
Chapter 8

The Mapping Problem

The Mapping or Embedding Problem

• We assume the allocation at program level has already taken place
and a partition of the processor network has been allocated to each
program.

• Now we have to determine, which process is placed onto which
processor.

• If the program is given as a communication graph (TIG), then we
have to find a mapping of the TIG to the processor connection
graph (PCG).

• In an ideal case both TIG and PCG match (graph isomorphism).

Barry Linnert, linnert@inf.fu-berlin.de, Cluster Computing SoSe 2023 8-2

Embedding

Parallel program Parallel machine

Placement of threads to processors =
Embedding of thread interaction graph into
processor connection graph

Threads are placed so that messages between them get
only short delay (short distance).

5

3

1

7

2

6

4
5

3

1

7

2

6

4

Graph Embedding

Barry Linnert, linnert@inf.fu-berlin.de, Cluster Computing SoSe 2023 8-3

8.1 Definitions

• Given two graphs G = (VG,EG) and H = (VH,EH) with unit edge
weight.

• An embedding of G into H is a mapping of nodes of G (guest
graph) to the nodes of H (host graph) together with a
mapping of the edges of G to paths of H.

• Formally: θ = (pV, pE) with

such that

• θ = (pV, pE) is called injective (one-to-one-embedding), if pV
is injective.

• Otherwise θ = (pV, pE) is called contractive (many-to-one-
embedding).

8-4Barry Linnert, linnert@inf.fu-berlin.de, Cluster Computing SoSe 2023

:
: Set of paths in

V G H

E G

V V
E H

π
π

→

→

() () ()() () ()()()j,v,,v,v,v,ie:Ej,ie VpVEG ππ=π∈=∀ −1211

More Definitions

• The number of guest nodes that are mapped to a host node v
∈VH is called load factor of v: lf(v).

• The maximum of load factors over all nodes VH is called load
factor of the embedding:

Injective embeddings have a load factor of lf=1.
• Edges in G (e ∈EG) are mapped to paths in H. The edge set of

such a path is called E(πE(e)), the node set V(πE(e)), the
set of internal nodes (i.e. without start and end node) is
denoted as VI(πE(e)).

• The length, i.e. the number of edges of a path to which an
edge e∈EG is mapped, is called dilation of edge dil(e).

• The dilation of the embedding θ is the maximum of all edge
dilations:

8-5Barry Linnert, linnert@inf.fu-berlin.de, Cluster Computing SoSe 2023

() (){ }vlfmax:lf
HVv∈

=θ

() (){ }edilmax:dil
GEe∈

=θ

More Definitions

• With an embedding, multiple paths πE (e), e ∈EG can be routed
across the same link e‘∈EH. The number of these paths is
called edge congestion of e‘:

• Analogously, we define the vertex congestion as the number
of paths that have this vertex as an inner node:

• Correspondingly, we define the edge and vertex congestion
of the embedding as:

8-6Barry Linnert, linnert@inf.fu-berlin.de, Cluster Computing SoSe 2023

() ()(){ }eEeEe:eecong EG π∈′∈=′

() ()(){ }eVIvEe:vvcong EG π∈′∈=′

() (){ }eecongmax:econg
GEe

′=θ
∈′

() (){ }vvcongmax:vcong
HVv

′=θ
∈′

More Definitions

• The expansion of an embedding is the ratio of the node
numbers of host and guest graph:

• An embedding with a high expansion allows for better
dispersion of the paths and therefore leads to smaller edge
and vertex congestions.

• The cardinality of an embedding card(θ) is the number of
edges e∈EG , that are one-to-one mapped to edges e‘∈EH .

() H

G

Vexp ansion :
V

θ =

Barry Linnert, linnert@inf.fu-berlin.de, Cluster Computing SoSe 2023 8-7

Example for an embedding

v1

v2

v3

v4

v5

v6

Guest graph G (program) Host graph H (machine)
(3D hypercube)

dil(θ)=?, econg(θ)=?, vcong(θ)=?, expansion(θ)=? and card(θ)=?

