
Chapter 6

The Quantitative Partitioning Problem

6.1 Theoretical Aspects

• Let be
T(1) the execution time on one processor
T(p) the execution time on a p processor system

• The gain by parallel computing is expressed by

S(p) := T(1) / T(p) Speed-up

• Normalizing the Speed-up by dividing by the number p of
processors is defined as the efficiency:

E(p) := S(p) / p Efficiency

Barry Linnert, linnert@inf.fu-berlin.de, Cluster Computing SoSe 2023 6-2

Conflict of interests

• Cost minimization (Minimizing execution time or
maximizing speed-up, respectively)

• Benefit maximization (Maximization of efficiency)

6-3Barry Linnert, linnert@inf.fu-berlin.de, Cluster Computing SoSe 2023

5 10 15 20

1. 0

S(p)

E(p)

T(p)

p
pE* pS*

Efficiency E

Execution time T
Speed-up S

Speed-up efficiency

• Compromise in conflict of interests –
Optimization of Cost-Benefit-Ratio:

• Speed-Up Efficiency η (Benefit at unit cost)

• Considering η(p) as a two times differentiable function of a
continuous p, we find a maximum at pη*.

pη* is called processor working set and indicates the number
of processors that minimizes the cost-benefit ratio T/E.

• η(p) is sometimes also called Power.

() ()
() () () () ()

p
pSpSpET

pT
pEp

2

1 =⋅==η

() ()
2

20 with 0* *d dp p
dp dpη η
η η

= <

Barry Linnert, linnert@inf.fu-berlin.de, Cluster Computing SoSe 2023 6-4

Speed-up efficiency

p = #processors

Speed-upS

Speed-up Efficiency η

Efficiency E

S, E, η

max
η

5 10 15 20 25

1

2

3

4

5

p*ηp*
E

p*
S

Smax

maxE

Barry Linnert, linnert@inf.fu-berlin.de, Cluster Computing SoSe 2023 6-5

The „Knee“
in the Cost-Benefit-Function

p=1

p=2

3
4

5
6789

40

30

20

10

0
0,2 0,4 0,6 0,8 1

Execution time T
(Cost)

Efficiency E
(Benefit)

T/E→min
E

T

Barry Linnert, linnert@inf.fu-berlin.de, Cluster Computing SoSe 2023 6-6

Optimal Number of Processors

Depending on the general goal, there is a specific optimal number
of processors popt for each program:
• Maximization of throughput and thus of the efficiency:

Optimal number is popt = pE* = 1 for all programs
Caution: This is only true if processors behave independent
from each other. This is not given in most multi-core systems
as cores share resources (cache, memory bandwidth, power, …)
and therefore influence each other. Here, detailed evaluation is
necessary.

• Minimization of execution time (Maximization of Speed-up):
Optimal number is popt = pS* individually for each program

• Maximization of the speed-up efficiency:
Optimal number is popt = pη* individually for each program

Barry Linnert, linnert@inf.fu-berlin.de, Cluster Computing SoSe 2023 6-7

6.2 Static Partitioning

• Given:
• A set M of parallel programs, with known processor

demand p(i) and execution time T(i) = T(p(i)).
• Either p and T are firmly specified for each program or we

know the speed-up function of the programs and calculate
for each program i the optimal demand popt(i) and the
resulting execution time T(popt).

• Problem:
• Find a schedule for the M programs, such that the total

execution time (makespan) is minimized.

Barry Linnert, linnert@inf.fu-berlin.de, Cluster Computing SoSe 2023 6-8

Definitions

• Let A = (A1, A2, ..., AM) be the sequence of requests (programs), p
the number of available processors, p(i) the number of processors
demanded by Ai and T(i) the execution time of Ai.

• A schedule S is a mapping of start times t(i) to requests (programs)
Ai.

• Schedule S is called valid, if at each point in time the sum of all
occupied processors does not exceed p.

• T(S) = max {t(i)+T(i)} is the length of the schedule, also called
makespan.

is the machine utilization under
schedule S

is the mean waiting time

is the mean response time

6-9Barry Linnert, linnert@inf.fu-berlin.de, Cluster Computing SoSe 2023

() () () ()iTip
STp

SU
M

i
⋅

⋅
= ∑

=1

1

() ()∑
=

=
M

i
it

M
SW

1

1

() () ()()∑
=

+=
M

i
iTit

M
SR

1

1

Interpretation as 2D-Bin-Packing-
Problem

• Programm i is represented as rectangle with edge lengths popt
and T(popt).

