Chapter 7

Qualitative Partitioning

-‘ U
Freie Universitat =
N

7.1 Properties and Assumptions

® Given: Set of parallel programs A;
Processor connection graph (P, Ep)

e (Goal: Mapping from A to subsets of processors P
0:A— p(P)
with
VA A eA: ik = olA)no(A)=

i.e. the territories ¢(A;) are pairwise disjoint
and
high utilization at low communication cost

Barry Linnert, linnert@inf.fu-berlin.de, Cluster Computing SoSe 2023 7_2

Other Notions Freie Universitat i z)

® A territory is called contiguous, if the corresponding
subgraph is connected.

® (QOtherwise, the territory is called non-contiguous.

e If all territories are contiguous, than the allocation ¢ is called
contiguous.

e Contiguous, pairwise disjoint territories are called partitions
(pieces).

Barry Linnert, linnert@inf.fu-berlin.de, Cluster Computing SoSe 2023 7_3

Freie Universitat () Berlin

Example of a Partitioning

b

I__-__-_

Barry Linnert, linnert@inf.fu-berlin.de, Cluster Computing SoSe 2023 7_4

Fragmentation

® Allocating parts of a processor network as contiguous pieces
leads to fragmentation.

e Internal fragmentation:

The piece allocated is larger than requested. A fraction of the
allocated processors will not be used.

e External fragmentation:

In the course of allocations and releases small free pieces are
generated that cannot be allocated due to their small size.

Barry Linnert, linnert@inf.fu-berlin.de, Cluster Computing SoSe 2023 7_5

Fixed Partitioning: Example Freie Universitat g

A 64-node computer may have a
fixed partitioning as indicated
below.

One after another some request
(programs) of sizes 12, 10, 4, 6,
and 9 are arriving. The last
request cannot be satisfied.

external fragmentation

. internal fragmentation . .
. in use

Barry Linnert, linnert@inf.fu-berlin.de, Cluster Computing SoSe 2023

Freie Universitat (St

Further Assumptions

® Restriction to grid- or mesh architectures
e Management of a spatially sharable resource.

e Generalization of management mechanisms known from memory
management (one-dimensional) to 2D or 3D.

e Recap: Memory management
® Dynamic case

e We assume the resource (processor mesh) is already partially
occupied and we have to process requests for free contiguous
partitions.

e Distinction

e Scalar request: The request consists of a number (of

processors).

e Formed request: The request indicates a rectangle with some
breadth and height (b,h).

Barry Linnert, linnert@inf.fu-berlin.de, Cluster Computing SoSe 2023 7_7

Freie Universitat G

7.2 Tailored Allocations

® The allocated partition meets the request exactly. No internal
fragmentation.

7.2.1 Indicator based allocation

From memory management we know indicator based
management:

Each available unit is represented by a bit indicating free (=0)
or occupied (=1).

Barry Linnert, linnert@inf.fu-berlin.de, Cluster Computing SoSe 2023 7-8

-‘ U
Freie Unversitat o

Selection procedure

® First-fit
Sequential scan of the bit vector. First sufficiently large piece
will be selected.

e Next-fit
Like First-fit, but a new scan starts at the position where the
last scan was successful. Cyclic scan of vector.

e Best-fit

Instead of taking the first piece that fits, we scan the
complete vector to find the smallest piece large enough to fit
the request.

Barry Linnert, linnert@inf.fu-berlin.de, Cluster Computing SoSe 2023 7_9

Freie Universitat (L Sl Ve

2D-Resource (Processor mesh)

® Indicators as matrix
® Request as rectangle b x h
® Scan of matrix row by row from left to right

Size of requested partition

Barry Linnert, linnert@inf.fu-berlin.de, Cluster Computing SoSe 2023 7_1 O

Freie Universitat (L Sl Ve

7.2.2 List-based Management

® Free pieces are kept in a list
® Sorting according to several criteria
e Position
e Sjze:
» Area (no. of processors)

» Breadth
* Height

e Problem:
Occupied partitions are well defined,
free partitions not.

