
Chapter 10

Scheduling of dependent threads



10.1 Introduction

• In the previous chapters we assumed that the threads to be 
executed were either independent on each other or described by a 
TIG. 

• Now we consider the dependencies between the threads in that way 
that an order of the thread execution must be observed. 

• On the set of threads a partial order is defined that specifies which 
thread has to be executed before which other thread.

• The threads are then modeled as a Task Precedence Graph (TPG), 
i.e. as directed acyclic graph (DAG). The thread weights indicate the 
execution times of the threads. 
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Example of a DAG

The upper numbers are 
the thread numbers, the 
lower ones are the 
execution times. 
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Scheduling of dependent threads

• Threads as parts of a parallel program that is to be executed 
on a cluster computer.

Goal
• For a given number of processors minimize the schedule 

length (makespan) under the restriction of the order 
dependencies.

Variants:
• specific forms of DAGs  (e.g. tree, forest,...)
• Additional consideration of communication times (delays 

along the edges)
• Additional consideration of deadlines
• Additional consideration of the communication network‘s 

topology
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Example

Precedence graph
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Example

Precedence graph
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Model

For the sake of simplicity we assume that
• the processors are homogeneous (same speed) and 
• the latencies between each two processors are the same. 

Realistic?
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Model

For the sake of simplicity we assume that
• the processors are homogeneous (same speed) and 
• the latencies between each two processors are the same. 

That means the execution and message latencies depend only on 
the threads, not on the processors.
In addition, intermediate results are to be transferred at 
synchronization points.  
That leads to the following model:
P Set of processors
T Set of threads (vertices)
n = T  number of threads
ET ⊆ T × T precedence relation (edge set) 
αij amount of information exchanged (edge weight)
βi execution time of thread i (vertex weight)

10-7Barry Linnert, linnert@inf.fu-berlin.de, Cluster Computing  SoSe 2023



Other quantities

ms schedule length (makespan)
fi finishing time of thread Ti

si starting time of thread Ti

where the following holds: ms := max {fi  Ti ∈T }

π:  T → P mapping of the threads to the processors
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Considering communication cost

Let π(Ti ) be the processor to which Ti is assigned.

Model A
Total cost = ms + cc

where cc = { (Ti , Tj ) ∈ ETπ(Ti ) ≠ π(Tj )}⋅ α
The message latencies αij are assumed to be constant: αij = α .

Model B
Total cost = ms + cc

where cc = { (Pk, Ti ) ∃k : Pk =π(Tj ) ∧ (Ti , Tj ) ∈ ET}⋅ α
If two successors of Ti are executed on the same, but different 
from π(Ti ) processor, then the result of Ti needs to be shipped 
only once to the processor on which the successors reside. This 
is considered in model B (in contrast to model A).
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Considering communication cost

Model C
Model C explicitly integrates the communication overhead in the 
calculation of the schedule.
Communication costs between threads on the same processor are 
zero.

Let (Ti , Tj ) ∈ ET , π(Ti) =Pk . Then the following must hold for Tj:
sj >= fi , if π(Tj) =Pk (Tj starts after Ti finished)
sj >= fi + αij , otherwise (Tj starts after Ti finished 

and transmitted the results)

Total cost = ms
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NP-completeness

The NP-completeness of the scheduling problem is given for 
the following problem instances:

Graph # Processors Execution 
time

Communica-
tion time

Communica-
tion model 

arbitrary m 1 0 -

forest m 1 0 -

tree m 1 1 Model A

tree m 1 1 Model B

arbitrary 2 1 1 Model B

arbitrary unlimited 1 >1 Model C
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Optimal Algorithms

For the following problem instances optimal efficient algorithms 
are known (unit execution time, communication model C):

Graph # Pro-
cessors

comm.-
time

Authors Complexity

arbitrary 2 0 Coffman&Graham, 1972 O(n2)
tree m 0 Hu, 1961 O(n)
interval
order

m 0 Papadimitriou & 
Yanakakis, 1979

O(n+e)

arbitrary m c Jung et al. O(nc+1)
interval
order

m 1 Ali & El-Rewini, 1993 O(e + n p)

tree 2 1 El-Rewini & Ali, 1994 O(n2)
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10.2 List Scheduling

• For general scheduling problems of dependent threads, usually the List 
Scheduling is used. 