• Goal: Find a placement of the rectangles such that the
maximum number of processors is not exceeded and the
makespan is minimized.

6-10Barry Linnert, linnert@inf.fu-berlin.de, Cluster Computing SoSe 2023

Number of processors

Maximum number
of processors

Length of schedule (makespan)

Fragmentation

time

2D-Bin-Packing

• The problem is NP-complete.
• Heuristic approaches are:

• FCFS: The requests are processed in the order of arrival.
• FFDH (First Fit Decreasing Height): The requests are

ordered according to their execution times (decreasing).
• FFIH (First Fit Increasing Height): The requests are ordered

according to their execution times (increasing).
• Example sequence

i 1 2 3 4 5 6 7 8 9 10
p(i) 16 256 16 256 32 128 32 128 64 64
T(i) 25 50 10 5 20 40 20 10 15 30

Barry Linnert, linnert@inf.fu-berlin.de, Cluster Computing SoSe 2023 6-11

FCFS

• Procedure:
• sort requests according to arrival
• schedule A1 for t =0
• schedule next requests A2, A3,...,Ak also for t =0, as long

as

• if not, start a new scheduling level beginning at

(){ }iTkt
k

i 1
max:)1(

=
=+

() pip
k

i
≤∑

=1

Barry Linnert, linnert@inf.fu-berlin.de, Cluster Computing SoSe 2023 6-12

FCFS: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10

i=2

i=1 i=3

i=6

i=4

i=5

i=7

i=8

i=9

i=10

0 10 20 30 40 50 60 70 80 90 100 110 120

256

224

192

160

128

96

64

32

0

p

t
130 140 150 160

T(S) = 160

Barry Linnert, linnert@inf.fu-berlin.de, Cluster Computing SoSe 2023 6-13

Backfilling

• Pure FCFS leads to high fragmentation.
• „Backfilling“ can improve this:
• To fill up a scheduling level not only the next request,

but all requests in the queue are considered. That
means smaller requests that still fit in will be preferred.

Barry Linnert, linnert@inf.fu-berlin.de, Cluster Computing SoSe 2023 6-14

FCFS-Backfilling:
1, 3, 5, 7, 8, 2, 4, 6, 9, 10

6-15Barry Linnert, linnert@inf.fu-berlin.de, Cluster Computing SoSe 2023

i=2

i=1
i=3

i=6

i=4

i=5

i=7

i=8 i=9

i=10

256

224

192

160

128

96

64

32

0

p

t

T(S) = 120

First Fit Decreasing Height (FFDH)

• Procedure:
• Rectangles are left adjusted in the respective scheduling

level.
• Rectangles are sorted by decreasing execution time T(i).
• Starting with the empty schedule and scheduling level t =

0 the rectangles are put onto each other until the next one
does not fit in, since we reached the ceiling.

• Than we start the next scheduling level.
• Theoretical result :

• Let be Tmax the longest execution time of a request.
• Let be T(Sopt) the length of the optimal schedule.
• Let be T(SFFDH) the length of the schedule found by FFDH.
• Than the following upper bound holds:

T(SFFDH) ≤ 1,7 T(Sopt) + Tmax

6-16Barry Linnert, linnert@inf.fu-berlin.de, Cluster Computing SoSe 2023

FFDH: 2, 6, 10, 1, 5, 7, 9, 3, 8, 4

6-17Barry Linnert, linnert@inf.fu-berlin.de, Cluster Computing SoSe 2023

i=2

i=1

i=3

i=6

i=4

i=5

i=7

i=8

i=9

i=10

0 10 20 30 40 50 60 70 80 90 100 110 120

256

224

192

160

128

96

64

32

0

p
T(S) = 115

t

FFDH-Backfilling:
2, 6, 10, 1, 5, 3, 7, 9, 8, 4

6-18Barry Linnert, linnert@inf.fu-berlin.de, Cluster Computing SoSe 2023

i=2

i=1

i=3

i=6

i=4

i=5

i=7

i=8

i=9

i=10

0 10 20 30 40 50 60 70 80 90 100 110 120

256

224

192

160

128

96

64

32

0

p

t

T(S) = 115

First Fit Increasing Height (FFIH)

