
1 / 41Lutz Prechelt, prechelt@inf.fu-berlin.de

Course "Empirical Evaluation in Informatics"
Introduction 

• The notion of Empirical 
Evaluation

• Theory, Construction, 
Empiricism

• Status of empiricism in 
Informatics

• Hypothetical examples
• Quality criteria:

• credibility
• relevance

• Note on scale types

Prof. Dr. Lutz Prechelt
Freie Universität Berlin, Institut für Informatik

http://www.inf.fu-berlin.de/inst/ag-se/



2 / 41Lutz Prechelt, prechelt@inf.fu-berlin.de

"Empirische Bewertung in der Informatik"
Einführung 

• Begriff 
• Theorie, Konstruktion, Empirie
• Status der Empirie in der 

Informatik

• Hypothetische 
Anwendungsbeispiele

• Qualitätsmaßstäbe:
• Glaubwürdigkeit
• Relevanz

• Hinweis: Skalentypen

Prof. Dr. Lutz Prechelt
Freie Universität Berlin, Institut für Informatik

http://www.inf.fu-berlin.de/inst/ag-se/



3 / 41Lutz Prechelt, prechelt@inf.fu-berlin.de

Science

• Science is the belief in the ignorance of experts.
• Richard Feynman (1918-1988) 

(The pleasure of finding things out, 
1999, p.187)

• (Ignorance: Unwissen)



4 / 41Lutz Prechelt, prechelt@inf.fu-berlin.de

Technology

• For a successful technology, 
reality must take precedence over public relations, 
for nature cannot be fooled.
• Richard Feynman

(last sentence of the Rogers Commission Report into the 
Challenger Crash, Appendix F: Personal Observations on the 
Reliability of the Shuttle)

• http://science.ksc.nasa.gov/shuttle/missions/51-l/docs/rogers-
commission/Appendix-F.txt

• (Things are as they are. 
Just claiming something does not make it true.)



5 / 41Lutz Prechelt, prechelt@inf.fu-berlin.de

"Empirical" / "empirisch"

• Based on observation
• (greek-latin origin)

• As opposed to being based on 
• theoretical considerations
• intuition
• random selection



6 / 41Lutz Prechelt, prechelt@inf.fu-berlin.de

"Evaluation" / "Bewertung"

• "to evaluate": auswerten, bewerten

• Assigning measures of goodness to something
• The purpose is typically making some kind of decision:

• deciding yes or no
• Should I do it or not (in my context)?
• e.g. starting or stopping a project, 

introducing a technology or not, etc.
• selecting among solution candidates

• Which one is best for my purposes?
• e.g. systems, methods

• understanding characteristics and priorities
• What characteristics does a certain method/tool have in my context?
• Which of these are most relevant for me?
• e.g. in business process automation, user interface design, etc.



7 / 41Lutz Prechelt, prechelt@inf.fu-berlin.de

"Informatics" / "Informatik"

• The science and engineering of information and 
information processing systems

• Very broad area

Note:
• Many of the same principles presented in this course can be 

applied to other areas as well
• Hence, this course is relevant far beyond where software is 

created or selected



8 / 41Lutz Prechelt, prechelt@inf.fu-berlin.de

Partitioning Informatics: 
Technical, Applied, Theoretical

Work in Informatics is often discriminated into being either
• Technical ("Technische Informatik")

• having to do more or less closely with hardware
• Applied ("Praktische Informatik")

• having to do mostly with software
• Theoretical ("Theoretische Informatik")

• having to do mostly with mathematics
• Furthermore: Applications ("Angewandte Informatik")

• having to do mostly with software in actual usage contexts

• Problem: Discrimination hardly relevant for practitioners
• Problem: The boundaries have long disappeared



9 / 41Lutz Prechelt, prechelt@inf.fu-berlin.de

Partitioning again: Theory, 
Construction, Empiricism (T,C,E)

A better discrimination would be by work method:
• Theory

• produces formalisms, derives results about them, 
revolves around logical issues

• Construction
• produces systems designs, constructs systems, 

revolves around practical issues
• Empiricism

• produces observations of systems and interprets them, 
revolves around behavior in and of the real world

• At any one time, any work in Informatics is primarily in only 
one of these modes
• whether practitioner work or research work
• but good work switches mode frequently



10 / 41Lutz Prechelt, prechelt@inf.fu-berlin.de

T, C, E: What they are used for

(Our focus is solving practical Informatics problems)

• Theory:
• structuring and understanding a domain
• if done well, can much simplify construction

• "There is nothing more practical than a good theory"

• Construction:
• build a useful technical artifact, such as a software system

• Empiricism:
• in an early phase: Understanding requirements
• in a later phase: Understanding the characteristics of a system

• This is the topic of the present course!