Barry Linnert, linnert@inf.fu-berlin.de, Cluster Computing SoSe 2023 8-8

Example for an embedding

v1

v2

v3

v4

v5

v6

Guest graph G (program) Host graph H (machine)
(3D hypercube)

dil(θ)=?, econg(θ)=?, vcong(θ)=?, expansion(θ)=? and card(θ)=?

v1 v2

v3

v4

v5 v6

Barry Linnert, linnert@inf.fu-berlin.de, Cluster Computing SoSe 2023 8-9

Example for an embedding

v1

v2

v3

v4

v5

v6

v1 v2

v3

v4

v5 v6

Guest graph G (program) Host graph H (machine)
(3D hypercube)

Example for an embedding θ with dil(θ)=2, econg(θ)=2,
vcong(θ)=2, expansion(θ)=4/3 and card(θ)=4

Barry Linnert, linnert@inf.fu-berlin.de, Cluster Computing SoSe 2023 8-10

Graph isomorphism

• An embedding θ= (πV, πE) is called an isomorphism, if πV as
well as πE are bijective and the following holds:

• Are the following graphs isomorphous?

• Remark: The graph isomorphism problem (checking, whether
two graphs are isomorphous) is in class NP. It is still open,
whether it is NP-complete.

8-11Barry Linnert, linnert@inf.fu-berlin.de, Cluster Computing SoSe 2023

() () () ()()v,uv,u:Ev,u VVE ππ=π∈∀

u1 u2

u5 u3
u4

v1 v2

v5

v3
v4

8.2 Injective Embedding

8.2.1 Regular Graphs
• The graph embedding problem is still subject of research.
• Especially for regular graphs (e.g. trees, meshes, hypercubes

as guest and host graph) a multitude of solutions is known.
• The goal is usually to find an embedding with minimal

dilation and/or minimal expansion.
• In some cases optimal embeddings are known, sometimes

lower bounds can be specified.
• In the following, some results for 2D-meshes as host graphs

will be represented.

Barry Linnert, linnert@inf.fu-berlin.de, Cluster Computing SoSe 2023 8-12

Binary tree as guest graph

• The usual mapping is the so-called H-embedding (down left).
• The dilation increases linearly with the height h of the tree to be

embedded.
• Vertex congestion=0, edge congestion=1, cardinality= 2h+2h-1.
• The expansion goes to 2 for h → ∞.
• A slight improvement is possible by squashing it along one dimension

(bottom right):

8-13Barry Linnert, linnert@inf.fu-berlin.de, Cluster Computing SoSe 2023

2D-mesh as guest graph

• With regard to the rectangular mesh b x h to be embedded,
the quadratic mesh of side length s is called

ideal, if

almost ideal, if

• Each rectangular mesh can be embedded in an almost ideal
quadratic mesh with dil ≤ 3.

• Embeddings with dil =2 are possible, but only with higher
expansion.

• In the following, we assume w.l.o.g. b ≤ h. Let ρ := h/b define
the height-breadth-ratio of the rectangle to be embedded.

8-14Barry Linnert, linnert@inf.fu-berlin.de, Cluster Computing SoSe 2023

s b h = ⋅

1s b h = ⋅ +

2D-mesh as guest graph:
step embedding

• The step embedding starts with the first line of the source graph and
turns right, as soon as it hits the border or nodes already used.

• The side length of the required square is
• For the expansion holds:
• The dilation is dil=3.
• With a small modification we achieve that more edges are dilated but

the dilation does not exceed 2.

8-15Barry Linnert, linnert@inf.fu-berlin.de, Cluster Computing SoSe 2023

() 2hbs +=

() () ρρ+≤θ 41expansion 2

dil=3 dil=2

Step embedding Modified step embedding

2D-mesh as guest graph: folding

• The rectangle is folded along the longer side in serpentine
lines into the host graph. At the folding points, a smart layout
ensures that a dilation of 2 is not exceeded.

• The folding needs a side length of and achieves
a dilation of dil =2 at an expansion of

8-16Barry Linnert, linnert@inf.fu-berlin.de, Cluster Computing SoSe 2023

()
2

expansion θ ρ ρ =

s b ρ =

Further examples

Barry Linnert, linnert@inf.fu-berlin.de, Cluster Computing SoSe 2023 8-17

8.2.2 Irregular Graphs

• If only one of the two graphs, guest or host graph, is
irregular, i.e. it does not belong to a graph family, then the
embedding problem is in most cases NP-complete.

