
Chapter 10

Scheduling of dependent threads

10.1 Introduction

• In the previous chapters we assumed that the threads to be
executed were either independent on each other or described by a
TIG.

• Now we consider the dependencies between the threads in that way
that an order of the thread execution must be observed.

• On the set of threads a partial order is defined that specifies which
thread has to be executed before which other thread.

• The threads are then modeled as a Task Precedence Graph (TPG),
i.e. as directed acyclic graph (DAG). The thread weights indicate the
execution times of the threads.

10-2Barry Linnert, linnert@inf.fu-berlin.de, Cluster Computing SoSe 2023

Example of a DAG

The upper numbers are
the thread numbers, the
lower ones are the
execution times.

8
6

3
1

1
2

2
3

2
4

2
5

4
7

Scheduling of dependent threads

• Threads as parts of a parallel program that is to be executed
on a cluster computer.

Goal
• For a given number of processors minimize the schedule

length (makespan) under the restriction of the order
dependencies.

Variants:
• specific forms of DAGs (e.g. tree, forest,...)
• Additional consideration of communication times (delays

along the edges)
• Additional consideration of deadlines
• Additional consideration of the communication network‘s

topology

Barry Linnert, linnert@inf.fu-berlin.de, Cluster Computing SoSe 2023 10-3

Example

Precedence graph

1
1

3
2

2
5

4
3

3
6

2
4

2
7

How many processors should we use?

Barry Linnert, linnert@inf.fu-berlin.de, Cluster Computing SoSe 2023 10-4

Example

Precedence graph

1
1

3
2

2
5

4
3

3
6

2
4

2
7

1
2

5

3

6

4

7

1
2

5 3
6

4
7

0 5 10

0 5 10

Gantt-Chart

for 3 processors

for 2 processors

1
2
3

1
2

Barry Linnert, linnert@inf.fu-berlin.de, Cluster Computing SoSe 2023 10-5

Model

For the sake of simplicity we assume that
• the processors are homogeneous (same speed) and
• the latencies between each two processors are the same.

Realistic?

10-6Barry Linnert, linnert@inf.fu-berlin.de, Cluster Computing SoSe 2023

Model

For the sake of simplicity we assume that
• the processors are homogeneous (same speed) and
• the latencies between each two processors are the same.

That means the execution and message latencies depend only on
the threads, not on the processors.
In addition, intermediate results are to be transferred at
synchronization points.
That leads to the following model:
P Set of processors
T Set of threads (vertices)
n = T number of threads
ET ⊆ T × T precedence relation (edge set)
αij amount of information exchanged (edge weight)
βi execution time of thread i (vertex weight)

10-7Barry Linnert, linnert@inf.fu-berlin.de, Cluster Computing SoSe 2023

Other quantities

ms schedule length (makespan)
fi finishing time of thread Ti

si starting time of thread Ti

where the following holds: ms := max {fi Ti ∈T }

π: T → P mapping of the threads to the processors

Barry Linnert, linnert@inf.fu-berlin.de, Cluster Computing SoSe 2023 10-8

Considering communication cost

Let π(Ti) be the processor to which Ti is assigned.

Model A
Total cost = ms + cc

where cc = { (Ti , Tj) ∈ ETπ(Ti) ≠ π(Tj)}⋅ α
The message latencies αij are assumed to be constant: αij = α .

Model B
Total cost = ms + cc

where cc = { (Pk, Ti) ∃k : Pk =π(Tj) ∧ (Ti , Tj) ∈ ET}⋅ α
If two successors of Ti are executed on the same, but different
from π(Ti) processor, then the result of Ti needs to be shipped
only once to the processor on which the successors reside. This
is considered in model B (in contrast to model A).

10-9Barry Linnert, linnert@inf.fu-berlin.de, Cluster Computing SoSe 2023

Considering communication cost

Model C
Model C explicitly integrates the communication overhead in the
calculation of the schedule.
Communication costs between threads on the same processor are
zero.

