
Chapter 6

The Quantitative Partitioning Problem



6.1 Theoretical Aspects

• Let be
T(1) the execution time on one processor 
T(p) the execution time on a p processor system

• The gain by parallel computing is expressed by

S(p) := T(1) / T(p) Speed-up

• Normalizing the Speed-up by dividing by the number p of 
processors is defined as the efficiency: 

E(p) := S(p) / p Efficiency
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Conflict of interests

• Cost minimization (Minimizing execution time or 
maximizing speed-up, respectively)

• Benefit maximization (Maximization of efficiency)
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Speed-up efficiency

• Compromise in conflict of interests –
Optimization of Cost-Benefit-Ratio:

• Speed-Up Efficiency η (Benefit at unit cost)

• Considering η(p) as a two times differentiable function of a  
continuous p, we find a maximum at pη*.

pη* is called processor working set and indicates the number 
of processors that minimizes the cost-benefit ratio T/E.

• η(p) is sometimes also called Power.
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Speed-up efficiency
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The „Knee“ 
in the Cost-Benefit-Function
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Optimal Number of Processors

Depending on the general goal, there is a specific optimal number 
of processors popt for each program:
• Maximization of throughput and thus of the efficiency:

Optimal number is popt = pE* = 1 for all programs
Caution: This is only true if processors behave independent 
from each other. This is not given in most multi-core systems 
as cores share resources (cache, memory bandwidth, power, …) 
and therefore influence each other. Here, detailed evaluation is 
necessary.

• Minimization of execution time  (Maximization of Speed-up):
Optimal number is popt = pS* individually for each program

• Maximization of the speed-up efficiency:
Optimal number is popt = pη* individually for each program
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6.2 Static Partitioning

• Given: 
• A set M of parallel programs, with known processor 

demand p(i) and execution time T(i) = T(p(i)).
• Either p and T are firmly specified for each program or we 

know the speed-up function of the programs and calculate 
for each program i the optimal demand popt(i) and the 
resulting execution time T(popt).

• Problem:
• Find a schedule for the M programs, such that the total 

execution time (makespan) is minimized.
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Definitions

• Let A = (A1, A2, ..., AM) be the sequence of requests (programs), p
the number of available processors, p(i) the number of processors 
demanded by Ai and T(i) the execution time of Ai.

• A schedule S is a mapping of start times t(i) to requests (programs) 
Ai.

• Schedule S is called valid, if at each point in time the sum of all 
occupied processors does not exceed p.

• T(S) = max {t(i)+T(i)} is the length of the schedule, also called 
makespan.

is the machine utilization under 
schedule S

is the mean waiting time

is the mean response time
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Interpretation as 2D-Bin-Packing-
Problem

• Programm i is represented as rectangle with edge lengths popt
and T(popt).

• Goal: Find a placement of the rectangles such that the 
maximum number of processors is not exceeded and the 
makespan is minimized.
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2D-Bin-Packing

• The problem is NP-complete.
• Heuristic approaches are:

• FCFS: The requests are processed in the order of arrival.
• FFDH (First Fit Decreasing Height): The requests are 

ordered according to their execution times (decreasing).
• FFIH (First Fit Increasing Height): The requests are ordered 

according to their execution times (increasing).
• Example sequence

i 1 2 3 4 5 6 7 8 9 10
p(i) 16 256 16 256 32 128 32 128 64 64
T(i) 25 50 10 5 20 40 20 10 15 30
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FCFS

• Procedure:
• sort requests according to arrival
• schedule A1 for  t =0
• schedule next requests A2, A3,...,Ak also for t =0, as long 

as

• if not, start a new scheduling level beginning at
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FCFS: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10
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Backfilling

• Pure FCFS leads to high fragmentation.
• „Backfilling“ can improve this:
• To fill up a scheduling level not only the next request, 

but all requests in the queue are considered. That 
means smaller requests that still fit in will be preferred. 
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FCFS-Backfilling: 
1, 3, 5, 7, 8, 2, 4, 6, 9, 10
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First Fit Decreasing Height (FFDH)

• Procedure:
• Rectangles are left adjusted in the respective scheduling 

level.
• Rectangles are sorted by decreasing execution time T(i).
• Starting with the empty schedule and scheduling level t = 

0 the rectangles are put onto each other until the next one 
does not fit in, since we reached the ceiling. 

