
Chapter 8

The Mapping Problem



The Mapping or Embedding Problem

• We assume the allocation at program level has already taken place 
and a partition of the processor network has been allocated to each 
program. 

• Now we have to determine, which process is placed onto which 
processor.

• If the program is given as a communication graph (TIG), then we 
have to find a mapping of the TIG to the processor connection 
graph (PCG).

• In an ideal case both TIG and PCG match (graph isomorphism).
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Embedding

Parallel program Parallel machine

Placement of threads to processors =
Embedding of thread interaction graph into 
processor connection graph 

Threads are placed so that messages between them get 
only short delay (short distance).
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8.1 Definitions

• Given two graphs G = (VG,EG) and H = (VH,EH) with unit edge 
weight. 

• An embedding of G into H is a mapping of nodes of G (guest 
graph) to the nodes of H (host graph) together with a 
mapping of the edges of G to paths of H.

• Formally: θ = (pV, pE) with

such that

• θ = (pV, pE) is called injective (one-to-one-embedding), if pV
is injective.

• Otherwise θ = (pV, pE) is called contractive (many-to-one-
embedding). 
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More Definitions

• The number of guest nodes that are mapped to a host node v
∈VH is called load factor of v: lf(v).

• The maximum of load factors over all nodes VH is called load 
factor of the embedding:

Injective embeddings have a load factor of lf=1.
• Edges in G (e ∈EG) are mapped to paths in H. The edge set of 

such a path is called E(πE(e)), the node set V(πE(e)), the 
set of internal nodes (i.e. without start and end node) is 
denoted as VI(πE(e)).

• The length, i.e. the number of edges of a path to which an 
edge e∈EG is mapped, is called dilation of edge dil(e).

• The dilation of the embedding θ is the maximum of all edge 
dilations:
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More Definitions

• With an embedding, multiple paths πE (e), e ∈EG can be routed 
across the same link e‘∈EH. The number of these paths is 
called edge congestion of e‘:

• Analogously, we define the vertex congestion as the number 
of paths that have this vertex as an inner node:

• Correspondingly, we define the edge and vertex congestion 
of the embedding as:
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More Definitions

• The expansion of an embedding is the ratio of the node 
numbers of host and guest graph:

• An embedding with a high expansion allows for better 
dispersion of the paths and therefore leads to smaller edge 
and vertex congestions. 

• The cardinality of an embedding card(θ) is the number of 
edges e∈EG , that are one-to-one mapped to edges e‘∈EH .
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Example for an embedding
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Guest graph G (program) Host graph H (machine)
(3D hypercube)

dil(θ)=?, econg(θ)=?, vcong(θ)=?, expansion(θ)=? and card(θ)=?
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Example for an embedding
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v1 v2

v3

v4

v5 v6

Guest graph G (program) Host graph H (machine)
(3D hypercube)

Example for an embedding θ with dil(θ)=2, econg(θ)=2, 
vcong(θ)=2, expansion(θ)=4/3 and card(θ)=4
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Graph isomorphism

• An embedding θ= (πV, πE) is called an isomorphism, if πV as 
well as πE are bijective and the following holds:

• Are the following graphs isomorphous?

• Remark: The graph isomorphism problem (checking, whether  
two graphs are isomorphous) is in class NP. It is still open, 
whether it is NP-complete.
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8.2 Injective Embedding

8.2.1 Regular Graphs
• The graph embedding problem is still subject of research. 
• Especially for regular graphs (e.g. trees, meshes, hypercubes 

as guest and host graph) a multitude of solutions is known.
• The goal is usually to find an embedding with minimal 

dilation and/or minimal expansion.
• In some cases optimal embeddings are known, sometimes 

lower bounds can be specified. 
• In the following, some results for 2D-meshes as host graphs 

will be represented. 
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Binary tree as guest graph

• The usual mapping is the so-called H-embedding (down left).
• The dilation increases linearly with the height h of the tree to be 

embedded.
• Vertex congestion=0, edge congestion=1, cardinality= 2h+2h-1.
• The expansion goes to 2 for h → ∞.
• A slight improvement is possible by squashing it along one dimension 

(bottom right):
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2D-mesh as guest graph

• With regard to the rectangular mesh b x h to be embedded, 
the quadratic mesh of side length s is called

ideal, if 

almost ideal, if

• Each rectangular mesh can be embedded in an almost ideal 
quadratic mesh with dil ≤ 3.

• Embeddings with dil =2 are possible, but only with higher 
expansion.