Let (Ti , Tj) ∈ ET , π(Ti) =Pk . Then the following must hold for Tj:
sj >= fi , if π(Tj) =Pk (Tj starts after Ti finished)
sj >= fi + αij , otherwise (Tj starts after Ti finished

and transmitted the results)

Total cost = ms

10-10Barry Linnert, linnert@inf.fu-berlin.de, Cluster Computing SoSe 2023

NP-completeness

The NP-completeness of the scheduling problem is given for
the following problem instances:

Graph # Processors Execution
time

Communica-
tion time

Communica-
tion model

arbitrary m 1 0 -

forest m 1 0 -

tree m 1 1 Model A

tree m 1 1 Model B

arbitrary 2 1 1 Model B

arbitrary unlimited 1 >1 Model C

Barry Linnert, linnert@inf.fu-berlin.de, Cluster Computing SoSe 2023 10-11

Optimal Algorithms

For the following problem instances optimal efficient algorithms
are known (unit execution time, communication model C):

Graph # Pro-
cessors

comm.-
time

Authors Complexity

arbitrary 2 0 Coffman&Graham, 1972 O(n2)
tree m 0 Hu, 1961 O(n)
interval
order

m 0 Papadimitriou &
Yanakakis, 1979

O(n+e)

arbitrary m c Jung et al. O(nc+1)
interval
order

m 1 Ali & El-Rewini, 1993 O(e + n p)

tree 2 1 El-Rewini & Ali, 1994 O(n2)

Barry Linnert, linnert@inf.fu-berlin.de, Cluster Computing SoSe 2023 10-12

10.2 List Scheduling

• For general scheduling problems of dependent threads, usually the List
Scheduling is used.

• It is a heuristic off-line-algorithm that not necessarily produces optimal
schedules (such with minimal length).

• Only for trees it is optimal.

Algorithm schema:
Given: Precedence graph as DAG, vertices weighted with priorities
Goal: makespan of minimal length for p processors
Initialization: insert all source vertices (vertices without predecessor) into

the list.
Loop:

while list not empty do
(i) take vertex with highest priority from the list.
(ii) select an idle processor to execute this vertex.
(iii) check all vertices that are not yet assigned to a processor and

not yet in the list, whether all direct predecessors are executed.
If yes, insert that vertex into the list.

10-13Barry Linnert, linnert@inf.fu-berlin.de, Cluster Computing SoSe 2023

We use the graph of slide 4
and give all threads the same
priority.

The list can then organized as
a FIFO queue.

Which plans does the list
algorithm produce?

time P1 P2 P3 time P1 P2 P3 P4

1 1

2 2

3 3

4 4

For three processors

1
1

1
2

1
5

1
3

1
6

1
4

1
7

1
8

1
9

1
10

1
11

For four processors
Barry Linnert, linnert@inf.fu-berlin.de, Cluster Computing SoSe 2023 10-14

Example

We use the graph of slide 4
and give all threads the same
priority.

The list can then organized as
a FIFO queue.

The list algorithm produces
the following plans:

time P1 P2 P3 time P1 P2 P3 P4

1 1 2 5 1 1 2 5 8

2 8 9 3 2 9 3 - -

3 10 4 6 3 10 4 6 -

4 7 11 - 4 7 11 - -

For three processors

1
1

1
2

1
5

1
3

1
6

1
4

1
7

1
8

1
9

1
10

1
11

For four processors
Barry Linnert, linnert@inf.fu-berlin.de, Cluster Computing SoSe 2023 10-15

Example

Is the schedule for 4
processors optimal?

time P1 P2 P3 time P1 P2 P3 P4

1 1 2 5 1 1 2 5 8

2 8 9 3 2 9 3 - -

3 10 4 6 3 10 4 6 -

4 7 11 - 4 7 11 - -

For three processors

1
1

1
2

1
5

1
3

1
6

1
4

1
7

1
8

1
9

1
10

1
11

For four processors
Barry Linnert, linnert@inf.fu-berlin.de, Cluster Computing SoSe 2023 10-16

Example

Variants of List Scheduling

• If more than one thread is ready to execute, i.e. it is in the
list, then the priority decides which to take next. If not
externally given, the priority can be set according to different
strategies targeting different goals.

