Chapter 6

The Quantitative Partitioning Problem

6.1 Theoretical Aspects

- Let be
$T(1)$ the execution time on one processor
$T(p)$ the execution time on a p processor system
- The gain by parallel computing is expressed by

$$
S(p):=T(1) / T(p) \quad \text { Speed-up }
$$

- Normalizing the Speed-up by dividing by the number p of processors is defined as the efficiency:

$$
E(p):=S(p) / p \quad \text { Efficiency }
$$

Conflict of interests

- Cost minimization (Minimizing execution time or maximizing speed-up, respectively)
- Benefit maximization (Maximization of efficiency)

Speed-up efficiency

- Compromise in conflict of interests Optimization of Cost-Benefit-Ratio:
- Speed-Up Efficiency η (Benefit at unit cost)

$$
\eta(p)=\frac{E(p)}{T(p)} T(1)=E(p) \cdot S(p)=\frac{S(p)^{2}}{p}
$$

- Considering $\eta(p)$ as a two times differentiable function of a continuous p, we find a maximum at $p_{\eta}{ }^{*}$.

$$
\frac{d \eta}{d p}\left(p_{\eta}^{*}\right)=0 \text { with } \frac{d^{2} \eta}{d p^{2}}\left(p_{\eta}^{*}\right)<0
$$

$p_{\mathrm{n}}{ }^{*}$ is called processor working set and indicates the number of processors that minimizes the cost-benefit ratio T / E.

- $\quad \eta(p)$ is sometimes also called Power.

Speed-up efficiency

The „Knee" in the Cost-Benefit-Function

Execution time T
(Cost)

Optimal Number of Processors

Depending on the general goal, there is a specific optimal number of processors $p_{\text {opt }}$ for each program:

- Maximization of throughput and thus of the efficiency:

Optimal number is $p_{o p t}=p_{E}^{*}=1$ for all programs
Caution: This is only true if processors behave independent from each other. This is not given in most multi-core systems as cores share resources (cache, memory bandwidth, power, ...) and therefore influence each other. Here, detailed evaluation is necessary.

- Minimization of execution time (Maximization of Speed-up):

Optimal number is $p_{\text {opt }}=p_{S}{ }^{*}$ individually for each program

- Maximization of the speed-up efficiency:

Optimal number is $p_{o p t}=p_{\eta}$ * individually for each program

6.2 Static Partitioning

- Given:
- A set M of parallel programs, with known processor demand $p(i)$ and execution time $T(i)=T(p(i))$.
- Either p and T are firmly specified for each program or we know the speed-up function of the programs and calculate for each program i the optimal demand $p_{\text {opt }}(i)$ and the resulting execution time $T\left(p_{o p t}\right)$.
- Problem:
- Find a schedule for the M programs, such that the total execution time (makespan) is minimized.
- Let $\mathrm{A}=\left(A_{1}, A_{2}, \ldots, A_{M}\right)$ be the sequence of requests (programs), p the number of available processors, $p(i)$ the number of processors demanded by A_{i} and $T(i)$ the execution time of A_{i}.
- A schedule S is a mapping of start times $t(i)$ to requests (programs) A_{i}.
- Schedule S is called valid, if at each point in time the sum of all occupied processors does not exceed p.
- $T(S)=\max \{t(i)+T(i)\}$ is the length of the schedule, also called makespan.

$$
\begin{aligned}
& U(S)=\frac{1}{p \cdot T(S)} \sum_{i=1}^{M} p(i) \cdot T(i) \\
& W(S)=\frac{1}{M} \sum_{i=1}^{M} t(i) \\
& R(S)=\frac{1}{M} \sum_{i=1}^{M}(t(i)+T(i))
\end{aligned}
$$

is the machine utilization under schedule S
is the mean waiting time
is the mean response time

Interpretation as 2D-Bin-PackingProblem

- Programm i is represented as rectangle with edge lengths $p_{\text {opt }}$ and $T\left(p_{o p t}\right)$.
- Goal: Find a placement of the rectangles such that the maximum number of processors is not exceeded and the makespan is minimized.