• Procedure:
• Like FFDH, but with opposite sorting direction: shortest

jobs next.
• Similar fragmentation and schedule length as FFDH
• Shorter mean waiting time (corresponds to Shortest Job

Next)

Barry Linnert, linnert@inf.fu-berlin.de, Cluster Computing SoSe 2023 6-19

i=2

i=1

i=3

i=6

i=4

i=5

i=7

i=8

i=9

i=10

0 10 20 30 40 50 60 70 80 90 100 110 120

256

224

192

160

128

96

64

32

0

p

t

T(S) = 115

Barry Linnert, linnert@inf.fu-berlin.de, Cluster Computing SoSe 2023 6-20

FFIH

Malleable (moldable) Rectangles

• Another degree of freedom for a scheduler arises when we
take into account that in most cases a program can be started
even without having popt processors available.

• (The rectangles can be considered malleable)

6-21Barry Linnert, linnert@inf.fu-berlin.de, Cluster Computing SoSe 2023

(p1,T(p1))

(p2,T(p2))

(p3,T(p3))
(p4,T(p4))

(p5,T(p5))

T

p

6.3 Semi-dynamic Allocation

• Given:
• Dynamic set of programs, fed by an (usually stochastic)

arrival process.
• pf(t) number of free processors at time t
• W(t) set of programs that already arrived at time t but

are still waiting for allocation
We assume that W(t) is ordered according to the
order of arrival (FIFO queue).

6-22Barry Linnert, linnert@inf.fu-berlin.de, Cluster Computing SoSe 2023

Strategies

• FIFO bzw. FCFS
• Let i be index of the first program in the queue.

If p(i) ≤ pf(t), p(i) processors are allocated to the program.
• Drawback: Larger numbers of processors may be unused

only because the request at the front of the queue is
currently not satifiable.

• First-Fit
• The queue is scanned beginning at the front until a request

j is found that can be satisfied (p(j) ≤ pf(t)).
• Best-Fit

• The queue is completely scanned until a request j is found
for which the following minimum condition is true:

min { pf(t) – p(j) }

6-23Barry Linnert, linnert@inf.fu-berlin.de, Cluster Computing SoSe 2023

j ∈W(t) ∧ p(j) ≤ pf(t))

Strategies

• Best-Fit-Set
• Goal: Find a subset of requests, the sum of which matches

the number of free processors pf(t) as close as possible,
i.e. a subset M ⊆ W(t), such that

pf(t) - Σ p(j) → min
where

Σ p(j) ≤ pf(t)

Remark: The problem is apparently again a "Bin-packing-
Problem“ and therefore NP-complete.

• All strategies except FIFO hold the danger of starvation:
A large request at the front of the queue could be ignored
forever.

6-24Barry Linnert, linnert@inf.fu-berlin.de, Cluster Computing SoSe 2023

Selection strategies

• Window
To reduce the overhead, we can limit the search for
a candidate in the queue to a window of size L, i.e.
only the first L positions of the queue are
considered.

6-25Barry Linnert, linnert@inf.fu-berlin.de, Cluster Computing SoSe 2023

requests

queue

window

A3A6A2A5
allocations

Solution of the starvation problem

• If we use a dynamic window size, we can solve the starvation problem of
large requests (with First-Fit-Request or Best-Fit-Request).

• Let Lmax be the maximum window size (initial value).
• At each successful allocation the window size is updated according to:

• By doing so, the window size shrinks to 1 when the foremost request has
been passed over L-1 times. In this case, this first request must be selected
since it is the only one in the window.

• For L approaching 1 Best-Fit-Request and First-Fit-Request converge to FCFS.

6-26Barry Linnert, linnert@inf.fu-berlin.de, Cluster Computing SoSe 2023

1 if 1 and the request at the head of the queue is skipped.
 otherwisemax

L , LL : L ,
− >

= 


request

queue

window size L=1

A3A6A2A5
allocation

A8

6.4 Dynamic Partitioning

• While up to now the programs were given a fixed number of
processors for the whole runtime, we are considering the case
that processors are allocated to and withdrawn from a
program dynamically (before runtime).