11 / 41Lutz Prechelt, prechelt@inf.fu-berlin.de

Example 1: Algorithms

1. Theory
• Specify the problem to be solved

• e.g. linear programming: minimize linear function given constraints
• Specify an algorithm for solving it (e.g. simplex algorithm)
• Maybe prove the algorithm correct, etc.

2. Construction
• Implement the algorithm as a concrete program

• often much longer than the theoretical algorithm because of 
optimizations, input/output, limitations of machine arithmetic, 
error handling, external interfaces, etc.

3. Empiricism
• Determine actual characteristics of the program 

for different kinds of inputs
• execution time, memory behavior, etc.
• for heuristic or approximation algorithms: quality of results



12 / 41Lutz Prechelt, prechelt@inf.fu-berlin.de

Example 2: Software design methods

1. Empiricism
• Determine the weaknesses of current design methods

2. Theory
• Maybe define some new terminology
• Maybe pose new design principles

3. Construction
• Formulate a new design method
• Perhaps construct support tools

4. Empiricism
• Evaluate the behavior of the method for concrete problems
• Probably in comparison to other methods



13 / 41Lutz Prechelt, prechelt@inf.fu-berlin.de

Informatics until recently

• Until the 1990s, Informatics research publications were often 
short on empirical evaluation
• they often provided designs of systems
• and claims for their properties
• but little or no no data on actual behavior

• In comparison, other engineering fields were much better in 
this respect

• Tichy, Lukowicz, Prechelt, 
Heinz: "Experimental Evaluation 
in Computer Science: 
A quantitative study",
Journal of Systems and 
Software 28(1), 1995.



14 / 41Lutz Prechelt, prechelt@inf.fu-berlin.de

Informatics today

• This situation has become a lot better
• It is now generally understood that proposed systems and 

methods need to be evaluated empirically

• Compared to research, practitioners' work has always been 
more empirical
• However, evaluation was often very implicit, hardly conscious 

and often not very systematical.
• Systematic empirical evaluation is becoming more and more 

common there as well



15 / 41Lutz Prechelt, prechelt@inf.fu-berlin.de

A glimpse of the improvement

• M. Zelkowitz and D. Wallace: "Experimental 
Models for Validating Technology", 
IEEE Computer 31(5), May 1998.

• Categorizes 612 research articles in software engineering 
(from 1985, 1990, 1995) according to the empirical 
evaluation method that they used (if any)

• 2 of the 14 categories describe articles providing 
- no proof ("no experimentation") or 
- only visibly biased proof ("assertion")
• 1985: 67% of the articles were in one of these two
• 1995: 47% of the articles were in one of these two
• still far from great, but a big improvement
• has presumably continued to improve



16 / 41Lutz Prechelt, prechelt@inf.fu-berlin.de

Frequency 
of evaluation methods (in SW Eng.)



17 / 41Lutz Prechelt, prechelt@inf.fu-berlin.de

Examples

• Let us look what empirical evaluations may be used for
• and what approach we might use in each case:

• Scenario 1: Introducing inspections in a SW project organization
• Scenario 2: Switching the development world
• Scenario 3: Selecting an Application Server product

In each case, we look at:
• What are the results of interest?
• What are the constraints?
• What are the most promising evaluation approaches?



18 / 41Lutz Prechelt, prechelt@inf.fu-berlin.de

Scenario 1: Introducing inspections

• A SW organization is thinking about introducing inspections 
into their process

• Constraint: is an IT service company doing information 
systems projects for varying customers
• requirements inspections, design inspections, code inspections

• Interest:
• which and how many defects will be found?
• cost of inspections
• how much effort is saved by finding the defects early?

• return-on-investment (ROI)



19 / 41Lutz Prechelt, prechelt@inf.fu-berlin.de

(Scenario 1)
Code Inspections

• Possible approach:
• inspect a number of modules; do not fix the defects found
• measure testing and debugging cost of the same modules
• (A quasi-experiment approach)

• Difficulties
• What if author and tester are the same person?

• unfair disadvantage for inspectors
• What if measurement is too difficult?

• due to interruptions, mixing with other tasks (e.g. debug with fix), 
etc.

• Other approaches
• search the literature on this subject
• controlled experiment: many people inspect or test the same 

program



20 / 41Lutz Prechelt, prechelt@inf.fu-berlin.de

(Scenario 1)
Requirements and design inspections

• Approach:
• ???