2D-Bin-Packing

- The problem is NP-complete.
- Heuristic approaches are:
- FCFS: The requests are processed in the order of arrival.
- FFDH (First Fit Decreasing Height): The requests are ordered according to their execution times (decreasing).
- FFIH (First Fit Increasing Height): The requests are ordered according to their execution times (increasing).
- Example sequence

i	1	2	3	4	5	6	7	8	9	10
$\mathrm{p}(\mathrm{i})$	16	256	16	256	32	128	32	128	64	64
$\mathrm{~T}(\mathrm{i})$	25	50	10	5	20	40	20	10	15	30

- Procedure:
- sort requests according to arrival
- schedule A_{1} for $t=0$
- schedule next requests $A_{2}, A_{3}, \ldots, A_{k}$ also for $t=0$, as long as

$$
\sum_{i=1}^{k} p(i) \leq p
$$

- if not, start a new scheduling level beginning at

$$
t(k+1):=\max _{i=1}^{k}\{T(i)\}
$$

FCFS: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10

$$
T(S)=160
$$

- Pure FCFS leads to high fragmentation.
- „Backfilling" can improve this:
- To fill up a scheduling level not only the next request, but all requests in the queue are considered. That means smaller requests that still fit in will be preferred.

FCFS-Backfilling:
1, 3, 5, 7, 8, 2, 4, 6, 9, 10

- Procedure:
- Rectangles are left adjusted in the respective scheduling level.
- Rectangles are sorted by decreasing execution time $T(i)$.
- Starting with the empty schedule and scheduling level $t=$ 0 the rectangles are put onto each other until the next one does not fit in, since we reached the ceiling.
- Than we start the next scheduling level.
- Theoretical result :
- Let be $T_{\text {max }}$ the longest execution time of a request.
- Let be $T\left(S_{o p t}\right)$ the length of the optimal schedule.
- Let be $T\left(S_{\text {FFDH }}\right)$ the length of the schedule found by FFDH.
- Than the following upper bound holds:

$$
T\left(S_{\text {FFDH }}\right) \leq 1,7 T\left(S_{o p t}\right)+T_{\max }
$$

FFDH: 2, 6, 10, 1, 5, 7, 9, 3, 8, 4

FFDH-Backfilling:
2, 6, 10, 1, 5, 3, 7, 9, 8, 4

First Fit Increasing Height (FFIH)

- Procedure:
- Like FFDH, but with opposite sorting direction: shortest jobs next.
- Similar fragmentation and schedule length as FFDH
- Shorter mean waiting time (corresponds to Shortest Job Next)

Malleable (moldable) Rectangles

- Another degree of freedom for a scheduler arises when we take into account that in most cases a program can be started even without having $p_{\text {opt }}$ processors available.
- (The rectangles can be considered malleable)

6.3 Semi-dynamic Allocation

- Given:
- Dynamic set of programs, fed by an (usually stochastic) arrival process.
- $p_{f}(t)$ number of free processors at time t
- $W(t)$ set of programs that already arrived at time t but are still waiting for allocation
We assume that $W(t)$ is ordered according to the order of arrival (FIFO queue).
- FIFO bzw. FCFS
- Let i be index of the first program in the queue. If $p(i) \leq p_{f}(t), p(i)$ processors are allocated to the program.
- Drawback: Larger numbers of processors may be unused only because the request at the front of the queue is currently not satifiable.
- First-Fit
- The queue is scanned beginning at the front until a request j is found that can be satisfied $\left(p(j) \leq p_{f}(t)\right)$.
- Best-Fit
- The queue is completely scanned until a request j is found for which the following minimum condition is true:

$$
\min _{\left.j \in W(t) \wedge p(j) \leq p_{f}(t)\right)}\left\{p_{f}(t)-p(j)\right\}
$$

- Best-Fit-Set
- Goal: Find a subset of requests, the sum of which matches the number of free processors $p_{f}(t)$ as close as possible, i.e. a subset $M \subseteq W(t)$, such that

$$
p_{f}(t)-\Sigma p(j) \rightarrow \min
$$

where

$$
\Sigma p(j) \leq p_{f}(t)
$$

Remark: The problem is apparently again a "Bin-packingProblem" and therefore NP-complete.