• Def. The path length in a dependency graph is defined as
the sum of all vertex weights (execution times) along a
path including the first and the last vertex.

• Def. The Level (static b-Level) of a vertex x is the length of
the longest path from x to a sink, i.e. to a vertex
without successor (bottom).

• Def. The Co-level (static t-Level) of a vertex x is the length
of the longest path from x to a source, i.e. to a vertex
without predecessor (top).

• Def. The critical path (cp) is the length of the longest path
from a source to a sink.

10-17Barry Linnert, linnert@inf.fu-berlin.de, Cluster Computing SoSe 2023

Example

1
1

1
2

1
5

1
3

1
6

1
4

1
7

1
8

1
9

1
10

1
11

Def. The Level (static b-Level) of vertex x is the length of the longest
path from x to the sink.

Def. The Co-level (static t-Level) of vertex x is the length of
the longest path from x to a source

No. 1 2 3 4 5 6 7 8 9 10 11
Level

Co-
level

Barry Linnert, linnert@inf.fu-berlin.de, Cluster Computing SoSe 2023 10-18

Example

1
1

1
2

1
5

1
3

1
6

1
4

1
7

1
8

1
9

1
10

1
11

Def. The Level (static b-Level) of vertex x is the length of the longest
path from x to the sink.

Def. The Co-level (static t-Level) of vertex x is the length of
the longest path from x to a source

No. 1 2 3 4 5 6 7 8 9 10 11
Level 4 4 3 1 3 2 1 3 3 2 1
Co-
level

1 1 2 3 1 3 4 1 1 2 4

Barry Linnert, linnert@inf.fu-berlin.de, Cluster Computing SoSe 2023 10-19

Variants of List Scheduling

HLF Highest Level First:
• The vertex with the longest chain of successors receives the highest

priority. The strategy is sometimes also called CP (critical path),
since the chosen vertex lies on the critical path.

• Because the critical path determines the whole schedule length, this
strategy is promising.

• HLF is optimal for tree-like graphs with unit execution times and
generally good in all practical cases. (with random graphs at most
5% worse than the optimal solution in 90% of cases.)

• HLF takes the height of the tree that depends on vertex x as a
priority criterion.

• Other variants choose the breadth or cardinality of the sub-tree as
priority instead of the height.

• The aim is to deblock (put in the list) as many threads as possible.

Barry Linnert, linnert@inf.fu-berlin.de, Cluster Computing SoSe 2023 10-20

10.3 Algorithms considering
communication

• The general approach of List Scheduling can be extended to
graphs with edge weights.

• The calculation of levels as priorities is somewhat more
complicated since, in contrast to the static levels of HLF, the
values now depend on the placement of the predecessors.

- WHY?

10-21Barry Linnert, linnert@inf.fu-berlin.de, Cluster Computing SoSe 2023

10.3 Algorithms considering
communication

• The general approach of List Scheduling can be extended to
graphs with edge weights.

• The calculation of levels as priorities is somewhat more
complicated since, in contrast to the static levels of HLF, the
values now depend on the placement of the predecessors.

• We distinguish (for each vertex x)
• b-level: length of longest path from vertex x to some leaf

vertex or sink, respectively. (b like bottom)
• t-level: length of longest path from a source to vertex x (t

like top)
• The path lengths contain not only the execution times (vertex

weights) but also the communication times (edge weights).
• Reference point for the calculation of the levels is the starting

point of a vertex.