• Difficulties:
• Cannot afford not to fix problems found
• If we fix them, cannot measure would-be cost for comparison
• Estimates may be very imprecise



21 / 41Lutz Prechelt, prechelt@inf.fu-berlin.de

Scenario 2: 
Switching from C to Embedded Java

• A SW organization is producing car control devices
• motor control, ABS, ESP, distance control, etc.

• Development is done in C (since many years)

• The organization considers switching to Embedded Java
• object-oriented rather than procedural,

garbage collection rather than manual memory mgmt,
VM rather than bare machine, etc.

• Interest:
• What/how much would our engineers have to learn?
• What would become better or easier?
• What would become worse or more difficult?
• What risks are involved?



22 / 41Lutz Prechelt, prechelt@inf.fu-berlin.de

(Scenario 2)
A laboratory study approach

• Approach:
• Select one team, let them build one prior system again

• or a part of it
• Evaluate relative to the experience from the original project
• (A case study approach)

• Problems:
• The team may be too inexperienced with Embedded Java
• Many important differences can hardly be observed, because 

fundamental problems with requirements or design need not be 
solved again

• (Alternative: build the system in both languages side-by-side; 
also a case study approach)

• The retrospective view of the previous project may be too 
imprecise



23 / 41Lutz Prechelt, prechelt@inf.fu-berlin.de

(Scenario 2)
Field study approach

• Approach:
• Introduce Embedded Java in a (real) pilot project
• Compare to 'usual' projects
• (A case study approach)

• Problems:
• The issues may be too project-specific for a sound comparison
• All participants may be too busy doing the project

• and will perhaps not really create a useful comparison
• High risk of project failure (because of lack of experience)

• Compensating this risk may result in an overly well-staffed, well-
budgeted project and produce overly optimistic results



24 / 41Lutz Prechelt, prechelt@inf.fu-berlin.de

Scenario 3: Selecting 
an Application Server product

• A SW organization building distributed information systems 
wants to start using a Java Enterprise Edition (Java EE) 
application server

• An application server is a very complex middleware product 
(a programming platform)
• Several vendors offer such servers
• In principle, they all conform to the Java EE standards 

and should be interchangeable

• Interest (for each product):
• How scalable and efficient is it?
• How stable, robust, easy-to-use is it?
• How will it evolve in the future?



25 / 41Lutz Prechelt, prechelt@inf.fu-berlin.de

(Scenario 3)
How scalable and efficient is it?

• Possible approach:
• Use several existing applications
• Set them up for load test measurements
• Measure and compare across the various Application Servers
• (A benchmarking approach)

• Problems:
• Where to get the applications from 

if this is the first application server we will use?
• How to make sure each server is configured well?



26 / 41Lutz Prechelt, prechelt@inf.fu-berlin.de

(Scenario 3)
How stable, robust, easy-to-use is it?

• Possible approach:
• Write one application on each server, then port it to all others
• Protocol all interesting events (defects detected, usability and 

documentation traps, etc.)
• Mostly qualitative rather than quantitative
• (A case study or quasi-experiment approach)

• Problems:
• This is a huge effort
• The results depend critically on the (prior?) knowledge of the 

engineers
• many will not apply to routine usage



27 / 41Lutz Prechelt, prechelt@inf.fu-berlin.de

(Scenario 3)
How will it evolve in the future?

• Answering this question requires a market analysis

• It cannot be answered technically-empirically



28 / 41Lutz Prechelt, prechelt@inf.fu-berlin.de

Lessons learned from examples

• There is a range of different empirical techniques
• e.g. controlled experiment, quasi-experiment, case study, 

benchmarking, literature study

• Each evaluation problem has different characteristics
• Often suggesting a particular technique
• Or several techniques, with different tradeoffs

• There are usually some difficulties in an evaluation problem 
that cannot be fully solved
• Most evaluations are only an approximation to the ideal one
• But good approximations are much more useful than bad ones



29 / 41Lutz Prechelt, prechelt@inf.fu-berlin.de

Quality measures 
for empirical evaluations

The two primary quality dimensions of empirical evaluations are:

• Credibility
• How trustworthy are the results?

• Relevance
• How interested are we in these results? 

How beneficial is it to have them?

• Subsequently we will often assume we are looking at a 
technical report about the study



30 / 41Lutz Prechelt, prechelt@inf.fu-berlin.de

Where does credibility come from?

1. Authors are open towards any result
 rather than "We will now show that our new X is superior."

2. Setup is described in detail and is easy to understand
3. Work has been performed carefully
4. Description discusses the limitations of the evaluation

 rather than glossing over even its obvious flaws
5. There is no leap-of-faith or jumping to conclusions
6. Purpose and results are clear

 rather than vague or, for results, weak
7. Results are easy to grasp ("anschaulich")

 rather than abstract or contrived

• (Some of these aspects are known as "Internal Validity")



31 / 41Lutz Prechelt, prechelt@inf.fu-berlin.de

Where does relevance come from?