• To find a solution, we have to apply heuristic algorithms, e.g.
dedicated heuristics or general approaches like Simulated
Annealing, Genetic Algorithms, Taboo-search,…

Barry Linnert, linnert@inf.fu-berlin.de, Cluster Computing SoSe 2023 8-18

8.3 Contractive embedding

• If more threads are to be mapped than processors are
available, then we have to contract (group, cluster) some
threads that will be mapped to the same processor.

• Those threads should be grouped that intensively
communicate with each other.

• The allocation should also try to achieve that all processors
receive roughly the same workload (e.g. #threads, #machine
instructions).

• Constraints concerning memory capacity can be considered.

Barry Linnert, linnert@inf.fu-berlin.de, Cluster Computing SoSe 2023 8-19

8.3.1 Contraction and
contraction graph

• Let be G=(V, E) a graph and k a positive integer number.
• A k-partitioning P of a graph is a non-void, exhaustive set of pair

wise disjoint subsets of V:
• P = {V1, V2,..., Vk}, Vi ⊆ V with

• A partitioning decomposes the graph into subgraphs Gi =(Vi, Ei) :

The edge sets Ei are called internal edges of the respective
partition.

• Edges that connect vertices of different partitions are called cutting
edges:

8-20Barry Linnert, linnert@inf.fu-berlin.de, Cluster Computing SoSe 2023

VV
k

i
i =

=

1
∅=∩⇒≠ ki VVki

(){ }ii VvuEvuE ∈∈= ,,

() (){ }jiVvVuEvuEEPcut ji

k

i
i ≠∈∈∈=−=

=

 with ,,
1

„exhaustive“

„pair wise disjoint“

Contraction graph

• Let P = {V1, V2,..., Vk} be a k-partitioning of a graph G=(V,E).
• The corresponding contraction graph GP=(V‘,E‘) consists of one

vertex for each partition and edges for any two partitions, if these
partitions are connected by edges in G:

• Vertex weights of the contraction graph are built by summing up
over the vertices contracted:

• Edge weights of the contraction graph are given by the weights of
the cutting edges:

8-21Barry Linnert, linnert@inf.fu-berlin.de, Cluster Computing SoSe 2023

{ }kv,,v,vV ′′′=′ 21

() () PVVEvvVvVvEvv qpqpqqppqp ∈∈∈∈∃⇔′∈′′ , where ,,:,,

() ()∑
∈
µ=′µ

pVv
p vv

() ()
p q

p q
u V ,v V

v ,v u ,vγ γ
∈ ∈

′ ′ = ∑

Example

Graph with
5-partitioning

Corresponding
contraction graph ?

Barry Linnert, linnert@inf.fu-berlin.de, Cluster Computing SoSe 2023 8-22

Example

Graph with
5-partitioning

Corresponding
contraction graph

Barry Linnert, linnert@inf.fu-berlin.de, Cluster Computing SoSe 2023 8-23

Contractive allocation

A contractive allocation may consist of two steps :
1. Solving the contraction problem (k-partitioning), where k

denotes the number of available processors. The goal is a
balanced partitioning with minimal cut costs (edge weights).

2. Embedding the contraction graph into the processor graph,
i.e. injective allocation of the thread groups to the processors.
The goal is an embedding e.g. with minimal dilation (measure
for the maximum latency of inter-thread communication).

Both optimization problems are in general NP-complete.
Therefore, we have to resort to heuristic approaches.

Barry Linnert, linnert@inf.fu-berlin.de, Cluster Computing SoSe 2023 8-24

Alternative approach

• Instead of proceeding indirectly and first conduct a
partitioning, we could directly calculate contractive
allocation.

• The indirect approach holds the danger of some loss of
optimality since the topology of the processor graphs is
not considered in the partitioning.

8-25Barry Linnert, linnert@inf.fu-berlin.de, Cluster Computing SoSe 2023

program graph processor graph

contraction graph

direct contractive allocation

01

00

1 1 1 0

partitioning of problem graph

01

00

10

11

contraction graph

01 11

00 10

embedding

01

11

00

10

01 11

00 10

0 10 0 1 1 1 0

partitioning of problem graph contraction graph embedding

01 11

00 10

01 11

00 10

0 1

0 0

11

1 0

partitioning of problem graph contraction graph embedding

Barry Linnert, linnert@inf.fu-berlin.de, Cluster Computing SoSe 2023 8-26

Example

8.3.2 Graph partitioning

• The balanced k-partitioning of a graph with minimal cut costs
is NP-complete.

