Chapter 5

Basic Algorithms for Allocation Problems

5.1 Heuristic Search

- Most of the allocation problems mentioned in chapter 4 are combinatorial problems.
- Therefore, they belong to the class of discrete optimization problems:

$$
\begin{aligned}
& \varphi\left(x_{1}, x_{2}, \ldots, x_{n}\right) \rightarrow \min \\
& \text { with } \quad \sum_{j=1}^{n} x_{j}=C ; \quad x_{j} \in N, j=1, \ldots, n
\end{aligned}
$$

- In this general form they are NP-hard.
- Thus, for many practical problems optimal solutions cannot be found in acceptable time.
- A heuristic search is a smart exploration of parts of the solution space.
- Concentration on promising areas
- No guarantee of optimality
- Compromise between effectiveness (how good is the solution found) and efficiency (how fast do we find the solution)

Local Search

1	solution \leftarrow initial_solution	initialization
2	finished \leftarrow fa1se	
3	while not finished do	main loop
4	new_solution \leftarrow modify(solution)	search step
5	de1ta_phi \leftarrow phi (new_solution)-phi (solution)	evaluation
6	if delta_phi <0	improvements only
7	then solution \leftarrow new_solution	acceptance
9	finished $\leftarrow f(?)$	termination criterion
10	end while	
11	end	

Problems:

- What are search steps like?
- What are elementary search steps?
- How can we find at least a local minimum?

Digression: Combinatorics

- Combinatorics is the study of collections of objects. Specifically, counting objects, arrangement, derangement, etc. along with their mathematical properties.
- Counting objects is important in order to analyze algorithms and to compute discrete probabilities.
- Originally, combinatorics was motivated by gambling: counting configurations is essential to elementary probability.
- Example: How many arrangements of a deck of 52 cards are possible?

Permutations

- A permutation of a set of distinct objects is an ordered arrangement of these objects.
- An ordered arrangement of r elements of a set of n elements is called an r-permutation
- The number of r permutations of a set of n distinct elements is

$$
P(n, r)=\Pi_{i=0}^{r-1}(n-i)=n(n-1)(n-2) \cdots(n-r+1)
$$

- It follows that $P(n, r)=\frac{n!}{(n-r)!}$
- In particular $P(n, n)=n$!
- Note here that the order is important. It is necessary to distinguish when the order matters and when it does not.

Permutations: Example

- How many pairs of dance partners can be selected from a group of 12 women and 20 men?
- The first woman can partner with any of the 20 men, the second with any of the remaining 19, etc.
- To partner all 12 women, we have

$$
P(20,12)=20!/ 8!=20 \times 19 \times 18 \times \ldots \times 10 \times 9
$$

- Whereas permutations consider order, combinations are used when order does not matter.
- Definition: A \boldsymbol{k}-combination of elements of a set is an unordered selection of k elements from the set.
- (A combination is simply a subset of cardinality k.)
- The number of k-combinations of a set of cardinality n with $0 \leq k \leq n$ is

$$
C(n, k)=\binom{n}{k}=\frac{n!}{(n-k)!k!}
$$

It is read ' n choose k '.

- A useful fact about combinations is that they are symmetric:

$$
\binom{n}{k}=\binom{n}{n-k}
$$

Ball-in-urn experiment

- Given n balls in an urn or bowl. m times a ball is taken out.
- Question: How many different possibilities exist to take out a ball m times from n balls?

Differentiation:

1. Is the ball put back each time or not?
2. Does it make a difference in which order the balls are removed from the bowl or not?

Combinatorics: Example 2 out of 4

	With repetition	Without repetition
Order matters	$(1,1),(1,2),(1,3),(1,4)$ $(2,1),(2,2),(2,3),(2,4)$ $(3,1),(3,2),(3,3),(3,4)$ $(4,1),(4,2),(4,3),(4,4)$	$(2,1), 2),(1,3),(1,4)$ $(3,1),(3,2),(2,4)$ $(4,1),(4,2),(4,3)$
Order does not	$(1,1),(1,2),(1,3),(1,4)$ $(2,2),(2,3),(2,4)$ $(3,3),(3,4)$ $(4,4)$	$(1,2),(1,3),(1,4)$ $(2,3),(2,4)$ $(3,4)$
matter		

Combinatorics: Formulae

	With repetition	Without repetition
With considering order	"k-Sample" n^{k}	"k-Permutation" $P(n, k)=\binom{n}{k} \cdot k!=\frac{n!}{(n-k)!}$
Without considering order	"k-Selection" $\begin{aligned} & C(n+k-1, n-1)=\binom{n+k-1}{n-1} \\ & =\frac{(n+k-1)!}{k!(n-1)!} \end{aligned}$	"k-Combination" $C(n, k)=\binom{n}{k}=\frac{n!}{(n-k)!k!}$

5.2 Representation

- For the general discussion of search problems, we represent a solution as a finite string from a finite alphabet.