1. The target of the evaluation (i.e. the question asked) is of 
sufficient interest
• rather than overly specialized

2. We can generalize the results from the specific setup of the 
evaluation to those situations where we want to apply them
• this is also known as "External Validity"



32 / 41Lutz Prechelt, prechelt@inf.fu-berlin.de

Qualitative vs. quantitative

• Empirical evaluations need not always be quantitative
• i.e. counting and measuring something;

providing numbers, graphs and calculations

• They can also be qualitative
• describing non-quantifiable characteristics; describing contexts; 

describing events and their consequences; providing subjective 
judgements obtained from relevant people

• or can combine both approaches
• which is almost always a good idea



33 / 41Lutz Prechelt, prechelt@inf.fu-berlin.de

Qualitative vs. quantitative: Examples

E.g. for applying a design method:
• Quantitative questions:

• How long does it take?
• time in minutes

• How many mistakes are made in the process?
• number of changes during work

• How good is the result?
• number of defects

• Corresponding qualitative questions:
• What activities is the work time spent on?
• Which kinds of mistake happen frequently? Why?
• What are the typical kinds of flaws in the result? 

Why do they occur?
What might be done to prevent them?



34 / 41Lutz Prechelt, prechelt@inf.fu-berlin.de

A word of warning: scale types

• An advantage of quantitative data is that it can be processed 
using mathematical operations
• This can allow easy summarization or can provide additional 

insights

• However, not all computations are valid for all kinds of 
quantitative data
• The data must be on a sufficient scale type

• otherwise, an operation may be invalid and not make sense
• See the next slide



35 / 41Lutz Prechelt, prechelt@inf.fu-berlin.de

The scale types

• Categorical/categorial scale (nominal scale)
• Qualitative data: The values are just names
• Example: Design method A, design method B

• Ordinal scale (rank scale)
• Ordered nominal data: One value is larger than another, but 

we cannot characterize the size of the difference
• Example: very good, good, OK, not so good, bad

• Difference scale (interval scale)
• We can compute differences, but 0 is not equal to 'nothing'
• Example: degrees centigrade

• Ratio scale ("Verhältnisskala")
• We can compute ratios: 20 is twice as much as 10
• Most physical quantities, degrees Kelvin

• Absolute scale: 1 is also special (counting)



36 / 41Lutz Prechelt, prechelt@inf.fu-berlin.de

What often 
goes wrong with scale types

• "Oh, 20 degrees. That's twice as warm as yesterday."
• A difference scale is not a ratio scale
• 20 degrees centigrade is 293 Kelvin. 

That is only 3.5% more than 283 Kelvin.

• When something qualitative is measured using an 
ordinal scale
• e.g. "How well did you like using the tool?"

very well, well, OK, not so well, did not like it
• Often such scales are coded with numbers: 5, 4, 3, 2, 1
• Wrong (however tempting and common it may be): 

"average satisfaction was 3.8"
• Even worse: "average satisfaction in group B was 30% higher 

than in group A"
• This is utter nonsense!
• Assume you would have coded using 2, 1, 0, -1, -2?



37 / 41Lutz Prechelt, prechelt@inf.fu-berlin.de

Primary nonsense candidates

• There are a number of important attributes in informatics for 
which no good ratio scales are known

• These are frequent places of scale type mis-use

Namely
• Quality

• And all quality attributes such as comprehensibility, usability, 
portability, maintainability etc. etc,

• Complexity



38 / 41Lutz Prechelt, prechelt@inf.fu-berlin.de

"There's more than one way to do it"

• Even if you do have a 
ratio scale, things may 
go wrong:

Established

Elevation

Population



39 / 41Lutz Prechelt, prechelt@inf.fu-berlin.de

Summary

• The three basic modes of informatics are 
theory, construction, and empiricism
• all three are essential for successful work
• empiricism is slowly gaining ground

• There are many examples where sound decisions can be 
made on empirical basis only
• in particular when selecting technology or methods

• The main quality criteria for empirical work are 
• credibility and 
• relevance

• Scales are often mis-used
• Make sure you have a sufficient scale type

• For SW quality or complexity you almost never do



40 / 41Lutz Prechelt, prechelt@inf.fu-berlin.de

http://xkcd.com/c242.html



41 / 41Lutz Prechelt, prechelt@inf.fu-berlin.de

Thank you!