• Only for special problem instances there are efficient
algorithms:
• The bipartitioning of a graph with minimal cut costs can be

performed using flow algorithms (Max-Flow-Min-Cut-Algorithm) in
O(n m2)
(with n = number of nodes and m = number of edges).

• In addition, there are some heuristic approaches that perform a
bipartitioning recursively. By doing so, the k-partitioning
problem can be solved for k = 2i efficiently (but not optimally).

Barry Linnert, linnert@inf.fu-berlin.de, Cluster Computing SoSe 2023 8-27

Kernighan-Lin-Algorithm

• A frequently employed algorithm for bipartitioning goes back
to Kernighan-Lin (1970):

• Starting point is a feasible (=balanced) initial partitioning. By
pair wise exchange based on the method of probing paths, we
try to improve the cut costs

• Given: Graph with 2m vertices and edge weights.
• Goal: two equally sized partitions X and Y with minimal cut

costs:
() () minv,u:Y,X

Yv,Xu
→γ=Γ ∑

∈∈

Barry Linnert, linnert@inf.fu-berlin.de, Cluster Computing SoSe 2023 8-28

Kernighan-Lin-Algorithm

• Let be v∈X
• The internal costs I(v) of a vertex are the weights of all edges

between v and other vertices of the same partition:

• The external costs E(v) of a vertex are the weights of all
edges that connect v with a vertex of the other partition
(cutting edges):

• As difference costs of v we define D(v) = E(v)-I(v).

() () ()∑
∈
γ=Γ=

Xu
u,vX,vvI

() () ()∑
∈
γ=Γ=

Yu
u,vY,vvE

Barry Linnert, linnert@inf.fu-berlin.de, Cluster Computing SoSe 2023 8-29

Kernighan-Lin-Algorithm

Lemma:
• Let be u∈X, v∈Y. If u and v are exchanged, we obtain a gain

g = D(u) + D(v) - 2 γ(u,v)

• Proof:
Let be z the cut costs minus all edges incident with u or v.
Then the whole cut costs are

Γ(X,Y) = z + E(u) + E(v) - γ(u,v).
After exchange of u and v we obtain

Γ(X‘,Y‘) = z + I(u) + I(v) + γ(u,v).
Taking the difference yields

g = ∆Γ = E(u) + E(v) - γ(u,v)
–(I(u) + I(v) + γ(u,v))

=D(u) + D(v) - 2 γ(u,v)

Barry Linnert, linnert@inf.fu-berlin.de, Cluster Computing SoSe 2023 8-30

Example

3
4

5

6
7

8
9

z

y

v

x

u

Do we want to exchange u and v?

3
4

5

6
7

8
9

z

y

v

x

u

Barry Linnert, linnert@inf.fu-berlin.de, Cluster Computing SoSe 2023 8-31

Example

3
4

5

6
7

8
9

z

y

v

x

u

Cut costs Γ =
g = D(u)+D(v)-2 γ(u,v)
g =

3
4

5

6
7

8
9

z

y

v

x

u

Cut costs Γ=
γ(u,v) =
E(u) =
I(u) =
D(u) =
E(v) =
I(v) =
D(v) =

Barry Linnert, linnert@inf.fu-berlin.de, Cluster Computing SoSe 2023 8-32

Example

3
4

5

6
7

8
9

z

y

v

x

u

Cut costs Γ = 4+5+6+8+9 = 32
g = D(u)+D(v)-2 γ(u,v)
g = 2+0-10 = -8

3
4

5

6
7

8
9

z

y

v

x

u

Cut costs Γ= 3+5+7+9 = 24
γ(u,v) = 5
E(u) = 3+5 = 8
I(u) = 6
D(u) = 2
E(v) = 5+7 = 12
I(v) = 4+8 = 12
D(v) = 0

Barry Linnert, linnert@inf.fu-berlin.de, Cluster Computing SoSe 2023 8-33

Kernighan-Lin-Algorithm 1
1 mincut(Xin,Yin,Xout,Yout)

2 X ← Xin; Y ← Yin Init. balanced bipartitioning
3 G ← ∞ Initialize gain
4 while G > 0 do Search as long as we achieve
5 X'← X an improvement
6 Y'← Y Auxiliary variable to store
7 for i ← 1 to m do temporary node movements
8 for all v∈V, v unmarked do

