
Chapter 7

Qualitative Partitioning



7.1 Properties and Assumptions

• Given: Set of parallel programs A;
Processor connection graph (P, EP)

• Goal: Mapping from A to subsets of processors P 

with

i.e. the territories ϕ(Ai) are pairwise disjoint
and
high utilization at low communication cost

7-2Barry Linnert, linnert@inf.fu-berlin.de, Cluster Computing  SoSe 2023

( )PA ℘→ϕ :

( ) ( ) ∅=ϕ∩ϕ⇒≠∈∀ kiki AAkiAAA :,



Other Notions

• A territory is called contiguous, if the corresponding 
subgraph is connected.

• Otherwise, the territory is called non-contiguous.

• If all territories are contiguous, than the allocation ϕ is called 
contiguous. 

• Contiguous, pairwise disjoint territories are called partitions 
(pieces).

7-3Barry Linnert, linnert@inf.fu-berlin.de, Cluster Computing  SoSe 2023



Example of a Partitioning

Barry Linnert, linnert@inf.fu-berlin.de, Cluster Computing  SoSe 2023 7-4



Fragmentation

• Allocating parts of a processor network as contiguous pieces 
leads to fragmentation. 

• Internal fragmentation:
The piece allocated is larger than requested. A fraction of the 
allocated processors will not be used. 

• External fragmentation:
In the course of allocations and releases small free pieces are 
generated that cannot be allocated due to their small size. 

Barry Linnert, linnert@inf.fu-berlin.de, Cluster Computing  SoSe 2023 7-5



Fixed Partitioning: Example

external fragmentation

A 64-node computer may have a 
fixed partitioning as indicated 
below.

One after another some request 
(programs) of sizes 12, 10, 4, 6, 
and 9 are arriving. The last 
request cannot be satisfied.

internal fragmentation

in use

Barry Linnert, linnert@inf.fu-berlin.de, Cluster Computing  SoSe 2023 7-6



Further Assumptions

• Restriction to grid- or mesh architectures
• Management of a spatially sharable resource. 
• Generalization of management mechanisms known from memory 

management (one-dimensional) to 2D or 3D.
• Recap: Memory management

• Dynamic case
• We assume the resource (processor mesh) is already partially 

occupied and we have to process requests for free contiguous 
partitions.

• Distinction
• Scalar request: The request consists of a number (of 

processors).
• Formed request: The request indicates a rectangle with some 

breadth and height (b,h).

Barry Linnert, linnert@inf.fu-berlin.de, Cluster Computing  SoSe 2023 7-7



7.2 Tailored Allocations

• The allocated partition meets the request exactly. No internal 
fragmentation. 

7.2.1 Indicator based allocation
From memory management we know indicator based 

management:

Each available unit is represented by a bit indicating free (=0) 
or occupied (=1).

1 1 1 1 0 1 0 0 0 1 1 1 1 0 0 1 0 0 0 0

Barry Linnert, linnert@inf.fu-berlin.de, Cluster Computing  SoSe 2023 7-8



Selection procedure

• First-fit
Sequential scan of the bit vector. First sufficiently large piece 
will be selected. 

• Next-fit
Like First-fit, but a new scan starts at the position where the 
last scan was successful. Cyclic scan of vector. 

• Best-fit
Instead of taking the first piece that fits, we scan the 
complete vector to find the smallest piece large enough to fit 
the request. 

Barry Linnert, linnert@inf.fu-berlin.de, Cluster Computing  SoSe 2023 7-9



2D-Resource (Processor mesh)

• Indicators as matrix
• Request as rectangle b x h
• Scan of matrix row by row from left to right

7-10Barry Linnert, linnert@inf.fu-berlin.de, Cluster Computing  SoSe 2023

0 1 1 0 1 1

0 1 1 0 0 0

0 0 1 1 0 0

0 0 0 0 0 0

0 1 1 1 1 0

0 1 1 1 1 0

Size of requested partition



7.2.2 List-based Management

• Free pieces are kept in a list
• Sorting according to several criteria

• Position
• Size:

• Area (no. of processors)
• Breadth
• Height

• Problem:
Occupied partitions are well defined, 
free partitions not. 