Example: Traveling Salesman Problem

- Goal:
- Coding:

Minimal round trip
string of length n from the alphabet
$\{1, \ldots, n\}$ without repetition (permutation)
$x_{i}=k$: city k is visited at i-th place.

- Size of solution space (permutation): n !

Quantitative Partitioning

- Goal:

Partitioning of p processors into M programs so that the accumulated running time is minimized

- Coding: String of size M of alphabet $\{0,1, \ldots, p\}$ with sum of digits $=p$
$x_{i}=k$: program i is given k processors
- Size of solution space:

$$
\binom{p+M-1}{p}=\binom{p+M-1}{M-1}
$$

Qualitative Partitioning

- Goal:

Assignment of M programs to processor sets with minimal fragmentation and minimal interprocessor communication.

- Coding: string of size p of alphabet $\{0,1, \ldots, M\}$ with repetition
$x_{i}=k$: processor i is occupied by program k
- Size of solution space: $(M+1)^{p}$

Contractive Allocation

m threads
p processors

- Goal:
- Coding: String of size m of alphabet
$\{1, \ldots, p\}$ with repetition
$x_{i}=k$: thread i is assigned to processor k
- Size of solution space: p^{m}

Injective Allocation

m threads
p processors

- Goal:

Injective mapping of m threads to p processors with minimal communication cost.

- Coding: String of size p of alphabet
$\{0,1, \ldots, m\}$ without repetition
$x_{i}=k$: processor i executes thread k
- Size of solution space:

$$
\binom{p}{m} m!
$$

- Goal:
- Coding:

Balanced distribution of m threads across p processors String of size p of alphabet $\{0,1, \ldots, m\}$ with sum of digits of m $x_{i}=k$: processor i receives a load of k threads

- Size of solution space: (same problem as slide 13)

$$
\binom{m+p-1}{m-1}=\binom{m+p-1}{p}
$$

Intermediate result

- A solution is represented by a string of size n.
- The set of feasible solutions spans the solution space.
- Solutions are points in an n-dimensional solution space.
- Associated with each solution x is the value $\Phi(x)$ of the objective function to be optimized.
- Search algorithms scan the solutions space and try to find a solution with a very high (or small) value Φ.

Elementary search steps

- A search step is a (feasible) modification of the string representing a solution.
- Elementary search steps (examples):
- Local value change

$$
x_{1}, x_{2}, x_{3}, \ldots, x_{i} \pm \Delta, \ldots ., x_{n-1}, x_{n}
$$

- Exchange
- Increment shift

- Problem: Between the positions and between the characters distances have to be defined.

Neighborhood

- Depending on the problem and the algorithm used, elementary steps may be defined differently.
- The neighborhood of a point (a solution) denotes all points that can be reached with one elementary step.
- neighbors $(x):=\left\{x^{\prime} \mid \exists\right.$ elementary step $\left.x \rightarrow x^{\prime}\right\}$
- Usually, we have symmetry:

$$
x \in \operatorname{neighbors}(y) \Leftrightarrow y \in \operatorname{neighbors}(x)
$$

- Symmetry implies that search steps are reversible.

Example: Contractive allocation of m threads on a 8×8-mesh

e.g. $x_{i}=44$:
thread i is allocated to processor 44

Elementary step:
local:
move to adjacent processor \mid neighbors $(x) \mid=4 \cdot m$
global:
move to any place \mid neighbors $(x) \mid=63 \cdot m$

Example

- A program consisting of 4 threads has to be assigned to a ring of 4 processors contractively.
- Objective function is the total execution time.
- Each solution is a 4-tuple $\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \mathrm{x}_{3}, \mathrm{x}_{4}\right)$ with $x_{i}=k$: thread i is assigned to processor k.

machine

1144

5.3 Gradient descent

- The gradient descent is an improved variant of the local search.
- Instead of performing an arbitrary elementary step, all possible elementary steps are evaluated (objective function) and that step with the largest gain is selected.
- We therefore proceed in the direction of the steepest slope (direction of gradient).