9 calculate D[v] resp. X',Y' Calculation of difference costs
10 end for

11 for all (u,v) unmarked, u∈X',v∈Y'do Calculation of gain when
12 g[u,v] ← D[u] + D[v]- 2 γ[u,v] exchanging u and v
13 end for

14 g[i] ← max{g[u,v]} Storing and marking of that pair
15 (u*[i],v*[i])←(u*,v*) with max{g[u,v]} the exchange of which maximizes

16 mark u*,v* the gain.
17 X' ← X' -{u*[i]}∪ {v*[i]} Temporary exchange of marked pair
18 Y' ← Y' -{v*[i]}∪ {u*[i]}

19 end for
Barry Linnert, linnert@inf.fu-berlin.de, Cluster Computing SoSe 2023 8-34

Kernighan-Lin-Algorithm 2

8-35Barry Linnert, linnert@inf.fu-berlin.de, Cluster Computing SoSe 2023

20 G[k] ← (k =0,...,n)

Series of m exchange pairs is found.
(X'=Y, Y'=X)
G[k] indicates the gain accumulated
over the first k exchange steps

21 k* ← min k with max {G[k]} With k* a subsequence optimal with
regard to the initial partitioning

22 G ← G[k*] has been found
23 if G > 0 Exchange steps are performed only if
24 then it pays off
25 X←X-{u*[1],..,u*[k*]}∪{v*[1],.,v*[k*]} Factual exchange
26 Y←Y-{v*[1],..,v*[k*]}∪{u*[1],.,u*[k*]}

27 end then

28 end while Further exchange steps do not lead
to any improvement (G=0),

29 Xout ← X Algorithm stops.
30 Yout ← Y

31 end mincut

[]∑
=

k

j
jg

1

Example

• With the given initial partitioning (red) the
algorithm finds the optimal solution (green) after 2
executions of the while-loop.

8-36Barry Linnert, linnert@inf.fu-berlin.de, Cluster Computing SoSe 2023

v4v0

v1

v2

v3

v5

16

12
20

4

7
9

14

4

13

Start

Example

• With the given initial partitioning (red) the
algorithm finds the optimal solution (green) after 2
executions of the while-loop.

8-37Barry Linnert, linnert@inf.fu-berlin.de, Cluster Computing SoSe 2023

v4v0

v1

v2

v3

v5

16

12
20

4

7
9

14

4

13

Start E I D

V0

V1

V2

V3

V4

V5

Example

• With the given initial partitioning (red) the
algorithm finds the optimal solution (green) after 2
executions of the while-loop.

8-38Barry Linnert, linnert@inf.fu-berlin.de, Cluster Computing SoSe 2023

v4v0

v1

v2

v3

v5

16

12
20

4

7
9

14

4

13

Start E I D

V0 16 13 3

V1 20 12 8

V2 13 27 -14

V3 16 32 -16

V4 4 20 -16

V5 11 14 -3

Example

• With the given initial partitioning (red) the
algorithm finds the optimal solution (green) after 2
executions of the while-loop.

8-39Barry Linnert, linnert@inf.fu-berlin.de, Cluster Computing SoSe 2023

v4v0

v1

v2

v3

v5

16

12
20

4

7
9

14

4

13

Start E I D

V0 16 13 3

V1 20 12 8

V2 13 27 -14

V3 16 32 -16

V4 4 20 -16

V5 11 14 -3

V1 V3 V4

V0

V2

V5

Example

• With the given initial partitioning (red) the
algorithm finds the optimal solution (green) after 2
executions of the while-loop.

8-40Barry Linnert, linnert@inf.fu-berlin.de, Cluster Computing SoSe 2023

v4v0

v1

v2

v3

v5

16

12
20

4

7
9

14

4

13

Start

V1 V3 V4

V0 -21 -13 -13

V2 -14 -48 -30

V5 5 -33 -27

E I D

V0 16 13 3

V1 20 12 8

V2 13 27 -14

V3 16 32 -16

V4 4 20 -16

V5 11 14 -3

Example

• With the given initial partitioning (red) the
algorithm finds the optimal solution (green) after 2
executions of the while-loop.