Barry Linnert, linnert@inf.fu-berlin.de, Cluster Computing SoSe 2023 7_11

Decomposition into
disjoint rectangles

Freie Universitat G(L$

® Which decomposition is better?

Question can only answered if we know what typical requests look like.

Barry Linnert, linnert@inf.fu-berlin.de, Cluster Computing SoSe 2023

7-12

Disjoint free pieces:
allocate and release

Freie Universitat (L Sl Ve

® Allocation simply means the search for a sufficiently large
rectangle.

e After a release, a merger with free adjacent partitions should
be performed.

® This is possible, if the two adjacent partitions have one

dimension in common:
‘_d

™
+

Barry Linnert, linnert@inf.fu-berlin.de, Cluster Computing SoSe 2023 7_1 3

Freie Universitat G

Merger of free partitions

e Further expansion of free partitions would only be possible at
the expense of other partitions..

e \Whether this makes sense depends on the statistical
properties of the requests.

Barry Linnert, linnert@inf.fu-berlin.de, Cluster Computing SoSe 2023 7_1 4

Freie Universitat (L Sl Ve

Overlapping free partitions

e When managing overlapping free partitions, we have to accept
a higher management overhead, but we get all possible
partitions and do not need to restrict to a particular
decomposition.

Barry Linnert, linnert@inf.fu-berlin.de, Cluster Computing SoSe 2023 7_1 5

Allocation for
overlapping free partitions

Freie Universitat (LSl Ve

® For an allocation the involved free partitions have to be

changed:

iy
=

Barry Linnert, linnert@inf.fu-berlin.de, Cluster Computing SoSe 2023 7_1 6

Release for
overlapping free partitions

Freie Universitat (18 a)) "

® Expansion of released partition to all possible directions:

Barry Linnert, linnert@inf.fu-berlin.de, Cluster Computing SoSe 2023 7_1 7

Release for
overlapping free partitions 2

Freie Universitit (. Sel ¢

® The adjacent free partitions can be expanded as well.

e Identical free partitions that may be generated have to be
deleted.

Barry Linnert, linnert@inf.fu-berlin.de, Cluster Computing SoSe 2023 7_1 8

Freie Universitat G|):

/7.2.3 Shaping of scalar requests

e If a request does not specify a rectangle, but only a number
(area), we have a new degree of freedom: We have to shape
a rectangle of appropriate size.

e Without further knowledge of the program's properties
(communication behavior) a ,compact" partition is usually
better than a narrow one.

e Internal fragmentation may be generated.

GOe0-0 oo

r‘ Y\ [r Yam\ Y\

1] o— 1 o—0—~0
[7 v [7 Y\ Y

o—0 o0 o—0—0

V‘ [[7Z r

L] o1 o—0—~0

B3 3

Three possible allocations for a request of size 13.

Barry Linnert, linnert@inf.fu-berlin.de, Cluster Computing SoSe 2023 7_1 9

Freie Universitat (L

Shaping Problem

® Given: Request of size a

® Goal: find a rectangle with b-h > a which
e s compact
e has low internal fragmentation

e Compactness: Small diameter of rectangle to ensure low
communication latencies.

e Minimal diameter
e Aspect ratio (breadth-height-ratio) of 1 (square)

Barry Linnert, linnert@inf.fu-berlin.de, Cluster Computing SoSe 2023 7_20

Finding an optimal rectangle

e All sufficiently large Height h

rectangles lie to the A\ L " Hyperbola bh = a

right and above the \

hyperbola. \
e On the lines L we h=b

find all rectangles

with the same

diameter. N

® s is side length of
nearest larger NNR
square. Z4EI N

® As intersection : \\‘T\
points of L with the / CINNL
hyperbola we find :

b :5—%+\/52—5+%—a L/ : N

Ly h=2s-b
" Ly h=2s-b-1

»
yava

Breadth b

Barry Linnert, linnert@inf.fu-berlin.de, Cluster Computing SoSe 2023 7_21

Shaping algorithm

Freie Universitit (18

1 shagei{n:a, out:b, h)

2 |5« ‘ NE | Side length of sufficiently large square.