• In the following, we assume w.l.o.g. b ≤ h. Let ρ := h/b define 
the height-breadth-ratio of the rectangle to be embedded.
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2D-mesh as guest graph: 
step embedding

• The step embedding starts with the first line of the source graph and 
turns right, as soon as it hits the border or nodes already used.

• The side length of the required square is
• For the expansion holds: 
• The dilation is dil=3.
• With a small modification we achieve that more edges are dilated but 

the dilation does not exceed 2. 
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2D-mesh as guest graph: folding

• The rectangle is folded along the longer side in serpentine 
lines into the host graph. At the folding points, a smart layout 
ensures that a dilation of 2 is not exceeded. 

• The folding needs a side length of                     and achieves 
a dilation of dil =2 at an expansion of
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Further examples
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8.2.2 Irregular Graphs

• If only one of the two graphs, guest or host graph, is 
irregular, i.e. it does not belong to a graph family, then the 
embedding problem is in most cases NP-complete.

• To find a solution, we have to apply heuristic algorithms, e.g. 
dedicated heuristics or general approaches like Simulated 
Annealing, Genetic Algorithms, Taboo-search,…
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8.3 Contractive embedding

• If more threads are to be mapped than processors are 
available, then we have to contract (group, cluster) some 
threads that will be mapped to the same processor. 

• Those threads should be grouped that intensively 
communicate with each other. 

• The allocation should also try to achieve that all processors 
receive roughly the same workload (e.g. #threads, #machine 
instructions).

• Constraints concerning memory capacity can be considered.  
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8.3.1 Contraction and 
contraction graph

• Let be G=(V, E ) a graph and k a positive integer number.
• A k-partitioning P of a graph is a non-void, exhaustive set of pair 

wise disjoint subsets of V:
• P = {V1, V2,..., Vk}, Vi ⊆ V with

• A partitioning decomposes the graph into subgraphs Gi =(Vi, Ei) :

The edge sets Ei are called internal edges of the respective 
partition.

• Edges that connect vertices of different partitions are called cutting 
edges:
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Contraction graph

• Let P = {V1, V2,..., Vk} be a k-partitioning of a graph G=(V,E).
• The corresponding contraction graph GP=(V‘,E‘) consists of one 

vertex for each partition and edges for any two partitions, if these 
partitions are connected by edges in G:

• Vertex weights of the contraction graph are built by summing up 
over the vertices contracted:

• Edge weights of the contraction graph are given by the weights of 
the cutting edges:
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Example

Graph with
5-partitioning

Corresponding
contraction graph ?
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Example

Graph with
5-partitioning

Corresponding
contraction graph
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Contractive allocation

A contractive allocation may consist of two steps :
1. Solving the contraction problem (k-partitioning), where k

denotes  the number of available processors. The goal is a 
balanced partitioning with minimal cut costs (edge weights).

2. Embedding the contraction graph into the processor graph, 
i.e. injective allocation of the thread groups to the processors. 
The goal is an embedding e.g. with minimal dilation (measure 
for the maximum latency of inter-thread communication).

Both optimization problems are in general NP-complete. 
Therefore, we have to resort to heuristic approaches.
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Alternative approach

• Instead of proceeding indirectly and first conduct a 
partitioning, we could directly calculate contractive 
allocation.

• The indirect approach holds the danger of some loss of 
optimality since the topology of the processor graphs is 
not considered in the partitioning.
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8.3.2 Graph partitioning

• The balanced k-partitioning of a graph with minimal cut costs 
is NP-complete.

• Only for special problem instances there are efficient 
algorithms:
• The bipartitioning of a graph with minimal cut costs can be 

performed using flow algorithms (Max-Flow-Min-Cut-Algorithm) in 
O(n m2) 
(with n = number of nodes and m = number of edges).

• In addition, there are some heuristic approaches that perform a 
bipartitioning recursively. By doing so, the k-partitioning 
problem can be solved for k = 2i efficiently (but not optimally).
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Kernighan-Lin-Algorithm

• A frequently employed algorithm for bipartitioning goes back 
to Kernighan-Lin (1970):

• Starting point is a feasible (=balanced) initial partitioning. By 
pair wise exchange based on the method of probing paths, we 
try to improve the cut costs

• Given: Graph with 2m vertices and edge weights.
• Goal: two equally sized partitions X and Y with minimal cut 

costs:
( ) ( ) minv,u:Y,X

Yv,Xu
→γ=Γ ∑

∈∈
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Kernighan-Lin-Algorithm

• Let be v∈X
• The internal costs I(v) of a vertex are the weights of all edges 

between v and other vertices of the same partition:

• The external costs E(v) of a vertex are the weights of all 
edges that connect v with a vertex of the other partition 
(cutting edges):

• As difference costs of v we define D(v) = E(v)-I(v).