10-22Barry Linnert, linnert@inf.fu-berlin.de, Cluster Computing SoSe 2023

Calculation of vertex attributes

Reminder: αij = edge weight, βi = vertex weight

t_level:
construct list of nodes in topological order (TopList)
for each node Ti ∈TopList do

max ← 0
for each parent Tx of Ti do

if (t_level(Tx) + βx + αxi > max)
max ← t_level(Tx) + βx + αxi

t_level (Ti) ← max

b_level:
construct list of nodes in reverse topological order (RevTopList)
for each node Ti ∈ RevTopList do

max ← 0
for each child Ty of Ti do

if (b_level(Ty) + αiy > max)
max ← b_level(Ty) + αiy

b_level (Ti) ← βi + max

10-23Barry Linnert, linnert@inf.fu-berlin.de, Cluster Computing SoSe 2023

Calculation of vertex attributes

• Some scheduling algorithms use the attribute „as late as
possible“ (ALAP). The ALAP value indicates the latest start
time of the thread, that doesn't lead to an in increased
schedule length (makespan) ms.

Calculation ALAP:
construct list of nodes in reverse topological order (RevTopList)
for each node Ti ∈ RevTopList do

minft ← length of critical path
for each child Ty of Ti do

if (alap(Ty) - αiy < minft)
minft ← alap(Ty) - αiy

alap(Ti) ← minft - βi

Barry Linnert, linnert@inf.fu-berlin.de, Cluster Computing SoSe 2023 10-24

Example

1
2

2
3

3
3

4
4

5
5

6
4

7
4

8
4

9
1

4
10

11
1

1 1

565

11

thread level
b-

level
t-

level ALAP
T1

T2

T3

T4

T5

T6

T7

T8

T9

Barry Linnert, linnert@inf.fu-berlin.de, Cluster Computing SoSe 2023 10-25

Example

thread level
b-

level
t-

level ALAP
T1 11 23 0 0
T2 8 15 6 8
T3 8 14 3 9
T4 9 15 3 8
T5 5 5 3 18
T6 5 10 10 13
T7 5 11 12 12
T8 5 10 8 13
T9 1 1 22 22

Barry Linnert, linnert@inf.fu-berlin.de, Cluster Computing SoSe 2023 10-26

1
2

2
3

3
3

4
4

5
5

6
4

7
4

8
4

9
1

4
10

11
1

1 1

565

11

Algorithms for fast networks

Assumptions

• The communication times between arbitrary processors
are constant, i.e. the network topology does not matter.

• No contention for bandwidth, i.e. many messages can be
sent over the same link without additional delay.

• The processor elements are able to execute a thread
and simultaneously send messages.

Barry Linnert, linnert@inf.fu-berlin.de, Cluster Computing SoSe 2023 10-27

Insertion Scheduling Heuristic (ISH)

• Calculate Level (static b-Level) for each vertex
• Build the ready list in descending level-order from root

vertices (entry nodes)
• While (ready-list not empty) do

• Place the first thread of the ready list to the processor that
allows the earliest execution.

• If this placement induces idle times, find as many threads
from ready list as possible that can be scheduled into this
idle time, unless they can start on an another processor
earlier.

• update ready list.

• Complexity: O(n2)

Barry Linnert, linnert@inf.fu-berlin.de, Cluster Computing SoSe 2023 10-28

1
2

2
3

3
3

4
4

5
5

6
4

7
4

8
4

9
1

4
10

11 1

1 1

565

11

0

2

4

6

8

10

12

14

16

18

20

P1 P2 P3 P4

11

988 5

555

1

Level Scheduled order

Barry Linnert, linnert@inf.fu-berlin.de, Cluster Computing SoSe 2023 10-29

ISH Example

1
2

2
3

3
3

4
4

5
5

6
4

7
4

8
4

9
1

4
10

11 1

1 1

565

11

0

2

4

6

8

10

12

14

16

18

20

P1 P2 P3 P4

1

234 5

678

9

11

988 5

555

1

Level Scheduled order

Barry Linnert, linnert@inf.fu-berlin.de, Cluster Computing SoSe 2023 10-30

ISH Example

1
2

2
3

3
3

4
4

5
5

6
4

7
4

8
4

9
1

4
10

11 1

1 1

565

11

0

2

4

6

8

10

12

14

16

18

20

T1

T4

T8

T7

T3

T2

T6

T5

T9

P1 P2 P3 P4

1

234 5

678

9

11

988 5

555

1

Level Scheduled order

Barry Linnert, linnert@inf.fu-berlin.de, Cluster Computing SoSe 2023 10-31

ISH Example

Modified Critical Path Method (MCP)