3 |if a = s - s If a is a square number,

4 then

5 h < s optimal shape has been found

6 b « s and procedure stops.

7 | else Otherwise

8 b« |s+ Vs’ -a Breadth b1 and corresponding

9 h«[a/b] height are calculated

10 if $2_s54+1/4-a>0

11 then If also line L2 intersects with hyperbola

12 b, « i 5—1/2+\/52 -s+1/4—-a || Breadth b2 and corresponding height

13 h«la/b] " | are calculated

14 if b,-h,<b-h The rectangle with the smaller area is

15 then b« b, h<«h selected. In case of equality we pick

16 else p« b, h«h (b2,h2) due to its smaller diameter

17 else b« b, h<h If line L2 does not intersect, (b1,hl) is a unique
solution.

18 | end

Barry Linnert, linnert@inf.fu-berlin.de, Cluster Computing SoSe 2023

[-22

Freie Universitat (|« !

Example

® Scalar request of size a = 82
® Rounding to the nearest larger square number yields side length
s=10
e Algorithm delivers:
e bl =14,h1 =6
e b2 =12,h2 =7
® Rectangle 12 x 7 is chosen (due to smaller diameter)

Barry Linnert, linnert@inf.fu-berlin.de, Cluster Computing SoSe 2023 7_23

7.3 Buddy systems

A R

. .) 10\
Freie Universitat G(i3"):
\S 2

Tailored allocation avoids internal fragmentation but
means overhead for finding the best partition.

From memory management we know algorithms with
constant complexity (O(1)).

The so-called Buddy system adapts its offer of free
partitions to the request profile.

Recap: Binary Buddy in Memory Management

Barry Linnert, linnert@inf.fu-berlin.de, Cluster Computing SoSe 2023

7-24

2D—Buddy—System reie Universitat if

e Assumption: Prozessor mesh 2" x 2"
e Variant: Dividing simultaniously in both dimensions

Barry Linnert, linnert@inf.fu-berlin.de, Cluster Computing SoSe 2023 7_25

2D-Buddy-System Freie Universitd

e Variant: Dividing independently in both dimensions

Barry Linnert, linnert@inf.fu-berlin.de, Cluster Computing SoSe 2023 7-26

/57,
=)

=
e
5

2D-Buddy-System Freie Universitat (f

e Variant: Dividing the area

Barry Linnert, linnert@inf.fu-berlin.de, Cluster Computing SoSe 2023 7_27

Freie Universitat zﬁ.)

Calculation of fragmentation

® Assumption: request uniformly distributed from [1, 27].

Variant 1 Variant 2 Variant 3

Internal 1-7/12 (42%) |1-9/16 (44%) 1-3/4 (25%)
fragmentation

Barry Linnert, linnert@inf.fu-berlin.de, Cluster Computing SoSe 2023 7-28

. Freie Universitat ' I
/7.4 Hilbert curve - SLURM L)

e SLURM workload manager is a widely used resource
management system for HPC systems

e SLURM implements tailored partitioning

o First fit approach over vector of nodes (indicator bases
management)

® Mapping extensions to consider architecture and
topology of the machine:

e Order nodes following Hilbert curve for mesh/grid
topologies

e Default configuration for 3- or multi-dimensional topologies

Barry Linnert, linnert@inf.fu-berlin.de, Cluster Computing SoSe 2023 7_29

E Berlin

OSIELLT
NI

i
k‘ﬁﬂ'

Freie Universitat %

SLURM - Example

C

%

L

S

T

L
&

J

= & =

7-30

7.5 Non-contiguous Allocation

Freie Universitat [Sell)¢

The allocation of contiguous partitions generates internal
fragmentation and also substantial external fragmentation.

The utilization could be improved if we could satisfy a larger
request with a set of some smaller free partitions.

Non-contiguous allocation can be used complementary to
contiguous allocation, when, e.g., a contiguous allocation fails.