Gradient descent

1	solution \leftarrow initial solution	initialization
2	finished \leftarrow false	
3	while not finished do	main loop
4	for all neighbors(solution) do	
5	calculate phi (neighbor)	test steps
6	end for	
7	new_solution \leftarrow neighbor with min. phi (neighbor)	gradient descent
8	de1ta_phi \leftarrow phi (new_solution)phi(solution)	evaluation
9	if delta_phi < 0	
10	then solution \leftarrow new_solution	descent (improvement)
11	else finished \leftarrow true	local minimum
12	end while	
13	end	

- Local search algorithms exhibit the fundamental problem that they do find a local minimum but cannot escape it.
- Many heuristic approaches can be distinguished by the way they are able to leave local minima.

5.4 Taboo search

- Taboo search is another improved variant of local search.
- Occasionally also deteriorations are accepted.
- In contrast to the gradient descent it has a "memory":
- Best solution found so far
- List of forbidden steps (taboo), e.g. to avoid cycles

Taboo search (simplified)

1	solution \leftarrow initial solution	initialization
2	best_solution \leftarrow solution	
3	taboo_1ist \leftarrow \{solution $\}$	
4	finished \leftarrow false	main loop
5	while not finished do	
6	for al1 neighbors (solution) do	test steps
7	calculate phi (neighbor)	
8	end for	calculate new solution
9	solution \leftarrow neighbor with min. phi (neighbor) and neighbor \notin tabulist	
10	tabulist \leftarrow tabulist \cup \{solution\}	update
11	if phi(solution) < phi (best_solution)	
12	then best_solution \leftarrow solution	store best solution
13	finished \leftarrow f(?)	termination criterion
14	end while	
15	end	

5.5 Probing paths

- Another idea to escape from local minima is to run a complete path (e.g. along some dimension) and only then accept the minimum of the path as the next solution.

Probing paths

- Starting at the minimum found we can then proceed with a new probing path along a new dimension.

Probing paths

1	solution \leftarrow initia] solution	initialization
2	finished \leftarrow false	
3	while not finished do	main loop
4	select probing_path	
5	i $\leftarrow 0$	
6	step[0] \leftarrow solution	test steps
7	while not (end_of_path) do	
8	step[i] \leftarrow next(step[i-1])	store values of objective function
9	phi_s[i] \leftarrow phi (step $(i))$	
10	end while	index of minimum along path
11	i \leftarrow minimum(phi_s)	gradient descent
12	new_solution \leftarrow step[i]	evaluation
11	delta_phi \leftarrow phi $($ new_solution)-phi (solution)	
12	if de7ta_phi <0	descent (improvement)
13	then solution \leftarrow new_solution	local minimum
14	else finished \leftarrow true	
15	end while	

5.6 Simulated Annealing (SA)

- Idea 1: Accept steps „uphill" with some probability.
- Idea 2: At the beginning search in large areas and then gradually restrict the scope of the search.
- Approach: Prob(accept deterioration by $\Delta \varphi)=\exp (-\Delta \varphi / T)$
- T controls the "acceptance of deterioration" and is reduced stepwise e.g.:
- logarithmic decrement:
- geometric decrement:
- linear decrement:

$$
\begin{aligned}
& \mathrm{T}(\mathrm{i}):=\mathrm{T}_{0} / \log (\mathrm{i}), \mathrm{i}=1,2, \ldots \\
& \mathrm{~T}(\mathrm{i}):=\mathrm{T}_{0} / \mathrm{q}^{\mathrm{i}}(\mathrm{q}>1), \mathrm{i}=1,2, \ldots \\
& \mathrm{~T}(\mathrm{i}):=\mathrm{T}_{0}(1-\mathrm{i} / \mathrm{m}), \mathrm{i}=0,1,2, \ldots, \mathrm{~m}
\end{aligned}
$$

- Remark: Idea goes back to computer simulation of cooling down procedures (annealing) of specific material (spin glasses), that are fluid at high temperature (high mobility of molecules) and by careful annealing achieve a homogeneous grid structure at minimum energy.