• It is a heuristic off-line-algorithm that not necessarily produces optimal 
schedules (such with minimal length).

• Only for trees it is optimal.

Algorithm schema:
Given: Precedence graph as DAG, vertices weighted with priorities
Goal: makespan of minimal length for p processors 
Initialization: insert all source vertices (vertices without predecessor) into 

the list.
Loop:

while list not empty do
(i) take vertex with highest priority from the list. 
(ii) select an idle processor to execute this vertex.  
(iii) check all vertices that are not yet assigned to a processor and 

not yet in the list, whether all direct predecessors are executed. 
If yes, insert that vertex into the list.  
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We use the graph of slide 4 
and give all threads the same 
priority.

The list can then organized as 
a  FIFO queue.

Which plans does the list 
algorithm produce?

time P1 P2 P3 time P1 P2 P3 P4
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We use the graph of slide 4 
and give all threads the same 
priority.

The list can then organized as 
a  FIFO queue.

The list algorithm produces 
the following plans:

time P1 P2 P3 time P1 P2 P3 P4

1 1 2 5 1 1 2 5 8

2 8 9 3 2 9 3 - -

3 10 4 6 3 10 4 6 -

4 7 11 - 4 7 11 - -
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Is the schedule for 4 
processors optimal?

time P1 P2 P3 time P1 P2 P3 P4

1 1 2 5 1 1 2 5 8

2 8 9 3 2 9 3 - -

3 10 4 6 3 10 4 6 -

4 7 11 - 4 7 11 - -

For three processors
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Variants of List Scheduling

• If more than one thread is ready to execute, i.e. it is in the 
list, then the priority decides which to take next. If not 
externally given, the priority can be set according to different 
strategies targeting different goals.

• Def. The path length in a dependency graph is defined as 
the sum of all vertex weights (execution times) along a 
path including the first and the last vertex.

• Def. The Level (static b-Level) of a vertex x is the length of 
the longest path from x to a sink, i.e. to a vertex 
without successor (bottom).

• Def. The Co-level (static t-Level) of a vertex x is the length 
of the longest path from x to a source, i.e. to a vertex 
without predecessor (top).

• Def. The critical path (cp) is the length of the longest path 
from a source to a sink.
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Example 
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Def. The Level (static b-Level) of vertex x is the length of the longest 
path from x to the sink.

Def. The Co-level (static t-Level) of  vertex x is the length of
the longest path from x to a source

No. 1 2 3 4 5 6 7 8 9 10 11
Level

Co-
level
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Example 
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Def. The Level (static b-Level) of vertex x is the length of the longest 
path from x to the sink.

Def. The Co-level (static t-Level) of  vertex x is the length of
the longest path from x to a source

No. 1 2 3 4 5 6 7 8 9 10 11
Level 4 4 3 1 3 2 1 3 3 2 1
Co-
level

1 1 2 3 1 3 4 1 1 2 4

Barry Linnert, linnert@inf.fu-berlin.de, Cluster Computing  SoSe 2023 10-19



Variants of List Scheduling 

HLF Highest Level First:
• The vertex with the longest chain of successors receives the highest 

priority. The strategy is sometimes also called CP (critical path), 
since the chosen vertex lies on the critical path. 

• Because the critical path determines the whole schedule length, this 
strategy is promising.

• HLF is optimal for tree-like graphs with unit execution times and 
generally good in all practical cases. (with random graphs at most 
5% worse than the optimal solution in 90% of cases.)

• HLF takes the height of the tree that depends on vertex x as a 
priority criterion.