The decomposition of the parallel program into non-
contiguous small partitions is influenced by two aspects:
e Communication oriented decomposition:

The communication graph TIG - if available - is decomposed
according to its edge weights such that we obtain components
with only little communication in between.

e Fragmentation oriented decomposition:
The decomposition is governed by the offer of free partitions.

Barry Linnert, linnert@inf.fu-berlin.de, Cluster Computing SoSe 2023 7_31

7.5.1 Decomposition of the
communication graph

-‘ U
Freie Unversitat S

To decompose a parallel program according to the free partitions
currently available, we use a recursive hierarchic clustering
scheme:

1. Sort the edges of the graph according to decreasing edge
weights.

. For initialization, all m nodes make up single-element
clusters.

. Step by step clusters are being merged that are connected by
the heaviest edge not yet considered.

. The algorithm stops when all nodes have been merged to one
single cluster.

>~ W N

Barry Linnert, linnert@inf.fu-berlin.de, Cluster Computing SoSe 2023 7_32

\

o \Q/O

Communication graph (TIG)

Level Cluster 1 6 2 4 5 3
Dendrogram:
3 G8 G7 G5 G3 G8
5 GgGy Cio
6 G

1 Gy

Barry Linnert, linnert@inf.fu-berlin.de, Cluster Computing SoSe 2023

7-33

7.5.2 Fragmentation oriented
decomposition

Freie Universitat (| Selll)¢

e Assumption:
e Rectangular requests
e List-based management of free partitions

® Based on a list-based approach that sorts free partitions
according to breadth and height as well, we can formulate an
algorithm:

e Find a free partition that satisfies the request in one dimension.

e Cut the fitting piece and search for a free partition for the
remainder of the request.

e Continue recursively until the request is satisfied.

Barry Linnert, linnert@inf.fu-berlin.de, Cluster Computing SoSe 2023 7_34

Freie Universitat &

Example
v
_______ ‘ | —1 |1
// d
rest of request new allocation situation
request allocation situation (b)

(@)

|
1|

final allocation situation

(c)

Barry Linnert, linnert@inf.fu-berlin.de, Cluster Computing SoSe 2023 7_35

Example

(S
(79

request allocation situation

U
.

-

rest of request allocation situation

(b)

rest of request allocation situation

|
. HE

final allocation situation

Barry Linnert, linnert@inf.fu-berlin.de, Cluster Computing SoSe 2023 7-36

':.-‘ U %‘
Freie Universitat g5
?\ \‘ g

7.5.3 Tree oriented Buddy-system

® Partitions are generated by cutting into halves.
e Allocation situation is represented by a binary tree.

® Fach node (in tree) represents a dynamically
generated partition and indicates the number of its
free processors.

e Internal nodes represent partially occupied
partitions.

e | eaf nodes represent partitions that are either
completely free or completely occupied.

Barry Linnert, linnert@inf.fu-berlin.de, Cluster Computing SoSe 2023 7_37

Freie Universitat (.S

Example of an allocation situation

allocation situation in a 4x8-mesh Ix1]} 1x1 .
X
1x1 || 1x1
4x4
2x2 2x2
Correponding data structure: P 110
b: occupied
b |0 P |10
f: free -
. . P |6 P (4
p: partially occupied
Numbers indicate the number of P |2 fl4 f|4 b 10

free processors

Barry Linnert, linnert@inf.fu-berlin.de, Cluster Computing SoSe 2023 7-38

Example

Freie Universitit

(1,6,

S

b (0

Allocation for request from
slide 31 (size 6)

24,53)
P |10
(1,6,2,4,5,3)
P (10
(1,62,453) _—
Ple P4

(1 ,W2,4,5, 3)
p |2 4 fl4

Resulting allocation and
placement of processes

g— 9§\9

Barry Linnert, linnert@inf.fu-berlin.de, Cluster Computing SoSe 2023

7-39

Simulation results

Machine: 64x64 Processor mesh
Requests: Rectangles with side length equally distributed from [0,32]
Algorithm Total Internal External Utilization
runtime | fragment. | fragment.
Contiguous allocation
List-based disjoint 86 0 24% 76%
Buddy 118 37% 7% 56%
Fibonacci Buddy 147 22% 33% 45%
Non-contiguous allocation
Tree-based Buddy v=1 71 0% 7% 93%
Tree-based Buddy v=1.5 72 5% 4% 91%