Simulated Annealing (Variant)

Also here it is rewarding to save the best solution found so far

1	solution \leftarrow random initial solution	
2	T \leftarrow T0	initialize threshold
3	best_solution \leftarrow solution	
4	for i $\leftarrow 0$ to m do	m=number of stages
5	for j $\leftarrow 1$ to n do	n =number of steps per stage
6	new_solution \leftarrow modify (solution)	
7	delta_phi \leftarrow phi (new_solution)-phi (solution)	
8	if phi (new_solution) <phi (best_solution)	
9	then best_solution \leftarrow new_solution	save new best solution
10	if de1ta_phi <0	
11	then solution \leftarrow new_solution	improvement
12	else with prob exp $(-$ delta_phi/T)	deterioration
13	solution \leftarrow new_solution	
14	end for	
15	T \leftarrow decrement (T)	decrement threshold
16	end for	

Threshold Accepting

- Experimental insight: acceptance can be controlled deterministically without loss of solution quality:

Accept, if $\Delta \varphi<\mathrm{T}$

- Results in a variant of Simulated Annealing.

Threshold Accepting

1	solution \leftarrow random initial solution	
2	$\mathrm{T} \leftarrow \mathrm{T} 0$	initialize threshold
3	best_solution \leftarrow solution	
4	for $\mathrm{i} \leftarrow 0$ to m do	$\mathrm{m}=$ number of stages
5	for $\mathrm{j} \leftarrow 1$ to n do	n = number of steps per stage
6	new_solution \leftarrow modify(solution)	
7	```de1ta_phi\leftarrowphi(new_solution)- phi(solution)```	
8	if phi (new_solution) < phi (best_solution)	
9	then best_solution \leftarrow new_solution	save best solution
10	if de1ta_phi < T	
11	then solution \leftarrow new_solution	acceptance
12	end for	
13	T \leftarrow decrement (T)	decrement threshold
14	end for	

Deluge Algorithm

Further variant: Instead of relative comparing with previous solution, compare with best solution

1	solution \leftarrow random initial solution	
2	T \leftarrow T0	initialize threshold
3	best_solution \leftarrow solution	
4	for $\mathrm{i} \leftarrow 0$ to m do	m=number of stages
5	for $\mathrm{j} \leftarrow 1$ to n do	n =number of steps per stage
6	new_solution \leftarrow modify (solution)	
7	de7ta_phi \leftarrow phi (new_solution)-phi (solution)	
8	if phi (new_solution)< phi (best_solution)	
9	then best_solution \leftarrow new_solution	save best solution
10	if phi (new_solution)<phi(best_solution)+T	maximally by T worse than best solution
11	then solution \leftarrow new_solution	acceptance
12	e1se solution \leftarrow best_solution	variant: backtracking
13	end for	
14	T \leftarrow decrement (T)	reduce threshold
15	end for	

5.7 Iteration

- The solution found by a heuristic search algorithm depends on the initial solution.
- Starting with another initial value we may find another, better final solution.
- Thus: Iteration across different initial solutions.

1	best_solution \leftarrow initial solution	initialization
2	for $\boldsymbol{i} \leftarrow 1$ to n do	iteration
3	solution \leftarrow new_initial solution	new initialization
4	\{heuristic search\}	delivers loc. minimum (solution)
5	if phi (best_solution) $>$ phi (solution)	
6	then best_solution \leftarrow solution	improvement
7	end for	
8	end	

5.8 Parallelism

- Since the particular iterations are independent of each other, they can be executed in parallel.
- Two variants:
- Variant A
- Disjoint partitioning of solution space
- Heuristic search in each partition (subspace) in parallel
- Calculating minimum after termination of all search activities
- Variant B
- No partitioning
- All „minimum searcher" search in the whole area
- Calculating minimum after termination of all search activities

5.9 Combination of solutions

- Evolutionary algorithms:
- Idea: If we proceed with many solutions simultaneously, why not combine their „beneficial" features.
- Reverting to Darwin's evolution strategy: crossover, mutation, „survival of the fittest"
\(\left.\begin{array}{|l|l|l|}\hline 1 \& solution_set \leftarrow initial solution_set \& initialization

\hline 2 \& finished \leftarrow false \&

\hline 3 \& while not finished do \& main loop

\hline 4 \& combination_set \leftarrow select(solution_set) \& survival of the fittest

\hline 5 \& new_solution_set \leftarrow

recombine(combination_set)\end{array}\right]\)| cross over, mutation |
| :--- |
| 15 |

Genetic Algorithms (GA)

- Problem: How to find suitable operations?
- How many solutions should be involved?
- one: mutation
- two: crossover
- n: n-fold crossover
- How do we combine or modify?
- Permutation of strings
- Exchange of substrings
- Blend of substrings
- Genetic Algorithms are a subclass of Evolutionary Algorithms.
- They require a representation of solutions as binary strings of fixed length.
- They use two operators only :
- binary mutation: flipping individual bits in solution string
- binary crossover: combination of solution strings
- To explain the way GA work we need some auxiliary functions:
- random_select(set):
selects an element of a n-element set with equal probability $(p=1 / n)$.
- p_select(p, set):
selects an element of a n-element set according to a given discrete probability density function $p_{i}(i=1, . ., n)$.
- head($\mathbf{x}, \mathbf{j})$ and tail($\mathbf{x}, \mathbf{j})$

- mutation(\mathbf{x}, \mathbf{j})

Bit j in bit string x is inverted.