• Other variants choose the breadth or cardinality of the sub-tree as 
priority  instead of the height. 

• The aim is to deblock (put in the list) as many threads as possible. 
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10.3 Algorithms considering 
communication

• The general approach of List Scheduling can be extended to 
graphs with edge weights.

• The calculation of levels as priorities is somewhat more 
complicated since, in contrast to the static levels of HLF, the 
values now depend on the placement of the predecessors. 

- WHY?
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10.3 Algorithms considering 
communication

• The general approach of List Scheduling can be extended to 
graphs with edge weights.

• The calculation of levels as priorities is somewhat more 
complicated since, in contrast to the static levels of HLF, the 
values now depend on the placement of the predecessors. 

• We distinguish (for each vertex x)
• b-level: length of longest path from vertex x to some leaf 

vertex or sink, respectively. (b like bottom)
• t-level: length of longest path from a source to vertex x (t 

like top)
• The path lengths contain not only the execution times (vertex 

weights) but also the communication times (edge weights). 
• Reference point for the calculation of the levels is the starting 

point of a vertex.  

10-22Barry Linnert, linnert@inf.fu-berlin.de, Cluster Computing  SoSe 2023



Calculation of vertex attributes

Reminder: αij = edge weight, βi = vertex weight

t_level:
construct list of nodes in topological order (TopList)
for each node Ti ∈TopList do

max ← 0
for each parent Tx of Ti do

if (t_level(Tx) + βx + αxi > max)
max ← t_level(Tx) + βx + αxi

t_level (Ti) ← max

b_level:
construct list of nodes in reverse topological order (RevTopList)
for each node Ti ∈ RevTopList do

max ← 0
for each child Ty of Ti do

if (b_level(Ty) + αiy > max)
max ← b_level(Ty) + αiy

b_level (Ti) ← βi + max
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Calculation of vertex attributes

• Some scheduling algorithms use the attribute „as late as 
possible“ (ALAP). The ALAP value indicates the latest start 
time of the thread, that doesn't lead to an in increased 
schedule length (makespan) ms.

Calculation ALAP:
construct list of nodes in reverse topological order (RevTopList)
for each node Ti ∈ RevTopList do

minft ← length of critical path
for each child Ty of Ti do

if (alap(Ty) - αiy < minft)
minft ← alap(Ty) - αiy

alap(Ti) ← minft - βi
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Example
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Example

thread level
b-

level
t-

level ALAP
T1 11 23 0 0
T2 8 15 6 8
T3 8 14 3 9
T4 9 15 3 8
T5 5 5 3 18
T6 5 10 10 13
T7 5 11 12 12
T8 5 10 8 13
T9 1 1 22 22
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Algorithms for fast networks

Assumptions

• The communication times between arbitrary processors 
are constant, i.e. the network topology does not matter. 

• No contention for bandwidth, i.e. many messages can be 
sent over the same link without additional delay. 

• The processor elements are able to execute a thread 
and simultaneously send messages.  
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Insertion Scheduling Heuristic (ISH) 

• Calculate Level (static b-Level) for each vertex
• Build the ready list in descending level-order from root 

vertices (entry nodes)
• While (ready-list not empty) do

• Place the first thread of the ready list to the processor that 
allows the earliest execution.  

• If this placement induces idle times, find as many threads 
from ready list as possible that can be scheduled into this 
idle time, unless they can start on an another processor 
earlier.

• update ready list.

• Complexity: O(n2)
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Modified Critical Path Method (MCP)

Initialization:
Calculate ALAP times of each vertex.
Build for each vertex a list that contains the ALAP times of 
itself and its successors in descending order. 
Sort these lists in ascending lexicographic order.
Create a vertex list in that order.

Loop:
while vertex list not empty do

Place the first vertex of the list to that processor that allows the 
earliest execution.
Remove that vertex from list. 

Complexity O(n2 log n)
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Earliest Time First Method (ETF)

Initialization:
Calculate the static b-Level of each vertex.
Insert source vertices into ready list.