( ) ( ) ( )∑
∈
γ=Γ=

Xu
u,vX,vvI

( ) ( ) ( )∑
∈
γ=Γ=

Yu
u,vY,vvE
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Kernighan-Lin-Algorithm

Lemma:
• Let be u∈X, v∈Y. If u and v are exchanged, we obtain a gain 

g = D(u) + D(v) - 2 γ(u,v)

• Proof:
Let be z the cut costs minus all edges incident with u or v. 
Then the whole cut costs are

Γ(X,Y)  = z + E(u) + E(v) - γ(u,v).
After exchange of u and v we obtain

Γ(X‘,Y‘) = z + I(u) + I(v) + γ(u,v).
Taking the difference yields

g = ∆Γ = E(u) + E(v) - γ(u,v)
–(I(u) + I(v) + γ(u,v)) 

=D(u) + D(v) - 2 γ(u,v)
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Example
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Example
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γ(u,v) = 5
E(u) = 3+5 = 8
I(u) = 6
D(u) = 2
E(v) = 5+7 = 12
I(v) = 4+8 = 12
D(v) = 0
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Kernighan-Lin-Algorithm 1
1 mincut(Xin,Yin,Xout,Yout)

2 X ← Xin; Y ← Yin Init. balanced bipartitioning
3 G ← ∞ Initialize gain
4 while G > 0 do Search as long as we achieve
5 X'← X an improvement
6 Y'← Y Auxiliary variable to store
7 for i ← 1 to m do temporary node movements
8 for all v∈V, v unmarked do

9 calculate D[v] resp. X',Y' Calculation of difference costs
10 end for

11 for all (u,v) unmarked, u∈X',v∈Y'do Calculation of gain when
12 g[u,v] ← D[u] + D[v]- 2 γ[u,v] exchanging u and v
13 end for

14 g[i] ← max{g[u,v]} Storing  and marking of that pair 
15 (u*[i],v*[i])←(u*,v*) with max{g[u,v]} the exchange of which maximizes

16 mark u*,v* the gain.
17 X' ← X' -{u*[i]}∪ {v*[i]} Temporary exchange of marked pair
18 Y' ← Y' -{v*[i]}∪ {u*[i]}

19 end for
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Kernighan-Lin-Algorithm 2
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20 G[k] ← (k =0,...,n)

Series of m exchange pairs is found. 
(X'=Y, Y'=X)
G[k] indicates the gain accumulated 
over the first k exchange steps

21 k* ← min k with max {G[k]} With k* a subsequence optimal with 
regard to the initial partitioning 

22 G ← G[k*] has been found
23 if G > 0 Exchange steps are performed only if
24 then it pays off
25 X←X-{u*[1],..,u*[k*]}∪{v*[1],.,v*[k*]} Factual exchange
26 Y←Y-{v*[1],..,v*[k*]}∪{u*[1],.,u*[k*]}

27 end then

28 end while Further exchange steps do not lead 
to any improvement (G=0), 

29 Xout ← X Algorithm stops.
30 Yout ← Y

31 end mincut

[ ]∑
=

k

j
jg

1



Example

• With the given initial partitioning (red) the 
algorithm finds the optimal solution (green) after 2 
executions of the while-loop.
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Example

• With the given initial partitioning (red) the 
algorithm finds the optimal solution (green) after 2 
executions of the while-loop.
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Example

• With the given initial partitioning (red) the 
algorithm finds the optimal solution (green) after 2 
executions of the while-loop.
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Example

• With the given initial partitioning (red) the 
algorithm finds the optimal solution (green) after 2 
executions of the while-loop.
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Example

• With the given initial partitioning (red) the 
algorithm finds the optimal solution (green) after 2 
executions of the while-loop.
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Example

• With the given initial partitioning (red) the 
algorithm finds the optimal solution (green) after 2 
executions of the while-loop.
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Example

• With the given initial partitioning (red) the 
algorithm finds the optimal solution (green) after 2 
executions of the while-loop.
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Example

• With the given initial partitioning (red) the 
algorithm finds the optimal solution (green) after 2 
executions of the while-loop.
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Example

• With the given initial partitioning (red) the 
algorithm finds the optimal solution (green) after 2 
executions of the while-loop.
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Example

• With the given initial partitioning (red) the 
algorithm finds the optimal solution (green) after 2 
executions of the while-loop.
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Partitioning in Practice
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• In practice, the graphs to be embedded are often Finite-Element-
Graphs or Finite-Volume-Graphs that result from a triangulation with 
non-uniform density.