7-11Barry Linnert, linnert@inf.fu-berlin.de, Cluster Computing  SoSe 2023



Decomposition into 
disjoint rectangles

• Which decomposition is better?

7-12Barry Linnert, linnert@inf.fu-berlin.de, Cluster Computing  SoSe 2023

Question can only answered if we know what typical requests look like.



Disjoint free pieces: 
allocate and release

• Allocation simply means the search for a sufficiently large 
rectangle.

• After a release, a merger with free adjacent partitions should 
be performed. 

• This is possible, if the two adjacent partitions have one 
dimension in common:

7-13Barry Linnert, linnert@inf.fu-berlin.de, Cluster Computing  SoSe 2023



Merger of free partitions

• Further expansion of free partitions would only be possible at 
the expense of other partitions..

• Whether this makes sense depends on the statistical 
properties of the requests.

7-14Barry Linnert, linnert@inf.fu-berlin.de, Cluster Computing  SoSe 2023



Overlapping free partitions

• When managing overlapping free partitions, we have to accept 
a higher management overhead, but we get all possible 
partitions and do not need to restrict to a particular 
decomposition. 

7-15Barry Linnert, linnert@inf.fu-berlin.de, Cluster Computing  SoSe 2023



Allocation for 
overlapping free partitions

• For an allocation the involved free partitions have to be 
changed:

7-16Barry Linnert, linnert@inf.fu-berlin.de, Cluster Computing  SoSe 2023



Release for 
overlapping free partitions

• Expansion of released partition to all possible directions:

7-17Barry Linnert, linnert@inf.fu-berlin.de, Cluster Computing  SoSe 2023



Release for 
overlapping free partitions 2

• The adjacent free partitions can be expanded as well.
• Identical free partitions that may be generated have to be 

deleted.

Barry Linnert, linnert@inf.fu-berlin.de, Cluster Computing  SoSe 2023 7-18



7.2.3 Shaping of scalar requests

• If a request does not specify a rectangle, but only a number 
(area), we have a new degree of freedom: We have to shape 
a rectangle of appropriate size. 

• Without further knowledge of the program‘s properties 
(communication behavior) a „compact“ partition is usually 
better than a narrow one.

• Internal fragmentation may be generated. 

7-19Barry Linnert, linnert@inf.fu-berlin.de, Cluster Computing  SoSe 2023

Three possible allocations for a request of size 13. 



Shaping Problem

• Given: Request of size a
• Goal: find a rectangle with b⋅h ≥ a which 

• is compact
• has low internal fragmentation 

• Compactness: Small diameter of rectangle to ensure low 
communication latencies. 
• Minimal diameter
• Aspect ratio (breadth-height-ratio) of 1 (square)

Barry Linnert, linnert@inf.fu-berlin.de, Cluster Computing  SoSe 2023 7-20



Finding an optimal rectangle

• All sufficiently large 
rectangles lie to the 
right and above the 
hyperbola.

• On the lines L we 
find all rectangles 
with the same 
diameter. 

• s is side length of 
nearest larger 
square.

• As intersection 
points of L with the 
hyperbola we find

7-21Barry Linnert, linnert@inf.fu-berlin.de, Cluster Computing  SoSe 2023

21 1
2 4b s s s a= − + − + −

Height h

h = b

b

Hyperbola b⋅h = a 

L2: h=2s-b-1

Breadth b

L1: h=2s-b



Shaping algorithm

7-22Barry Linnert, linnert@inf.fu-berlin.de, Cluster Computing  SoSe 2023

1 shape(in:a, out:b,h)