Barry Linnert, linnert@inf.fu-berlin.de, Cluster Computing SoSe 2023

7-40

&)
Freie Universitat S ,‘.z
N

Summary

e Static vs. dynamic partitioning
e Distribution of requests known?
® Tailoring vs. Standard sizes

e Buddy-System shows smaller external fragmentation
(<10%) than list-based management (20-40%).

e Due to high internal fragmentation (>25%), the total
utilization of buddy-system usually worse.

e The low algorithmic complexity of buddy-system does not
pay off with processor numbers < 106.

e Contiguous vs. non-contiguous allocation

e Significantly better utilization with non-contiguous
allocation (85-95%)

e Application runtime depending on communication intensity
e Appropriate for dynamic processor demands

Barry Linnert, linnert@inf.fu-berlin.de, Cluster Computing SoSe 2023 7_41

Further Reading

Freie Universitit

Heiss, H.-U.; Wiesenfarth,R.: A Heuristic Algorithm for Dynamic Task
Allocation in Highly Parallel Systems. in: H.P. Zima (ed.): Parallel
Computation, Lect. Notes in Comp. Science No. 591, Springer (1992)
pp. 252-265.

Heiss, H.-U.: Processor Management in 2D-Grid Architectures:
Buddy-Systems. GI-PARS-Reports Nr. 12 (Proc. Workshop ,Fine-
grain and Massive Parallelism™, Dresden, 6.-8. April 1993), pp.14-23.

Heiss, H.-U.: Dynamic Partitioning of Large Scale Multicomputer
Systems, Proc. Conf. on Massively Parallel Computing Systems
(MPCS'94), Ischia, 2.-6. Mai, 1994

Bender, Michael A.; Bunde, David P. ; Demaine, Erik D.; Fekete,
Sandor P.; Leung, Vitus J.; Meijer, Henk; Phillips, Cynthia A.:
Communication-Aware Processor Allocation for Supercomputers,
Proc. of the 9th Workshop on Algorithms and Data Structures
(WADS), 2005

De Rose, César A.F.; Heiss, Hans-Ulrich; Linnert, Barry: Distributed
dynamic processor allocation for multicomputers, Parallel Computing,
Volume 33, Issue 3, April 2007, pp. 145-158

Barry Linnert, linnert@inf.fu-berlin.de, Cluster Computing SoSe 2023 7_42

	Foliennummer 1
	7.1 Properties and Assumptions
	Other Notions
	Example of a Partitioning
	Fragmentation
	Fixed Partitioning: Example
	Further Assumptions
	7.2 Tailored Allocations
	Selection procedure
	2D-Resource (Processor mesh)
	7.2.2 List-based Management
	Decomposition into �disjoint rectangles
	Disjoint free pieces: �allocate and release
	Merger of free partitions
	Overlapping free partitions
	Allocation for �overlapping free partitions
	Release for �overlapping free partitions
	Release for �overlapping free partitions 2
	7.2.3 Shaping of scalar requests
	Shaping Problem
	Finding an optimal rectangle
	Shaping algorithm
	Example
	7.3 Buddy systems
	2D-Buddy-System
	2D-Buddy-System
	2D-Buddy-System
	Calculation of fragmentation
	7.4 Hilbert curve - SLURM
	SLURM – Example
	7.5 Non-contiguous Allocation
	7.5.1 Decomposition of the communication graph
	Example
	7.5.2 Fragmentation oriented decomposition
	Example
	Example
	7.5.3 Tree oriented Buddy-system
	Example of an allocation situation
	Example
	Simulation results
	Summary
	Further Reading