8-41Barry Linnert, linnert@inf.fu-berlin.de, Cluster Computing SoSe 2023

v4v0

v1

v2

v3

v5

16

12
20

4

7
9

14

4

13

Current
E I D

V0

V1

V2

V3

V4

V5

Example

• With the given initial partitioning (red) the
algorithm finds the optimal solution (green) after 2
executions of the while-loop.

8-42Barry Linnert, linnert@inf.fu-berlin.de, Cluster Computing SoSe 2023

v4v0

v1

v2

v3

v5

16

12
20

4

7
9

14

4

13

Current
E I D

V0 0 29 -29

V1 12 20 -8

V2 23 17 6

V3 21 27 -6

V4 0 24 -24

V5 14 11 3

Example

• With the given initial partitioning (red) the
algorithm finds the optimal solution (green) after 2
executions of the while-loop.

8-43Barry Linnert, linnert@inf.fu-berlin.de, Cluster Computing SoSe 2023

v4v0

v1

v2

v3

v5

16

12
20

4

7
9

14

4

13

Current
E I D

V0 0 29 -29

V1 12 20 -8

V2 23 17 6

V3 21 27 -6

V4 0 24 -24

V5 14 11 3

V1 V3 V4

V0

V2

V5

Example

• With the given initial partitioning (red) the
algorithm finds the optimal solution (green) after 2
executions of the while-loop.

8-44Barry Linnert, linnert@inf.fu-berlin.de, Cluster Computing SoSe 2023

v4v0

v1

v2

v3

v5

16

12
20

4

7
9

14

4

13

Current
E I D

V0 0 29 -29

V1 12 20 -8

V2 23 17 6

V3 21 27 -6

V4 0 24 -24

V5 14 11 3

V1 V3 V4

V0 -35 -38 -18

V2 -53 -32 -18

V5 -26 -5 -19

Example

• With the given initial partitioning (red) the
algorithm finds the optimal solution (green) after 2
executions of the while-loop.

8-45Barry Linnert, linnert@inf.fu-berlin.de, Cluster Computing SoSe 2023

E I D

V0 0 29 -29

V1 12 20 -8

V2 23 17 6

V3 21 27 -6

V4 0 24 -24

V5 14 11 3

v4v0

v1

v2

v3

v5

16

12
20

4

7
9

14

4

13

End

V1 V3 V4

V0 -35 -38 -18

V2 -53 -32 -18

V5 -26 -5 -19

Partitioning in Practice

8-46Barry Linnert, linnert@inf.fu-berlin.de, Cluster Computing SoSe 2023

• In practice, the graphs to be embedded are often Finite-Element-
Graphs or Finite-Volume-Graphs that result from a triangulation with
non-uniform density.

• Often, there is no explicit embedding (mapping), but the partitions
are assigned to the processors in a random way.

Recursive Bisectioning

• The following example shows that even if the geometric
structure of the graph matches the topology of the processor
network, longer communication paths will develop.

• The white and the black partition are adjacent, but are
mapped to rather distant nodes.

8-47Barry Linnert, linnert@inf.fu-berlin.de, Cluster Computing SoSe 2023

Recursive Bipartitioning

8.4 Selforganizing Maps

• The communication graph (TIG) of a program has to be
mapped to the processor graph such that neighborhood
relations are preserved.

• What we need is a topology preserving mapping.
• A bijective mapping π between two topological spaces A and B

with metrics dA and dB is called topology preserving or
Homeomorphismus, iff:

• A topology preserving mapping can be obtained approximately
by selforganizing maps, an application of Kohonen
networks.

() () ()() Ay,xy,xdy,xd BA ∈∀ππ=

Barry Linnert, linnert@inf.fu-berlin.de, Cluster Computing SoSe 2023 8-48

Bear, Connors & Paradiso (2001).
Neuroscience: Exploring The Brain.
p. 474.

Barry Linnert, linnert@inf.fu-berlin.de, Cluster Computing SoSe 2023 8-49

Self organization in the human brain

Kohonen Networks

• Self-organizing Maps (SOM)
• Developed by T. Kohonen (Helsinki)
• Mathematical model to explain the selforganization of brain

cells
• Adjacent brain cells are responsible for stimulus processing of

adjacent areas of the skin.