2 Side length of sufficiently large square.
3 if a = s ⋅ s If a is a square number,
4 then

5 h ← s optimal shape has been found
6 b ← s and procedure stops. 
7 else Otherwise
8 Breadth b1 and corresponding
9 height are calculated
10 if

11 then If also line L2 intersects with hyperbola
12 Breadth b2 and corresponding height
13 are calculated
14 if The rectangle with the smaller area is
15 then selected. In case of equality we pick
16 else (b2,h2) due to its smaller diameter
17 else If line L2 does not intersect,   (b1,h1)  is a unique

solution.
18 end

s a ←  

2
1b s s a ← + −  

1 1h a / b←   
2 1 4 0s s / a− + − ≥

2
2 1 2 1 4b s / s s / a ← − + − + −  
2 2h a / b←   

2 2 1 1b h b h⋅ ≤ ⋅

2 2b b ; h h← ←

1 1b b ; h h← ←

1 1b b ; h h← ←



Example

• Scalar request of size a = 82
• Rounding to the nearest larger square number yields side length

s=10
• Algorithm delivers:

• b1 = 14, h1 = 6
• b2 = 12, h2 = 7

• Rectangle 12 x 7 is chosen (due to smaller diameter)

Barry Linnert, linnert@inf.fu-berlin.de, Cluster Computing  SoSe 2023 7-23



7.3 Buddy systems

• Tailored allocation avoids internal fragmentation but 
means overhead for finding the best partition. 

• From memory management we know algorithms with 
constant complexity (O(1)).

• The so-called Buddy system adapts its offer of free 
partitions to the request profile. 

• Recap: Binary Buddy in Memory Management

Barry Linnert, linnert@inf.fu-berlin.de, Cluster Computing  SoSe 2023 7-24



2D-Buddy-System

• Assumption: Prozessor mesh 2n x 2n

• Variant: Dividing simultaniously in both dimensions

7-25Barry Linnert, linnert@inf.fu-berlin.de, Cluster Computing  SoSe 2023



2D-Buddy-System

• Variant: Dividing independently in both dimensions

7-26Barry Linnert, linnert@inf.fu-berlin.de, Cluster Computing  SoSe 2023



2D-Buddy-System

• Variant: Dividing the area

7-27Barry Linnert, linnert@inf.fu-berlin.de, Cluster Computing  SoSe 2023



Calculation of fragmentation

• Assumption: request uniformly distributed from [1, 2n].

7-28Barry Linnert, linnert@inf.fu-berlin.de, Cluster Computing  SoSe 2023

Variant 1 Variant 2 Variant 3

Internal
fragmentation

1 - 7/12  (42%) 1 - 9/16 (44%) 1 - 3/4 (25%)



7.4 Hilbert curve - SLURM

• SLURM workload manager is a widely used resource 
management system for HPC systems

• SLURM implements tailored partitioning
• First fit approach over vector of nodes (indicator bases 

management)

• Mapping extensions to consider architecture and 
topology of the machine:
• Order nodes following Hilbert curve for mesh/grid 

topologies
• Default configuration for 3- or multi-dimensional topologies

7-29Barry Linnert, linnert@inf.fu-berlin.de, Cluster Computing  SoSe 2023



SLURM – Example

7-30Barry Linnert, linnert@inf.fu-berlin.de, Cluster Computing  SoSe 2023



7.5 Non-contiguous Allocation

• The allocation of contiguous partitions generates internal 
fragmentation and also substantial external fragmentation.

• The utilization could be improved if we could satisfy a larger 
request with a set of some smaller free partitions. 

• Non-contiguous allocation can be used complementary to 
contiguous allocation, when, e.g., a contiguous allocation fails. 

• The decomposition of the parallel program into non-
contiguous small partitions is influenced by two aspects:
• Communication oriented decomposition:

The communication graph TIG – if available – is decomposed  
according to its edge weights such that we obtain components 
with only little communication in between. 

• Fragmentation oriented decomposition:
The decomposition is governed by the offer of free partitions. 