Comparison of the two selection procedures

- The two selection procedures can be regarded as turning the roulette wheel with the elements as sectors.
- With random_select all sectors are of the same size, with p_select the probabilities are proportional to the sector angles.

p_select (p,M)

Genetic Algorithms: Example

Genetic Algorithms: Example (continued)

18	new_solution_set $\leftarrow \varnothing$	
19	for all (x, y) \in mating_pairs do	crossover
20	$j \leftarrow r a n d o m _s e l e c t(\{1,2, \ldots, k\})$	substring selection
21	new_solution $1 \leftarrow$ head $(x, j)+$ tai1 (y, j)	build generation of offsprings by
22	new_solution $2 \leftarrow \operatorname{head}(\mathrm{y}, \mathrm{j})+$ tai1 (x, j)	crosswise exchange of substrings
23	new_solution_set \leftarrow new_solution_set \{new_solution1, new_solution2\}	parents are replaced by offsprings
24	end for	
25	for all s e new_solution_set do	
26	with probability mp do	modification probability mp
27	$\mathrm{j} \leftarrow$ random_select $(\{1,2, \ldots, k\})$	random feature selection
28	modify (s, j)	feature j is modified
29	end with	
30	end for	
31	solution_set \leftarrow new_solution_set	
32	end while	
33	end GA	

Example

$\varphi(n)=n^{2} \rightarrow \max ; \quad n \in\{0,1,2, \ldots, 31\}$
Representation as a GA problem:

$$
n=\sum_{i=0}^{4} x_{i} 2^{i} \quad x_{i} \in\{0,1\}
$$

Example (continued)

No.	Solution set	x	$\varphi(\mathrm{x})$	Selection probabili- ty	Sele ction	Mating pool after selection	No of mate (rand.)	Substring selection (random)	New solution set	x	$\varphi(\mathrm{x})$

1. Iteration

1.	01101	13	169	0.15	1	$01 \mid 101$	2	2	01000	8	64
2.	11000	24	576	0.51	2	$11 \mid 000$	1	2	11101	29	841
3.	00100	4	16	0.02	0	$1100 \mid 0$	4	4	11001	25	625
4.	10011	19	361	0.32	1	$1001 \mid 1$	3	4	10010	18	324
S			1122								1854
Max			576								841

Example (continued)

No.	Solution set	x	$\varphi(\mathrm{x})$	Selection probabili- ty	Sele ction	Mating pool after selection	No of mate (rand.)	Substring selection (random)	New solution set	x	$\varphi(\mathrm{x})$

2. Iteration

1.	01000	8	64	0.03	0	$111 \mid 01$	3	3	11101	29	841
2.	11101	29	841	0.45	2	$11 \mid 101$	4	2	11010	26	676
3.	11001	25	625	0.34	1	$110 \mid 01$	1	3	11001	25	625
4.	10010	18	324	0.18	1	$10 \mid 010$	2	2	10101	21	441
S			1854								2583
Max			841								841

Example (continued)

| No. | Solution set | x | $\varphi(\mathrm{x})$ | Selection
 probabili-
 ty | Sele
 ction | Mating pool
 after
 selection | No of
 mate
 (rand.) | Substring
 selection
 (random) | New
 solution
 set | x |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | $\mathrm{\varphi(x)}$

3. Iteration

1.	11101	29	841	0.33	2	$1 \mid 1101$	4	1	11101	29	841
2.	11010	26	676	0.26	1	$110 \mid 10$	3	3	11001	25	625
3.	11001	25	625	0.24	1	$110 \mid 01$	2	3	11010	26	676
4.	10101	21	441	0.17	0	$1 \mid 1101$	1	1	11101	29	841
S			2583							2983	
Max											

