevation

Population



39 / 41Lutz Prechelt, prechelt@inf.fu-berlin.de

Summary

• The three basic modes of informatics are 
theory, construction, and empiricism
• all three are essential for successful work
• empiricism is slowly gaining ground

• There are many examples where sound decisions can be 
made on empirical basis only
• in particular when selecting technology or methods

• The main quality criteria for empirical work are 
• credibility and 
• relevance

• Scales are often mis-used
• Make sure you have a sufficient scale type

• For SW quality or complexity you almost never do



40 / 41Lutz Prechelt, prechelt@inf.fu-berlin.de

http://xkcd.com/c242.html



41 / 41Lutz Prechelt, prechelt@inf.fu-berlin.de

Thank you!