8-50Barry Linnert, linnert@inf.fu-berlin.de, Cluster Computing SoSe 2023

Examples for Self-Organizing Maps

Barry Linnert, linnert@inf.fu-berlin.de, Cluster Computing SoSe 2023 8-51

Structure of a Kohonen Network

wm1w11 w21 wm2w12 w22 wmnw1n w2n

xmx2x1

gn1g11 g21

+

Σ

gn2g12 g22

+

gnng1n g2n

+ fsfsfs

y1 y2
ynΣ

Σ

Σ

Σ

Σ

Interconnection Network

Barry Linnert, linnert@inf.fu-berlin.de, Cluster Computing SoSe 2023 8-52

+
+

Structure of a Kohonen Network

• A Kohonen Network is a layer of n neurons
connected by some network.

• Between neurons a distance function d(i,k) is
defined.

• Each neuron is attached to each of the m inputs
that are associated with a specific weight wij .

• If we have a signal x at the input, each neuron i
calculates the weighted sum

8-53Barry Linnert, linnert@inf.fu-berlin.de, Cluster Computing SoSe 2023

∑
=

m

j
jij xw

1

Structure of a Kohonen Network

• The output signal of a neuron is given by:

• The weights gki are such that they are stimulating for small
distances and inhibitory for larger distances.

• fs is a sigmoid switching function, that approaches 1 for
x→∞ and 0 for x→-∞.

8-54Barry Linnert, linnert@inf.fu-berlin.de, Cluster Computing SoSe 2023

+= ∑ ∑

= =

m

j

n

k
kkijijsi ygxwfy

1 1

1

x

sgn(x)
1+exp(-x/T)

1

0

Kohonen‘s Approximation

• Kohonen describes the behavior of the network approximately:
• The neuron i*, whose weighted input signal is maximum, is called

center of excitation.

• If we normalize the weights, we can also write:

with

• Depending on the weights, a mapping is defined that assigns each
input signal x a place (neuron) i*:

∑∑
===

=
m

j
jji

n

i

m

j
j*ji xwmaxxw

111

xwminxw i
n

i*i

−=−
=1

() ()Tm
T

miiii xxxxwwww ,,, and ,,, 2121

==

()x*ix: ww

π=π

Barry Linnert, linnert@inf.fu-berlin.de, Cluster Computing SoSe 2023 8-55

Excitation and Adaptation

*iw

()new old old
i i i*,i iw w h x wε= + ⋅ ⋅ −

π

i*

x

Vector space of
Input signals

Neural network

Learning rule:

iw

Barry Linnert, linnert@inf.fu-berlin.de, Cluster Computing SoSe 2023 8-56

Excitation in neighborhood

• In the neighborhood of the center, the excitation decreases
with the distance.

• As function usually the bell-shaped Gaussian density curve is
used:

8-57Barry Linnert, linnert@inf.fu-berlin.de, Cluster Computing SoSe 2023

()

σ
−= 2

2

2
i*,idexp:h i*,i

1

i* d(i*,i)

hi*,i

d(i*,i)

Kohonen Algorithm

• In a loop the input signals (stimuli) x are generated following
some probability distribution p(x) which stimulates the
network that adapts its weights accordingly.

8-58Barry Linnert, linnert@inf.fu-berlin.de, Cluster Computing SoSe 2023

0 Kohonen-Algorithm

1 initialize wji Random selection of initial
weights

2 while (not stopping_condition) do Main loop

3 select according to Stimulus selection

4 determine i* with Center of excitation

5 Adaptation of weights

6 end while

7 end

Xx ∈
 ()xp

xwminxw i
n

i*i

−=−
=1

() j,iwxhww jiji*,ijiji ∀−⋅⋅ε+=

Application to Mapping Problem

• The processors and their interconnection links are the
Kohonen network.

• The program graph to be mapped generates the input signals.
• Both graphs are being represented in the same geometric

area.
• In each step a node of the program graph is offered an input

signal
• This way the processor graph unfolds in the program graph.
• (Principally also the opposite direction is possible.)

Barry Linnert, linnert@inf.fu-berlin.de, Cluster Computing SoSe 2023 8-59

Kohonen Networks

Mapping

Processor graph Program graph

Barry Linnert, linnert@inf.fu-berlin.de, Cluster Computing SoSe 2023 8-60

Kohonen Networks

Selection of a point (stimulus)....