Example (continued)

| No. | Solution set | x | $\varphi(\mathrm{x})$ | Selection
 probabili-
 ty | Sele
 ction | Mating pool
 after
 selection | No of
 mate
 (rand.) | Substring
 selection
 (random) | New
 solution
 set | x |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | $\mathrm{\varphi(x)}$

4. Iteration

1.	11101	29	841	0.28	2	$1 \mid 1101$	2	1	11101	29	841
2.	11001	25	625	0.21	0	$1 \mid 1101$	1	1	11101	29	841
3.	11010	26	676	0.23	1	$110 \mid 10$	3	3	11001	25	625
4.	11101	29	841	0.28	1	$111 \mid 01$	4	3	11110	30	900
S			2983								3207
Max			841								900

Example (continued)

\(\left.$$
\begin{array}{|l|l|l|l|l|l|l|l|l|l|l|}\hline \text { No. } & \text { Solution set } & \mathrm{x} & \varphi(\mathrm{x}) & \begin{array}{l}\text { Selection } \\
\text { probabili- } \\
\text { ty }\end{array} & \begin{array}{l}\text { Sele } \\
\text { ction }\end{array} & \begin{array}{l}\text { Mating pool } \\
\text { after } \\
\text { selection }\end{array} & \begin{array}{l}\text { No of } \\
\text { mate } \\
\text { (rand.) }\end{array} & \begin{array}{l}\text { Substring } \\
\text { selection } \\
\text { (random) }\end{array}
$$ \& \begin{array}{l}New

solution

set\end{array} \& x\end{array}\right\} \varphi(x)\)

5. Iteration

1.	11101	29	841	0.26	1	$1110 \mid 1$	3	4	11100	28	784
2.	11101	29	841	0.26	1	$111 \mid 01$	4	3	11110	30	900
3.	11001	25	625	0.20	0	$1111 \mid 0$	1	4	11111	31	961
4.	11110	30	900	0.28	2	$111 \mid 10$	2	3	11101	29	841
S			3207								3486
Max			900								961

Example (continued)

\(\left.$$
\begin{array}{|l|l|l|l|l|l|l|l|l|l|l|}\hline \text { No. } & \text { Solution set } & \mathrm{x} & \varphi(\mathrm{x}) & \begin{array}{l}\text { Selection } \\
\text { probabili- } \\
\text { ty }\end{array} & \begin{array}{l}\text { Sele } \\
\text { ction }\end{array} & \begin{array}{l}\text { Mating pool } \\
\text { after } \\
\text { selection }\end{array} & \begin{array}{l}\text { No of } \\
\text { mate } \\
\text { (rand.) }\end{array} & \begin{array}{l}\text { Substring } \\
\text { selection } \\
\text { (random) }\end{array}
$$ \& \begin{array}{l}New

solution

set\end{array} \& x\end{array}\right\} \varphi(x)\)

6. Iteration

1.	11100	28	784	0.22	0	$11 \mid 111$	3	2	11111	31	961
2.	111110	30	900	0.26	1	$1111 \mid 0$	4	4	11111	31	961
3.	11111	31	961	0.28	2	$11 \mid 111$	1	2	11111	31	961
4.	11101	29	841	0.24	1	$1110 \mid 1$	2	4	11100	28	784
S			3486								3667
Max			961								961

Summary of Techniques

- Proceeding along the most promising direction (gradient descent)
- Memory, e.g., prevention of cycles (Taboo search)
- Evaluation of sequence of steps instead of single steps (probing paths)
- Acceptance of deterioration (Simulated Annealing)
- Backtracking
- Iteration with new initial solution
- Search in parallel
- Combination of solutions (Genetic Algorithms)
- Dueck,G.; Scheuer,T.; Wallmeier,H.-M.: Toleranzschwelle und Sintflut: neue Ideen zur Optimierung. Spektrum der Wissenschaft (März 1993) S.42-51 (in German)
- Goldberg,D.E.: Genetic Algorithms. Addison Wesley (1989)
- Kirkpatrick,S.; Swendsen,R.H.: Statistical Mechanics and Disordered Systems. CACM 28 (1985), S. 363-373
- Rayward-Smith, V. J. (Editor): Modern Heuristic Search Methods, John Wiley, 1996
- Pham, D.; Karaboga, D.; Intelligent Optimisation Techniques: Genetic Algorithms, Tabu Search, Simulated Annealing and Neural Networks, Springer, Berlin, 2000
- Michiels,W.; Aarts, E.; Korst,J.: Theoretical Aspects of Local Search, Springer, 2006