- All strategies except FIFO hold the danger of starvation: A large request at the front of the queue could be ignored forever.

Selection strategies

- Window

To reduce the overhead, we can limit the search for a candidate in the queue to a window of size L, i.e. only the first L positions of the queue are considered.

Solution of the starvation problem

- If we use a dynamic window size, we can solve the starvation problem of large requests (with First-Fit-Request or Best-Fit-Request).
- Let $L_{\max }$ be the maximum window size (initial value).
- At each successful allocation the window size is updated according to:

$$
L:= \begin{cases}L-1, & \text { if } L>1 \text { and the request at the head of the queue is skipped. } \\ L_{\max }, & \text { otherwise }\end{cases}
$$

- By doing so, the window size shrinks to 1 when the foremost request has been passed over L-1 times. In this case, this first request must be selected since it is the only one in the window.

- For L approaching 1 Best-Fit-Request and First-Fit-Request converge to FCFS.

6.4 Dynamic Partitioning

- While up to now the programs were given a fixed number of processors for the whole runtime, we are considering the case that processors are allocated to and withdrawn from a program dynamically (before runtime).
- Basic idea: allocate an additional processor to a program so that the highest speed-up gain is achieved.
- Given: p processors and M programs with their speed-upfunctions $S(i, k), i=1, \ldots, M ; k=1, \ldots, p)$
- Goal: Find a quantitative partitioning $p(i)$ such that

$$
\sum_{i=1}^{M} S(i, p(i)) \rightarrow \max \quad \text { with } \quad p=\sum_{i=1}^{M} p(i)
$$

- Maximization of the sum of speed-ups indirectly also minimizes the sum of execution times and maximizes the throughput.

Dynamic Partitioning

The processors are incrementally allocated to the programs.
The program with the highest speed-up-increase (first derivative) gets an additional processor.

Which program gets how many processors?

Quantitative Dynamic Partitioning

1	available $\leftarrow \mathrm{p}$	All processors available.
2	for $\mathrm{i} \leftarrow 1$ to m do	All programs.
3	$\mathrm{p}(\mathrm{i}) \leftarrow 1$	Minimal allocation (Initialization).
4	$\mathrm{DS}(\mathrm{i}) \leftarrow \mathrm{S}(\mathrm{i}, \mathrm{p}(\mathrm{i})+1)-\mathrm{S}(\mathrm{i}, \mathrm{p}(\mathrm{i})$)	Calculate differential Speed-up
5	end for	(derivative).
6	DS_list \leftarrow sort_descending(\{i, DS (i) \})	Sort programs according to Speed-up derivative.
7	while available > 0 do	All processors are being allocated.
8	$x \leftarrow$ first(DS-1ist)	Program with steepest speed-up growth $p(i)$ is being selected
9	remove(DS(x), DS_1ist)	and removed from list.
10	$\mathrm{p}(\mathrm{x}) \leftarrow \mathrm{p}(\mathrm{x})+1$	its no. of alloc. proc. is incremented
11	$\mathrm{DS}(\mathrm{x}) \leftarrow \mathrm{S}(\mathrm{x}, \mathrm{p}(\mathrm{x})+1)-\mathrm{S}(\mathrm{x}, \mathrm{p}(\mathrm{x}) \mathrm{)}$	the speed-up derivative for this
12	insert(DS(x), DS_list)	new value is recomputed and sorted and reinserted into the list
13	available \leftarrow available - 1	
14	end while	

Example

Further References

- E. Shmueli and D. G. Feitelson, Backfilling with lookahead to optimize the performance of parallel job scheduling'. In Job Scheduling Strategies for Parallel Processing, D. G. Feitelson, L. Rudolph, and U. Schwiegelshohn (Eds.), Springer-Verlag, LNCS 2862. pp. 228-251, 2003
- Skovira, J. et. al.: The EASY-LoadLeveler API Project, LNCS 1162, pp.41-47, 1996
- Keleher,J. et al.: Attacking the bottlenecks of backfilling schedulers. Cluster Computing 3(4), pp.245-254, 2000

