
Chapter 5

Basic Algorithms for Allocation Problems



5.1 Heuristic Search

• Most of the allocation problems mentioned in chapter 4 
are combinatorial problems.

• Therefore, they belong to the class of discrete 
optimization problems:

• In this general form they are NP-hard.
• Thus, for many practical problems optimal solutions 

cannot be found in acceptable time.
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Heuristic Search

• A heuristic search is a smart exploration of parts of the 
solution space.

• Concentration on promising areas

• No guarantee of optimality

• Compromise between effectiveness (how good is the 
solution found) and efficiency (how fast do we find the 
solution)

Barry Linnert, linnert@inf.fu-berlin.de, Cluster Computing  SoSe 2023 5-3



Local Search

Problems:
• What are search steps like?
• What are elementary search steps?
• How can we find at least a local minimum?

1 solution ← initial_solution initialization
2 finished ← false

3 while not finished do main loop
4 new_solution ← modify(solution) search step
5 delta_phi←phi(new_solution)-phi(solution) evaluation
6 if delta_phi < 0 improvements only
7 then solution ← new_solution acceptance
9 finished ← f(?) termination criterion
10 end while

11 end
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Digression: Combinatorics

• Combinatorics is the study of collections of objects.  
Specifically, counting objects, arrangement, 
derangement, etc. along with their mathematical 
properties.

• Counting objects is important in order to analyze 
algorithms and to compute discrete probabilities.

• Originally, combinatorics was motivated by 
gambling: counting configurations is essential to 
elementary probability.
• Example: How many arrangements of a deck of 52 cards 

are possible?
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Permutations

• A permutation of a set of distinct objects is an ordered 
arrangement of these objects.  

• An ordered arrangement of r elements of a set of n elements 
is called an r-permutation

• The number of r permutations of a set of n distinct elements is

• It follows that 

• In particular P(n,n) = n!

• Note here that the order is important.  It is necessary to 
distinguish when the order matters and when it does not.
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Permutations: Example

• The first woman can partner with any of the 20 men, the 
second with any of the remaining 19, etc.

• How many pairs of dance partners can be 
selected from a group of 12 women and 20 men?

– To partner all 12 women, we have
P(20,12) = 20!/8! = 20×19×18×…×10×9
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Combinations

• Whereas permutations consider order, combinations are 
used when order does not matter.

• Definition: A k-combination of elements of a set is an 
unordered selection of k elements from the set.  

• (A combination is simply a subset of cardinality k.)

• The number of k-combinations of a set of cardinality n with 
0 ≤ k ≤ n is

It is read ‘n choose k’. 

• A useful fact about combinations is that they are symmetric:
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Ball-in-urn experiment

• Given n balls in an urn or bowl. m times a ball is taken 
out.

• Question: How many different possibilities exist to take 
out a ball m times from n balls? 

5-9Barry Linnert, linnert@inf.fu-berlin.de, Cluster Computing  SoSe 2023

1 2
6 54

3

Differentiation:

1. Is the ball put back each time 
or not?

2. Does it make a difference in 
which order the balls are 
removed from the bowl or not?



Combinatorics: Example 2 out of 4

With repetition Without repetition

Order matters

Order does not 

matter

(1,1),(1,2),(1,3),(1,4)
(2,1),(2,2),(2,3),(2,4) 
(3,1),(3,2),(3,3),(3,4)
(4,1),(4,2),(4,3),(4,4)

(1,1),(1,2),(1,3),(1,4)
(2,2),(2,3),(2,4)

(3,3),(3,4)
(4,4)

(1,2),(1,3),(1,4)
(2,1),        (2,3),(2,4) 
(3,1),(3,2),        (3,4)
(4,1),(4,2),(4,3)

(1,2),(1,3),(1,4)
(2,3),(2,4)

(3,4)
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Combinatorics: Formulae

With repetition Without repetition

With 
considering 
order

Without 
considering 
order
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5.2 Representation

• For the general discussion of search problems, we 
represent a solution as a finite string from a finite alphabet.

Example: Traveling Salesman Problem

• Goal: Minimal round trip
• Coding: string of length n from the alphabet 

{1,...,n}  without repetition (permutation)
xi = k :  city k is visited at i-th place.

• Size of solution space (permutation): n!

n cities

Barry Linnert, linnert@inf.fu-berlin.de, Cluster Computing  SoSe 2023 5-12



Quantitative Partitioning

• Goal: Partitioning of p processors into M programs 
so that the accumulated running time is minimized

• Coding: String of size M of alphabet {0,1,...,p} with 
sum of digits = p
xi = k : program i is given k processors

• Size of solution space:
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Qualitative Partitioning

• Goal: Assignment of  M programs to processor sets
with minimal fragmentation and minimal 
interprocessor communication.

• Coding: string of size p of alphabet
{0,1,...,M} with repetition
xi = k : processor i is occupied by program  k

• Size of solution space: (M +1)p

p Processors

A1

A2

M Programs
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Contractive Allocation

• Goal: Mapping of threads to processors with minimal 
interprocessor communication and balanced load.

