Course "Empirical Evaluation in Informatics"

The Scientific Method

Prof. Dr. Lutz Prechelt
Freie Universität Berlin, Institut für Informatik
http://www.inf.fu-berlin.de/inst/ag-se/

- Science and insight
- Informatics on the landscape of sciences
- The scientific method
- Variables, hypotheses, control

- Internal and external validity
- Validity, credibility, and relevance
"Empirische Bewertung in der Informatik"

Die wissenschaftliche Methode

Prof. Dr. Lutz Prechelt
Freie Universität Berlin, Institut für Informatik
http://www.inf.fu-berlin.de/inst/ag-se/

- Wissenschaft und Erkenntnismethoden
- Einordnung der Informatik
- Die wissenschaftliche Methode
- Variablen, Hypothesen, Kontrolle

- Interne und externe Gültigkeit
- Gültigkeit, Glaubwürdigkeit und Relevanz
Our goal

• In empirical evaluation, we have given a certain artifact or situation, e.g.
 • a new (or old) design method or
 • a new kind of hard disk, etc.

• and want to obtain an understanding of it
 • often with respect to specific attributes, e.g.
 • the effort for accommodating later requirements changes
 • or the bandwidth and latency of data transfer to/from the disk
Obtaining understanding

• There are different ways how people obtain understanding
 • by intuition (direct insight)
 • from some authority (tradition, teacher, book etc.)
 • by rational thought (reasoning, deduction)
 • by direct observation combined with induction
 • via the scientific method

• Each method can produce valid understanding

• No method can make totally sure that the understanding is valid
 • but the scientific method comes closest
 • and has the best chance of convincing other people to accept the same understanding
The landscape of knowledge and science

- The arts
 - "Geisteswissenschaften"
 - Special case: Mathematics
 - pure logic: principles of deduction are fixed, anything else is arbitrary

- The (natural) sciences
 - "Naturwissenschaften"
 - examines characteristics and behavior of the real world

- Special case: the social sciences
 - "Sozialwissenschaften"
 - examines human behavior

- Engineering
 - "Ingenieurwissenschaften"
 - solves practical problems; interested in usefulness and cost
The landscape and T, C, E

T, C, E: Theory, Construction, Empiricism

• Mathematics
 • Mostly theory
 • Auxiliary C and E have entered recently (computational math.)

• The (natural) sciences
 • Theory and empiricism fertilize each other
 • Construction is purely auxiliary

• The social sciences
 • Empiricism drives Theory
 • Construction is purely auxiliary

• Engineering
 • Theory, construction, and empiricism fertilize each other
 • Much theory is borrowed from the natural sciences
 • Construction is the goal
Informatics on the landscape

- Informatics has its roots in
 - Mathematics: logic, formal languages
 - (Electrical) Engineering: constructing computers

- Today, the larger part is clearly engineering
 - (In this course, we look at this part only)

- However, the engineering is not purely technical:
 - The artifacts have to be used by people
 - Brings psychology, sociology, and politics into play

- Hence, Informatics needs a lot of empiricism
Mathematics vs. natural science

- Historically, all of science was philosophy
 - at least in the western culture
 - Greek philosophers
- and much of that was mathematics

- The notion that nature could be understood by pure thought (rationalism) was prevalent in the middle ages

- The idea that observation and experimentation was necessary to understand the world began to get accepted during the renaissance
Early empiricists

- Some of the earliest modern empiricists were the astronomers Kopernikus, Brahe, and Galilei
 - around 1500–1600

- One of the first modern experimental scientists was Galileo Galilei
 - At the time, it was generally accepted that heavy objects fell down faster than lighter ones
 - as claimed by Aristotle (384–322 BC)
 - Galilei did not believe this and experimented with brass spheres, inclined planes, and water clocks (1589–1604)
 - He systematically varied the weight of the ball and the steepness of the plane and found weight-independent acceleration
 - These were controlled experiments
Galilei's experiments

- Weight of the sphere is not relevant
The scientific method

• Since Galilei, physics and other sciences work according to this model:
 • Formulate a theory T about how (some aspect of) the real world behaves
 • Design and conduct experiments E for testing this theory

• Is accepted in all subjects where experimentation is possible
 • Natural sciences: Physics, chemistry, biology, medicine etc.
 • Engineering
 • Parts of many social sciences such as economics, sociology, etc.