Initialization:
Calculate ALAP times of each vertex.
Build for each vertex a list that contains the ALAP times of
itself and its successors in descending order.
Sort these lists in ascending lexicographic order.
Create a vertex list in that order.

Loop:
while vertex list not empty do

Place the first vertex of the list to that processor that allows the
earliest execution.
Remove that vertex from list.

Complexity O(n2 log n)

10-32Barry Linnert, linnert@inf.fu-berlin.de, Cluster Computing SoSe 2023

1
2

2
3

3
3

4
4

5
5

6
4

7
4

8
4

9
1

4
10

11 1

1 1

565

11

0

2

4

6

8

10

12

14

16

18

20

P1 P2 P3 P4
ALAP Schedule order

0

8 9 8 18

131213

22

Barry Linnert, linnert@inf.fu-berlin.de, Cluster Computing SoSe 2023 10-33

MCP Example

1
2

2
3

3
3

4
4

5
5

6
4

7
4

8
4

9
1

4
10

11 1

1 1

565

11

0

2

4

6

8

10

12

14

16

18

20

P1 P2 P3 P4

9

8

76 5

43 2

1
ALAP Schedule order

0

8 9 8 18

131213

22

Barry Linnert, linnert@inf.fu-berlin.de, Cluster Computing SoSe 2023 10-34

MCP Example

1
2

2
3

3
3

4
4

5
5

6
4

7
4

8
4

9
1

4
10

11 1

1 1

565

11

0

2

4

6

8

10

12

14

16

18

20

T1

T4

T8

T7

T3

T2

T6

T5

T9

P1 P2 P3 P4

9

8

76 5

43 2

1
ALAP Schedule order

0

8 9 8 18

131213

22

Barry Linnert, linnert@inf.fu-berlin.de, Cluster Computing SoSe 2023 10-35

MCP Example

Earliest Time First Method (ETF)

Initialization:
Calculate the static b-Level of each vertex.
Insert source vertices into ready list.

Loop:
while vertex list not empty do

Calculate earliest starting time on each processor for each
vertex in the ready list.
Select the vertex-processor-pair with the smallest start time.
Place the vertex accordingly.
Insert new ready vertices into ready list.

Complexity O(n2)

Barry Linnert, linnert@inf.fu-berlin.de, Cluster Computing SoSe 2023 10-36

1
2

2
3

3
3

4
4

5
5

6
4

7
4

8
4

9
1

4
10

11 1

1 1

565

11

0

2

4

6

8

10

12

14

16

18

20

P1 P2 P3 P4

11

988 5

555

Level

1

Schedule order

Barry Linnert, linnert@inf.fu-berlin.de, Cluster Computing SoSe 2023 10-37

ETF Example

1
2

2
3

3
3

4
4

5
5

6
4

7
4

8
4

9
1

4
10

11 1

1 1

565

11

0

2

4

6

8

10

12

14

16

18

20

P1 P2 P3 P4

1

23 45

67 8

9

11

988 5

555

Level

1

Schedule order

Barry Linnert, linnert@inf.fu-berlin.de, Cluster Computing SoSe 2023 10-38

ETF Example

1
2

2
3

3
3

4
4

5
5

6
4

7
4

8
4

9
1

4
10

11 1

1 1

565

11

0

2

4

6

8

10

12

14

16

18

20

T1

T4

T8

T7

T3

T2

T6

T5

T9

P1 P2 P3 P4

1

23 45

67 8

9

11

988 5

555

Level

1

Schedule order

Barry Linnert, linnert@inf.fu-berlin.de, Cluster Computing SoSe 2023 10-39

ETF Example

10.4 Scheduling with Clustering

• Approaches using clustering decompose the allocation process
into two phases:
• Phase 1: Clustering, i.e. combining all threads that are

allocated to the same processor.
• Phase 2: Ordering; i.e. determining at which times the

threads start execution.