• Than we start the next scheduling level.
• Theoretical result :

• Let be Tmax the longest execution time of a request.
• Let be T(Sopt) the length of the optimal schedule.
• Let be T(SFFDH) the length of the schedule found by FFDH.
• Than the following upper bound holds:

T(SFFDH) ≤ 1,7 T(Sopt) + Tmax
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FFDH: 2, 6, 10, 1, 5, 7, 9, 3, 8, 4
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FFDH-Backfilling: 
2, 6, 10, 1, 5, 3, 7, 9, 8, 4
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First Fit Increasing Height (FFIH)

• Procedure:
• Like FFDH, but with opposite sorting direction: shortest 

jobs next.
• Similar fragmentation and schedule length as FFDH
• Shorter mean waiting time (corresponds to Shortest Job 

Next)
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Malleable (moldable) Rectangles

• Another degree of freedom for a scheduler arises when we 
take into account that in most cases a program can be started 
even without having popt processors available.

• (The rectangles can be considered malleable)
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6.3 Semi-dynamic Allocation

• Given:
• Dynamic set of programs, fed by an (usually stochastic) 

arrival process.
• pf(t) number of free processors at time t
• W(t) set of programs that already arrived at time t but 

are still waiting for allocation
We assume that W(t) is ordered according to the
order of arrival (FIFO queue).
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Strategies

• FIFO bzw. FCFS
• Let i be index of the first program in the queue. 

If p(i) ≤ pf(t), p(i) processors are allocated to the program.
• Drawback: Larger numbers of processors may be unused

only because the request at the front of the queue is
currently not satifiable. 

• First-Fit
• The queue is scanned beginning at the front until a request

j is found that can be satisfied (p(j) ≤ pf(t)).
• Best-Fit

• The queue is completely scanned until a request j is found
for which the following minimum condition is true:

min        { pf(t) – p(j) }
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Strategies

• Best-Fit-Set
• Goal: Find a subset of requests, the sum of which matches

the number of free processors pf(t) as close as possible, 
i.e. a subset M ⊆ W(t), such that

pf(t) - Σ p(j) → min
where

Σ p(j) ≤ pf(t)

Remark: The problem is apparently again a "Bin-packing-
Problem“ and therefore NP-complete.

• All strategies except FIFO hold the danger of starvation:  
A large request at the front of the queue could be ignored
forever.

6-24Barry Linnert, linnert@inf.fu-berlin.de, Cluster Computing  SoSe 2023



Selection strategies

• Window
To reduce the overhead, we can limit the search for 
a candidate  in the queue to a window of size L, i.e. 
only the first L positions of the queue are 
considered.
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Solution of the starvation problem

• If we use a dynamic window size, we can solve the starvation problem of 
large requests (with First-Fit-Request or Best-Fit-Request).

• Let  Lmax be the maximum window size (initial value).
• At each successful allocation the window size is updated according to:

• By doing so, the window size shrinks to 1 when the foremost request has 
been passed over L-1 times. In this case, this first request must be selected 
since it is the only one in the window. 

• For L approaching 1 Best-Fit-Request and First-Fit-Request converge to FCFS.
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6.4 Dynamic Partitioning

• While up to now the programs were given a fixed number of 
processors for the whole runtime, we are considering the case 
that processors are allocated to and withdrawn from a 
program dynamically (before runtime).

• Basic idea: allocate an additional processor to a program so 
that the highest speed-up gain is achieved.  

• Given: p processors and M programs with their speed-up-
functions S(i,k), i = 1,...,M; k=1,...,p)

• Goal: Find a quantitative partitioning p(i) such that

• Maximization of the sum of speed-ups indirectly also 
minimizes the sum of execution times and maximizes the 
throughput.
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Dynamic Partitioning

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 # processors

Speed-up

The processors are incrementally allocated to the programs.

The program with the highest speed-up-increase (first derivative) 
gets an additional processor.

Which program gets how many processors?

Program A1

Program A2
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1 available ← p All processors available.
2 for i ← 1 to m do All programs.
3 p(i) ← 1 Minimal allocation (Initialization).
4 DS(i) ← S(i,p(i)+1)-S(i,p(i)) Calculate differential Speed-up 
5 end for (derivative). 
6 DS_list ← sort_descending({i,DS(i)}) Sort  programs  according to Speed-up 

derivative.
7 while available > 0 do All processors are being allocated.
8 x ← first(DS-list) Program with steepest speed-up growth  

p(i) is being selected
9 remove(DS(x),DS_list) and removed from list.
10 p(x) ← p(x)+1 its no. of alloc. proc. is incremented 
11 DS(x) ← S(x,p(x)+1)-S(x,p(x)) the speed-up derivative for this
12 insert(DS(x), DS_list) new value is recomputed and sorted 

and reinserted into the list
13 available ← available - 1

14 end while
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Example
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