• Is problematic where experiments cannot be performed
 • for technical or ethical reasons
The scientific method (2)

- Note the following:
 - T is called a scientific theory only if it predicts something specifically and hence can be tested
 - Even if T is wrong, it may happen that the results of E are as expected
 - But if E contradicts predictions of T, then T must be false

- This view of science was suggested by Karl Popper (1904–1994)
 - It is the prevalent scientific paradigm today
 - In this view, theories cannot be directly confirmed, only refuted
 - If a theory cannot be refuted for a long time, it will gradually be accepted as confirmed
 - example: special theory of relativity
Pre-theoretical empiricism

- In many areas, too little is known for formulating a plausible, testable theory
 - Often true where people are involved and the situation is complex
 - such as in software engineering

- Even then empiricism is useful:
 - Observe things that lead to hypotheses from which one could build theories
 - Often these observations have to be qualitative rather than quantitative in order to be useful
 - Qualitative research is a large and interesting branch of research methodology
Hard science vs. soft science

• Many people claim that a subject is a science only if it produces theories that are precise and reliable
 • "hard science", such as physics formulas

• and hence claim that subjects involving human behavior are not scientific ("physics envy")
 • "soft science"

• This is not true: The scientific principle can be applied
 • but the theories will be more complex and make weaker (e.g. probabilistic) predictions

• Hard science is simpler than soft science
 • That is why it is farther advanced
Terminology of Empiricism

• When we empirically investigate something
 • we characterize the situation by a set of input variables
 • usually quantitative or categorial
 • e.g. "team size = 4" or "design method used = A"
 • and the observations by a set of output variables
 • If we choose the value of at least one input variable, the study is called an experiment

• The act of consciously manipulating the values of input variables is called control

• Every empirical study assumes that there is some systematic relationship between inputs and outputs
 • If we have a certain expectation about this relationship, this is called a hypothesis
 • Any additional factors influencing the outputs are called extraneous variables
Example: Case study

• Assume we want to evaluate a design method A
• We pick a representative team of people
 • capable, but not unrealistically clever
• We pick a task of interest
 • a "normal" one: not unusually small or large or difficult or ...
• We have them do the design using method A
 • (hopefully they receive some training beforehand...)
• We see what happens:
 • What goes well?
 • What goes not so well?
 • How good is the resulting design?
Control in the case study

• This case study has little control
 • We have controlled the task to be done and the method to be used
 • but not the capabilities of the people
 • Precisely how intelligent, knowledgable, interested etc. are they?
 • Worse, we cannot judge the results without comparing them to other results

• Hence, it is not so clear what the results mean
Example: Controlled experiment

• This time, we compare design methods A and B

• Again, we pick a task T and a set of people P
 • but this time a large set of people
 • we train all of them in both methods

• But now we use separate teams working with A or with B
• and have multiple teams solve T with each method
 • People are assigned to the teams at random

• We compare the average result obtained by the method A teams and method B teams
Control in the controlled experiment

• This time we have controlled all variables:
 • task and method as before
 • the comparison to method B allows for interpreting the results
 • replication turns all kinds of individual differences into a noise signal
 • we will get different results for different groups although they are using the same condition
 • but given enough groups, the differences cancel out
 • random group assignment avoids systematic accumulations of individual differences
 • e.g. if more capable people favor working with method A

• Hence, we can decide whether A works better than B
 • at least for this kind of people, in this setting, and for this task
Internal and external validity

• Internal validity
 • the degree to which the observed results were caused by only the intended input variables
 • rather than extraneous variables

• External validity
 • the degree to which the results can be generalized to other circumstances
 • in our example: other people, settings, and tasks

• Improving external validity tends to reduce internal validity
Threats to internal validity

• Have all plausible extraneous variables been controlled completely?
• Has the act of observing influenced the observations?
• Are the results that are compared really comparable?

A related concept is *construct validity*:
• Do my measurements really represent the characteristic I want to observe?
 • e.g. does the number of pages of a design document really represent the size of a design task?
Threats to external validity

- The results rely on specific characteristics of the task
 - and these are uncommon
 - e.g. task is unusually well suited for method A, but not for B

- The results rely on specific characteristics of the people
 - and these are uncommon
 - e.g. they have an unrealistically good understanding of the ideas of method A, because they were thoroughly taught by its inventor

- The results rely on specific characteristics of the experimental setting
 - and these are uncommon
 - e.g. the subjects were enthusiastic about A, but not B.
Credibility, relevance, validity

• Credibility is achieved when
 • there is high internal validity
 • there is a reasonable amount of external validity
 • in particular: no bias of the task
 • there is no doubt that both is the case

• Relevance is achieved when
 • the question investigated is of general interest and
 • there is high external validity
Judging empirical results

- Some fraction of the empirical results in scientific publications is dubious or even plain wrong
- Outside of science, this is even much worse

- How can we discriminate valid results from dubious ones?
- The following questions help:
 - How do they know this?
 - in particular: Are the conclusions warranted by the facts?
 - What has not been said (but should have)?
 - Is this information really relevant?

(More about this in the next lecture)
Summary

• Our goal in insight into objective facts and relationships

• The most powerful method for this is the scientific method:
 • Formulate a theory, derive hypotheses
 • Test them by experiments
 • Can only refute the theory, not prove it!

• It is accepted wherever experiments are possible
 • and can be approximated in many further settings
 • In Informatics, control in the experiments is often not perfect

• The goal is high internal and external validity
 • because they are key to good credibility and relevance

• Results should be judged by these criteria
Thank you!