Barry Linnert, linnert@inf.fu-berlin.de, Cluster Computing  SoSe 2023 7-31



7.5.1 Decomposition of the 
communication graph

To decompose a parallel program according to the free partitions 
currently available, we use a recursive hierarchic clustering 
scheme:

1. Sort the edges of the graph according to decreasing edge 
weights. 

2. For initialization, all m nodes make up single-element 
clusters.

3. Step by step clusters are being merged that are connected by 
the heaviest edge not yet considered. 

4. The algorithm stops when all nodes have been merged to one 
single cluster. 

7-32Barry Linnert, linnert@inf.fu-berlin.de, Cluster Computing  SoSe 2023



Communication graph (TIG)

1

2 3

4

56

5

7

14

8

6

9 3

5
6

1

5

1 6 2 4 5 3Level Cluster

1

2

3

4

5

6

1G 2G 5G4G6G

7G

8G

9G

10G

11G

3G1G 2G 5G4G6G 3G

1G 5G6G 3G7G

5G 3G7G8G

3G8G 9G

8G 10G

11G

Dendrogram:

5

7

14

8

6

9 3

5
6

1

5

2 3

4

56

1

Clustering

Barry Linnert, linnert@inf.fu-berlin.de, Cluster Computing  SoSe 2023 7-33

Example



7.5.2 Fragmentation oriented 
decomposition

• Assumption: 
• Rectangular requests
• List-based management of free partitions

• Based on a list-based approach that sorts free partitions 
according to breadth and height as well, we can formulate an 
algorithm:
• Find a free partition that satisfies the request in one dimension. 
• Cut the fitting piece and search for a free partition for the 

remainder of the request.  
• Continue recursively until the request is satisfied.  

Barry Linnert, linnert@inf.fu-berlin.de, Cluster Computing  SoSe 2023 7-34



Example

request allocation situation

(a)

rest of request new allocation situation

(b)

final  allocation situation

(c)
Barry Linnert, linnert@inf.fu-berlin.de, Cluster Computing  SoSe 2023 7-35



Example

request allocation situation

(a)

final allocation situation

(d)

(b)

rest of request allocation situation

(c)

rest of request allocation situation

Barry Linnert, linnert@inf.fu-berlin.de, Cluster Computing  SoSe 2023 7-36



7.5.3 Tree oriented Buddy-system

• Partitions are generated by cutting into halves.
• Allocation situation is represented by a binary tree.
• Each node (in tree) represents a dynamically 

generated partition and indicates the number of its 
free processors.

• Internal nodes represent partially occupied 
partitions.

• Leaf nodes represent partitions that are either 
completely free or completely occupied. 

7-37Barry Linnert, linnert@inf.fu-berlin.de, Cluster Computing  SoSe 2023



Example of an allocation situation

4x4

2x2

2x22x2

1x1

1x1 1x1

1x1

b

p

p

p p

p f

p p

b f b f

0

4

0 1 0 1

1 1

2 4

6

10

10

f b4 0

allocation situation in a 4x8-mesh

Correponding data structure:

b: occupied

f:  free

p: partially occupied

Numbers indicate the number of 
free processors

Barry Linnert, linnert@inf.fu-berlin.de, Cluster Computing  SoSe 2023 7-38



Example

b

p

p

p p

p f

p p

b f b f

0

4

0 1 0 1

1 1

2 4

6

10

10

f b4 0

(1,6,2,4,5,3)

(1,6,2,4,5,3)

(1,6,2,4,5,3)

(2,4,5,3)(1,6)

(1) (6)

(1) (6)

1 2 4

6 3 5

Allocation for request from 
slide 31 (size 6)

Resulting allocation and  
placement of processes

Barry Linnert, linnert@inf.fu-berlin.de, Cluster Computing  SoSe 2023 7-39



Simulation results

Algorithm Total 
runtime

Internal 
fragment.

External
fragment.