• There are as many clusters formed as processors are available
• The clustering process starts with single element clusters and

stepwise merges clusters to larger ones.
• Threads of the same cluster run on the same processor.

Communication between those threads is free of cost.

Barry Linnert, linnert@inf.fu-berlin.de, Cluster Computing SoSe 2023 10-40

3
1

1
1

4
2

5
2

2
5

6
1

7
1

5

34

1,5

2
1

1,5

1

3
1

1
1

4
2

5
2

2
5

6
1

7
1

5

34

1,5

2
1

1,5

1

3
1

1
1

4
2

5
2

2
5

6
1

7
1

5

34

1,5

2
1

1,5

1

DAG linear clustering nonlinear clustering

A clustering is called nonlinear, if two independent threads are
assigned to the same cluster, otherwise it is called linear.

Barry Linnert, linnert@inf.fu-berlin.de, Cluster Computing SoSe 2023 10-41

Linear Clustering

Clustering

• The clustering modifies the DAG by zeroing some edge
weights

• By doing so, the length of the critical path may also be
affected.

• We make the distinction:
• The (original) DAG
• the DAG after clustering (clustered DAG, CDAG)
• the DAG after ordering (scheduled DAG, SDAG)

• The critical path of the SDAG is called dominant
sequence (DS) of the CDAG.

Barry Linnert, linnert@inf.fu-berlin.de, Cluster Computing SoSe 2023 10-42

3
1

1
1

4
2

5
2

2
5

6
1

7
1

5

34

1,5

2
1

1,5

1

0

1

2

3

4

5

6

7

8

9

10

T1

T2
T4

T7

T3

T6

T5

P1 P2 P3

3
1

1
1

4
2

5
2

2
5

6
1

7
1

0

00

0

2
1

0

1

0

CDAG SDAG
Gantt-Chart

CP: T1, T2, T7
CP length: 9

DS: T1, T3, T4, T5, T6, T7

DS length: 10

Barry Linnert, linnert@inf.fu-berlin.de, Cluster Computing SoSe 2023 10-43

Critical Path and Dominant Sequence

Sarkar's Algorithm

• Initialization:
• All vertices are forming

single element clusters
• All edges are unmarked
• All edges are being sorted

according to descending
communication cost.

• Repeat
• Set unmarked edge with

highest weight to 0 (merge
clusters), if the makespan is
not increased by that.

• Mark that edge
• If two clusters are merged,

the edges are ordered
according to HLF-rule
(highest b-level first.).

until all edges marked

3
1

1
1

4
2

5
2

2
5

6
1

7
1

5

34

1,5

2
1

1,5

1

Step edge Zeroing makespan
0 14
1 (T1,T2) (T1,T2) 13,5
2 (T3,T4) (T3,T4) 12,5
3 (T3,T5) (T3,T5) 11,5
4 (T2,T7) (T2,T7) 11,5
5 (T4,T6) (T4,T6) 11,5
6 (T5,T6) (T5,T6) 10
7 (T1,T3) ∅ 10
8 (T6,T7) ∅ 10Barry Linnert, linnert@inf.fu-berlin.de, Cluster Computing SoSe 2023 10-44

Sarkar's Algorithm

0

1

2

3

4

5

6

7

8

9

10

T1

T2 T4

T7

T3

T6

T5

P1 P2

3
1

1
1

4
2

5
2

2
5

6
1

7
1

5

34

1,5

2
1

1,5

1

Complexity: O(e (n+e))

Barry Linnert, linnert@inf.fu-berlin.de, Cluster Computing SoSe 2023 10-45

Dominant Sequence Clustering
(DSC)