• Often, there is no explicit embedding (mapping), but the partitions 
are assigned to the processors in a random way.



Recursive Bisectioning

• The following example shows that even if the geometric 
structure of the graph matches the topology of the processor 
network, longer communication paths will develop. 

• The white and the black partition are adjacent, but are 
mapped to rather distant nodes. 
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Recursive Bipartitioning 



8.4 Selforganizing Maps

• The communication graph (TIG) of a program has to be 
mapped to the processor graph such that neighborhood 
relations are preserved.

• What we need is a topology preserving mapping.
• A bijective mapping π between two topological spaces A and B 

with metrics dA and dB is called topology preserving or 
Homeomorphismus, iff:

• A topology preserving mapping can be obtained approximately 
by selforganizing maps, an application of Kohonen 
networks.

( ) ( ) ( )( ) Ay,xy,xdy,xd BA ∈∀ππ=
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Bear, Connors & Paradiso (2001). 
Neuroscience: Exploring The Brain. 
p. 474.
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Kohonen Networks

• Self-organizing Maps (SOM)
• Developed by T. Kohonen (Helsinki)
• Mathematical model to explain the selforganization of brain 

cells
• Adjacent brain cells are responsible for stimulus processing of 

adjacent areas of the skin. 
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Examples for Self-Organizing Maps

Barry Linnert, linnert@inf.fu-berlin.de, Cluster Computing  SoSe 2023 8-51



Structure of a Kohonen Network
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Interconnection Network
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Structure of a Kohonen Network

• A Kohonen Network is a layer of n neurons 
connected by some network.

• Between neurons a distance function d(i,k) is 
defined.

• Each neuron is attached to each of the m inputs 
that are associated with a specific weight wij .

• If we have a signal x at the input, each neuron i
calculates the weighted sum

8-53Barry Linnert, linnert@inf.fu-berlin.de, Cluster Computing  SoSe 2023

∑
=

m

j
jij xw

1



Structure of a Kohonen Network

• The output signal of a neuron is given by:

• The weights gki are such that they are stimulating for small 
distances and inhibitory for larger distances.

• fs is a sigmoid switching function, that approaches 1 for 
x→∞ and 0 for x→-∞.
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Kohonen‘s Approximation

• Kohonen describes the behavior of the network approximately:
• The neuron i*, whose weighted input signal is maximum, is called 

center of excitation. 

• If we normalize the weights, we can also write:

with

• Depending on the weights, a mapping is defined that assigns each 
input signal x a place (neuron) i*:

∑∑
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Excitation and Adaptation

*iw

( )new old old
i i i*,i iw w h x wε= + ⋅ ⋅ −
   

π

i*

x

Vector space of 
Input signals

Neural network

Learning rule:

iw
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Excitation in neighborhood

• In the neighborhood of the center, the excitation decreases 
with the distance.

• As function usually the bell-shaped Gaussian density curve is 
used:
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Kohonen Algorithm

• In a loop the input signals (stimuli) x are generated following 
some probability distribution p(x) which stimulates the 
network that adapts its weights accordingly.
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0 Kohonen-Algorithm

1 initialize wji Random selection of initial 
weights

2 while (not stopping_condition) do Main loop

3 select according to Stimulus selection

4 determine i* with Center of excitation

5 Adaptation of weights

6 end while

7 end

Xx ∈
 ( )xp 

xwminxw i
n

i*i


−=−
=1
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Application to Mapping Problem

• The processors and their interconnection links are the 
Kohonen network.

• The program graph to be mapped generates the input signals.
• Both graphs are being represented in the same geometric 

area.
• In each step a node of the program graph is offered an input 

signal
• This way the processor graph unfolds in the program graph.
• (Principally also the opposite direction is possible.)
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Kohonen Networks

Mapping

Processor graph Program graph
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Kohonen Networks

Selection of a point (stimulus)....
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Kohonen Networks

reaction of network....
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Kohonen Networks

repeated stimulation of network....
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Kohonen Networks

...after many thousand steps
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Kohonen Networks: 
Voronoi decomposition

Barry Linnert, linnert@inf.fu-berlin.de, Cluster Computing  SoSe 2023 8-65



Real Example

FEM graph with 44663 vertices parallel computer with 64x64 nodes
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Course of the mapping
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Course of the mapping

8-68Barry Linnert, linnert@inf.fu-berlin.de, Cluster Computing  SoSe 2023

Topological process

Development of load distribution
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