Utilization

Contiguous allocation
List-based disjoint 86 0 24% 76%
Buddy 118 37% 7% 56%
Fibonacci Buddy 147 22% 33% 45%

Non-contiguous allocation
Tree-based Buddy v=1 71 0% 7% 93%
Tree-based Buddy v=1.5 72 5% 4% 91%

Machine: 64x64 Processor mesh 

Requests: Rectangles with side length equally distributed from [0,32]

Barry Linnert, linnert@inf.fu-berlin.de, Cluster Computing  SoSe 2023 7-40



Summary

• Static vs. dynamic partitioning
• Distribution of requests known?

• Tailoring vs. Standard sizes
• Buddy-System shows smaller external fragmentation 

(<10%) than list-based management (20-40%).
• Due to high internal fragmentation (>25%), the total 

utilization of buddy-system usually worse. 
• The low algorithmic complexity of buddy-system does not 

pay off with processor numbers < 106.
• Contiguous vs. non-contiguous allocation

• Significantly better utilization with non-contiguous 
allocation (85-95%)

• Application runtime depending on communication intensity
• Appropriate for dynamic processor demands

7-41Barry Linnert, linnert@inf.fu-berlin.de, Cluster Computing  SoSe 2023



Further Reading

• Heiss, H.-U.; Wiesenfarth,R.: A Heuristic Algorithm for Dynamic Task 
Allocation in Highly Parallel Systems. in: H.P. Zima (ed.): Parallel 
Computation, Lect. Notes in Comp. Science No. 591, Springer (1992) 
pp. 252-265.

• Heiss, H.-U.: Processor Management in 2D-Grid Architectures: 
Buddy-Systems. GI-PARS-Reports Nr. 12 (Proc. Workshop „Fine-
grain and Massive Parallelism“, Dresden, 6.-8. April 1993), pp.14-23. 

• Heiss, H.-U.: Dynamic Partitioning of Large Scale Multicomputer 
Systems, Proc. Conf. on Massively Parallel Computing Systems 
(MPCS'94), Ischia, 2.-6. Mai, 1994 

• Bender, Michael A.; Bunde, David P. ; Demaine, Erik D.; Fekete, 
Sandor P.; Leung, Vitus J.; Meijer, Henk; Phillips, Cynthia A.: 
Communication-Aware Processor Allocation for Supercomputers, 
Proc. of the 9th Workshop on Algorithms and Data Structures 
(WADS), 2005

• De Rose, César A.F.; Heiss, Hans-Ulrich;  Linnert, Barry: Distributed 
dynamic processor allocation for multicomputers, Parallel Computing, 
Volume 33, Issue 3, April 2007, pp. 145-158

7-42Barry Linnert, linnert@inf.fu-berlin.de, Cluster Computing  SoSe 2023


	Foliennummer 1
	7.1 Properties and Assumptions
	Other Notions
	Example of a Partitioning
	Fragmentation
	Fixed Partitioning: Example
	Further Assumptions
	7.2 Tailored Allocations
	Selection procedure
	2D-Resource (Processor mesh)
	7.2.2 List-based Management
	Decomposition into �disjoint rectangles
	Disjoint free pieces: �allocate and release
	Merger of free partitions
	Overlapping free partitions
	Allocation for �overlapping free partitions
	Release for �overlapping free partitions
	Release for �overlapping free partitions 2
	7.2.3 Shaping of scalar requests
	Shaping Problem
	Finding an optimal rectangle
	Shaping algorithm
	Example
	7.3 Buddy systems
	2D-Buddy-System
	2D-Buddy-System
	2D-Buddy-System
	Calculation of fragmentation
	7.4 Hilbert curve - SLURM
	SLURM – Example 
	7.5 Non-contiguous Allocation
	7.5.1 Decomposition of the communication graph
	Example
	7.5.2 Fragmentation oriented decomposition
	Example
	Example
	7.5.3 Tree oriented Buddy-system
	Example of an allocation situation
	Example
	Simulation results
	Summary
	Further Reading