• Initialization:
• All vertices are single element clusters
• All edges are unmarked
• r=0
• Calculate DS0

• Initialize Ready List with source vertices
• While not all edges marked

• Let (Ti,Tj) be the topmost unmarked edge in DSr
• Mark this edge
• Delay zeroing of edge until Tj becomes ready.
• Select ready vertex Tk as the one which runs to the longest path through

ready vertices of the SDAG
• Zero those incoming edges of Tk, that minimize the t-level of Tk.
• Schedule Tk after the last already scheduled vertex of its cluster.
• Insert successors of Tk into ready list that just became ready, if available
• If all edges in DSr are marked: increment r and find new DSr
end while

10-46Barry Linnert, linnert@inf.fu-berlin.de, Cluster Computing SoSe 2023

DSC-Algorithm

Step Edge ready Zeroing makespan

0 14

1 ∅ T1 ∅ 14

2 (T1,T2) T2 (T1,T2) 13,5

3 (T1,T3) T3 ∅ 13,5

4 (T3,T5) T4 (T3,T4) 12,5

5 (T2,T7) T5 (T3,T5) 11,5

6 (T4,T5) T6 (T4,T6)
(T5,T6)

10

7 (T5,T6) T7 (T6,T7) 9

3
1

1
1

4
2

5
2

2
5

6
1

7
1

5

34

1,5

2
1

1,5

1

Barry Linnert, linnert@inf.fu-berlin.de, Cluster Computing SoSe 2023 10-47

DSC-Algorithm

0

1

2

3

4

5

6

7

8

9

10

T1

T2 T4

T7

T3

T6

T5

P1 P2

3
1

1
1

4
2

5
2

2
5

6
1

7
1

5

34

1,5

2
1

1,5

1

Complexity: O((n+e) log n)

Barry Linnert, linnert@inf.fu-berlin.de, Cluster Computing SoSe 2023 10-48

Further references

• Buyya,R.: High Performance Cluster Computing, Vol. 1,
Prentice Hall, 1999, chapter 24

• Zomaya,A.: Parallel and Distributed Computing
Handbook, McGraw Hill, 1995, chapter 9

• Gerasoulis, A.; Yang,T.: A Comparison of Clustering
Heuristics for Scheduling Directed Acyclic Task Graphs
on Multiprocessors, J. of Parallel and Distributed
Computing 16 (1992), pp. 276-291

• Kwok, Y-K.; Ahmad, I.: Static Scheduling Algorithms for
Allocating Directed Task Graphs to Multiprocessors, ACM
Computing Surveys 31(4), December 1999, pp. 406-
471

Barry Linnert, linnert@inf.fu-berlin.de, Cluster Computing SoSe 2023 10-49

	Foliennummer 1
	10.1 Introduction
	Scheduling of dependent threads
	Example
	Example
	Model
	Model
	Other quantities
	Considering communication cost
	Considering communication cost
	NP-completeness
	Optimal Algorithms
	10.2 List Scheduling
	Example
	Example
	Example
	Variants of List Scheduling
	Example
	Example
	Variants of List Scheduling
	10.3 Algorithms considering communication
	10.3 Algorithms considering communication
	Calculation of vertex attributes
	Calculation of vertex attributes
	Example
	Example
	Algorithms for fast networks
	Insertion Scheduling Heuristic (ISH)
	ISH Example
	ISH Example
	ISH Example
	Modified Critical Path Method (MCP)
	MCP Example
	MCP Example
	MCP Example
	Earliest Time First Method (ETF)
	ETF Example
	ETF Example
	ETF Example
	10.4 Scheduling with Clustering
	Linear Clustering
	Clustering
	Critical Path and Dominant Sequence
	Sarkar's Algorithm
	Sarkar's Algorithm
	Dominant Sequence Clustering (DSC)
	DSC-Algorithm
	DSC-Algorithm
	Further references