• Basic idea: allocate an additional processor to a program so
that the highest speed-up gain is achieved.

• Given: p processors and M programs with their speed-up-
functions S(i,k), i = 1,...,M; k=1,...,p)

• Goal: Find a quantitative partitioning p(i) such that

• Maximization of the sum of speed-ups indirectly also
minimizes the sum of execution times and maximizes the
throughput.

6-27Barry Linnert, linnert@inf.fu-berlin.de, Cluster Computing SoSe 2023

()() ()
1 1

 with
M M

i i
S i , p i max p p i

= =
→ =∑ ∑

Dynamic Partitioning

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 # processors

Speed-up

The processors are incrementally allocated to the programs.

The program with the highest speed-up-increase (first derivative)
gets an additional processor.

Which program gets how many processors?

Program A1

Program A2

Barry Linnert, linnert@inf.fu-berlin.de, Cluster Computing SoSe 2023 6-28

1 available ← p All processors available.
2 for i ← 1 to m do All programs.
3 p(i) ← 1 Minimal allocation (Initialization).
4 DS(i) ← S(i,p(i)+1)-S(i,p(i)) Calculate differential Speed-up
5 end for (derivative).
6 DS_list ← sort_descending({i,DS(i)}) Sort programs according to Speed-up

derivative.
7 while available > 0 do All processors are being allocated.
8 x ← first(DS-list) Program with steepest speed-up growth

p(i) is being selected
9 remove(DS(x),DS_list) and removed from list.
10 p(x) ← p(x)+1 its no. of alloc. proc. is incremented
11 DS(x) ← S(x,p(x)+1)-S(x,p(x)) the speed-up derivative for this
12 insert(DS(x), DS_list) new value is recomputed and sorted

and reinserted into the list
13 available ← available - 1

14 end while

Barry Linnert, linnert@inf.fu-berlin.de, Cluster Computing SoSe 2023 6-29

Quantitative Dynamic Partitioning

Example

2 4 6 8 10

0. 2

0. 4

0. 6

0. 8
2

3

1
4

5

8
6

7 9

12

10 11 13 14
15

16

A1

A2

dS/dp

allocated
processors p1 3 5 7 9

Barry Linnert, linnert@inf.fu-berlin.de, Cluster Computing SoSe 2023 6-30

Further References

• E. Shmueli and D. G. Feitelson, Backfilling with lookahead to
optimize the performance of parallel job scheduling''. In Job
Scheduling Strategies for Parallel Processing, D. G. Feitelson, L.
Rudolph, and U. Schwiegelshohn (Eds.), Springer-Verlag, LNCS
2862. pp. 228-251, 2003

• Skovira, J. et. al.: The EASY-LoadLeveler API Project, LNCS 1162,
pp.41-47, 1996

• Keleher,J. et al.: Attacking the bottlenecks of backfilling schedulers.
Cluster Computing 3(4), pp.245-254, 2000

Barry Linnert, linnert@inf.fu-berlin.de, Cluster Computing SoSe 2023 6-31

	Foliennummer 1
	6.1 Theoretical Aspects
	Conflict of interests
	Speed-up efficiency
	Speed-up efficiency
	The „Knee“ �in the Cost-Benefit-Function
	Optimal Number of Processors
	6.2 Static Partitioning
	Definitions
	Interpretation as 2D-Bin-Packing-Problem
	2D-Bin-Packing
	FCFS
	FCFS: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10
	Backfilling
	FCFS-Backfilling: �1, 3, 5, 7, 8, 2, 4, 6, 9, 10
	First Fit Decreasing Height (FFDH)
	FFDH: 2, 6, 10, 1, 5, 7, 9, 3, 8, 4
	FFDH-Backfilling: �2, 6, 10, 1, 5, 3, 7, 9, 8, 4
	First Fit Increasing Height (FFIH)
	FFIH
	Malleable (moldable) Rectangles
	6.3 Semi-dynamic Allocation
	Strategies
	Strategies
	Selection strategies
	Solution of the starvation problem
	6.4 Dynamic Partitioning
	Dynamic Partitioning
	Quantitative Dynamic Partitioning
	Example
	Further References