Barry Linnert, linnert@inf.fu-berlin.de, Cluster Computing SoSe 2023 8-61

Kohonen Networks

reaction of network....

Barry Linnert, linnert@inf.fu-berlin.de, Cluster Computing SoSe 2023 8-62

Kohonen Networks

repeated stimulation of network....

Barry Linnert, linnert@inf.fu-berlin.de, Cluster Computing SoSe 2023 8-63

Kohonen Networks

...after many thousand steps

Barry Linnert, linnert@inf.fu-berlin.de, Cluster Computing SoSe 2023 8-64

Kohonen Networks:
Voronoi decomposition

Barry Linnert, linnert@inf.fu-berlin.de, Cluster Computing SoSe 2023 8-65

Real Example

FEM graph with 44663 vertices parallel computer with 64x64 nodes

Barry Linnert, linnert@inf.fu-berlin.de, Cluster Computing SoSe 2023 8-66

Course of the mapping

8-67Barry Linnert, linnert@inf.fu-berlin.de, Cluster Computing SoSe 2023

Topological process

Course of the mapping

8-68Barry Linnert, linnert@inf.fu-berlin.de, Cluster Computing SoSe 2023

Topological process

Development of load distribution

References

• Arnold L. Rosenberg: GRAPH EMBEDDINGS 1988: Recent
Breakthroughs, New Directions. 3rd Aegean Workshop on Computing
1988: 160-169

• B. Monien, H. Sudborough: Embedding one Interconnection Network
in Another. Computing Suppl. 7, 1990, pp. 257-282, 1990.

• Mee Yee Chan. Embedding of grids into optimal hypercubes. SIAM
Journal on Computing, 20(5):834-864, October 1991.

• Kohonen,T.: Self-Organization and Associative Memory. Springer-
Verlag Berlin, 3rd edition (1989)

• H. Ritter, T. Martinetz, K. Schulten: Neural Computation and Self-
Organizing Maps, Addison-Wesley, 1992

• Dormanns,M.; Heiss,H.-U.: Partitioning and Mapping of Large FEM-
Graphs by Self-Organization. Proc. 3rd Euromicro Workshop on
Parallel and Distributed Processing, San Remo, 25.-27.Jan. 1995, S.
227-235.

• Heiss, H.-U.; Dormanns, M.: Partitioning and Mapping of Parallel
Programs by Self-Organization. Concurrency - Practice and
Experience 8,9 (Nov. 1996) S. 685-706.

Barry Linnert, linnert@inf.fu-berlin.de, Cluster Computing SoSe 2023 8-69

	Foliennummer 1
	The Mapping or Embedding Problem
	Graph Embedding
	8.1 Definitions
	More Definitions
	More Definitions
	More Definitions
	Example for an embedding
	Example for an embedding
	Example for an embedding
	Graph isomorphism
	8.2 Injective Embedding
	Binary tree as guest graph
	2D-mesh as guest graph
	2D-mesh as guest graph: �step embedding
	2D-mesh as guest graph: folding
	Further examples
	8.2.2 Irregular Graphs
	8.3 Contractive embedding
	8.3.1 Contraction and �contraction graph
	Contraction graph
	Example
	Example
	Contractive allocation
	Alternative approach
	Example
	8.3.2 Graph partitioning
	Kernighan-Lin-Algorithm
	Kernighan-Lin-Algorithm
	Kernighan-Lin-Algorithm
	Example
	Example
	Example
	Kernighan-Lin-Algorithm 1
	Kernighan-Lin-Algorithm 2
	Example
	Example
	Example
	Example
	Example
	Example
	Example
	Example
	Example
	Example
	Partitioning in Practice
	Recursive Bisectioning
	8.4 Selforganizing Maps
	Self organization in the human brain
	Kohonen Networks
	Examples for Self-Organizing Maps
	Structure of a Kohonen Network
	Structure of a Kohonen Network
	Structure of a Kohonen Network
	Kohonen‘s Approximation
	Excitation and Adaptation
	Excitation in neighborhood
	Kohonen Algorithm
	Application to Mapping Problem
	Kohonen Networks
	Kohonen Networks
	Kohonen Networks
	Kohonen Networks
	Kohonen Networks
	Kohonen Networks: �Voronoi decomposition
	Real Example
	Course of the mapping
	Course of the mapping
	References