Loop:
while vertex list not empty do

Calculate earliest starting time on each processor for each 
vertex in the ready list. 
Select the vertex-processor-pair with the smallest start time.  
Place the vertex accordingly.
Insert new ready vertices into ready list.

Complexity O(n2)
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10.4 Scheduling with Clustering

• Approaches using clustering decompose the allocation process 
into two phases:
• Phase 1: Clustering, i.e. combining all threads that are 

allocated to the same processor. 
• Phase 2: Ordering; i.e. determining at which times the 

threads start execution. 

• There are as many clusters formed as processors are available
• The clustering process starts with single element clusters and 

stepwise merges clusters to larger ones. 
• Threads of the same cluster run on the same processor. 

Communication between those threads is free of cost. 
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DAG linear clustering nonlinear clustering

A clustering is called nonlinear, if two independent threads are 
assigned to the same cluster, otherwise it is called linear.
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Clustering

• The clustering modifies the DAG by zeroing some edge 
weights

• By doing so, the length of the critical path may also be 
affected.  

• We make the distinction:
• The (original) DAG
• the DAG after clustering (clustered DAG, CDAG)
• the DAG after ordering (scheduled DAG, SDAG)

• The critical path of the SDAG is called dominant 
sequence (DS) of the CDAG.
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CP: T1, T2, T7
CP length: 9
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DS length: 10
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Sarkar's Algorithm

• Initialization:
• All vertices are forming 

single  element clusters
• All edges are unmarked
• All edges are being sorted 

according to descending 
communication cost. 

• Repeat
• Set unmarked edge with 

highest weight to 0 (merge 
clusters), if the makespan is 
not increased by that.

• Mark that edge
• If two clusters are merged, 

the edges are ordered 
according to HLF-rule 
(highest b-level first.).

until all edges marked
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Step edge Zeroing makespan
0 14
1 (T1,T2) (T1,T2) 13,5
2 (T3,T4) (T3,T4) 12,5
3 (T3,T5) (T3,T5) 11,5
4 (T2,T7) (T2,T7) 11,5
5 (T4,T6) (T4,T6) 11,5
6 (T5,T6) (T5,T6) 10
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Sarkar's Algorithm
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Complexity: O(e (n+e))

Barry Linnert, linnert@inf.fu-berlin.de, Cluster Computing  SoSe 2023 10-45



Dominant Sequence Clustering 
(DSC)

• Initialization:
• All vertices are single element clusters
• All edges are unmarked
• r=0
• Calculate DS0

• Initialize Ready List with source vertices
• While not all edges marked

• Let (Ti,Tj) be the topmost unmarked edge in DSr
• Mark this edge
• Delay zeroing of edge until Tj becomes ready. 
• Select ready vertex Tk as the one which runs to the longest path through 

ready vertices of the SDAG
• Zero those incoming edges of Tk, that minimize the t-level of Tk.
• Schedule Tk after the last already scheduled vertex of its cluster. 
• Insert successors of Tk into ready list that just became ready, if available
• If all edges in DSr are marked: increment r and find new DSr
end while
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DSC-Algorithm

Step Edge ready Zeroing makespan

0 14

1 ∅ T1 ∅ 14

2 (T1,T2) T2 (T1,T2) 13,5

3 (T1,T3) T3 ∅ 13,5

4 (T3,T5) T4 (T3,T4) 12,5

5 (T2,T7) T5 (T3,T5) 11,5

6 (T4,T5) T6 (T4,T6) 
(T5,T6)

10

7 (T5,T6) T7 (T6,T7) 9

3
1

1
1

4
2

5
2

2
5

6
1

7
1

5

34

1,5

2
1

1,5

1
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DSC-Algorithm
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Complexity: O((n+e) log n)
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Further references
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Prentice Hall, 1999, chapter 24

• Zomaya,A.: Parallel and Distributed Computing 
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