• Coding: String of size m of alphabet
{1,...,p} with repetition
xi = k : thread i is assigned to processor  k

• Size of solution space: pm

p processorsm threads
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Injective Allocation

• Goal: Injective mapping of m threads to p processors 
with minimal communication cost.

• Coding: String of size p of alphabet
{0,1,...,m} without repetition
xi = k : processor i executes thread k

• Size of solution space: 

p processorsm threads

!m
m
p
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Load balancing

• Goal: Balanced distribution of m threads across p processors
• Coding: String of size p of alphabet

{0,1,...,m} with sum of digits of m
xi = k : processor i receives a load of k threads

• Size of solution space:
(same problem as slide 13) 
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Intermediate result

• A solution is represented by a string of size n.
• The set of feasible solutions spans the solution 

space.
• Solutions are points in an n-dimensional solution 

space.
• Associated with each solution x is the value Φ (x) of 

the objective function to be optimized.
• Search algorithms scan the solutions space and try 

to find a solution with a very high (or small) value Φ.
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Elementary search steps

• A search step is a (feasible) modification of the string representing a 
solution.

• Elementary search steps (examples):

• Local value change

• Exchange

• Increment shift

• Problem: Between the positions and between the characters 
distances have to be defined.
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x1, x2, x3,..., xi±∆,...., xn-1, xn

x1, x2, x3,..., xi,..., xk,...., xn-1, xn

x1, x2, x3,..., xi,..., xk,...., xn-1, xn

-1         +1



Neighborhood

• Depending on the problem and the algorithm used, 
elementary steps may be defined differently.

• The neighborhood of a point (a solution) denotes all points 
that can be reached with one elementary step.

• neighbors(x) := {x‘∃ elementary step  x →x‘}
• Usually, we have symmetry:

x∈neighbors(y) ⇔ y∈neighbors(x)

• Symmetry implies that search steps are reversible.
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Example: Contractive allocation of m
threads on a 8x8-mesh
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62     63      64

i

1       2       3        4
e.g. xi = 44:

thread i is allocated to processor 
44

Elementary step:

local: 

move to adjacent processor

neighbors(x) = 4⋅m

global: 

move to any place

neighbors(x) = 63⋅m



Example

• A program consisting of  
4 threads has to be 
assigned to a ring of 4 
processors contractively.

• Objective function is the 
total execution time.

• Each solution is a 4-tuple 
(x1, x2, x3, x4) with xi=k : 
thread i is assigned to 
processor k.

0
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0
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10
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4444

1 2

3 4

1 2

3 4

1 2 2

1

1

22

1

machine program

Total execution
time
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5.3 Gradient descent

• The gradient descent is an improved variant of the local 
search.

• Instead of performing an arbitrary elementary step, all 
possible elementary steps are evaluated (objective function) 
and that step with the largest gain is selected.

• We therefore proceed in the direction of the steepest slope 
(direction of gradient).
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Gradient descent
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1 solution ← initial solution initialization
2 finished ← false

3 while not finished do main loop
4 for all neighbors(solution) do

5 calculate phi(neighbor) test steps
6 end for

7 new_solution←neighbor with min. 

phi(neighbor)

gradient descent

8 delta_phi←phi(new_solution)-

phi(solution)

evaluation

9 if delta_phi < 0

10 then solution ← new_solution descent (improvement)
11 else finished ← true local minimum
12 end while

13 end



Local Minimum

• Local search algorithms exhibit the fundamental problem 
that they do find a local minimum but cannot escape it.

• Many heuristic approaches can be distinguished by the 
way they are able to leave local minima.
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local minimum

global minimum



5.4 Taboo search

• Taboo search is another improved variant of local 
search.

• Occasionally also deteriorations are accepted. 
• In contrast to the gradient descent it has a “memory”:

• Best solution found so far
• List of forbidden steps (taboo), e.g. to avoid cycles
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Taboo search (simplified)
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1 solution ← initial solution initialization
2 best_solution ← solution

3 taboo_list ← {solution}

4 finished ← false

5 while not finished do main loop
6 for all neighbors(solution) do

7 calculate phi(neighbor) test steps
8 end for

9 solution←neighbor with min. 

phi(neighbor) and neighbor ∉ tabulist

calculate new solution

10 tabulist ← tabulist ∪ {solution}                       update
11 if phi(solution) < phi(best_solution)

12 then best_solution ← solution store best solution
13 finished ← f(?) termination criterion 
14 end while

15 end



5.5 Probing paths

• Another idea to escape from local minima is to run a 
complete path (e.g. along some dimension) and only then 
accept the minimum of the path as the next solution.
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Probing paths
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• Starting at the minimum found we can then proceed with a 
new probing path along a new dimension.



Probing paths
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1 solution ← initial solution initialization
2 finished ← false

3 while not finished do main loop
4 select probing_path

5 i ← 0

6 step[0] ← solution

7 while not (end_of_path) do test steps
8 step[i] ← next(step[i-1])

9 phi_s[i] ← phi(step(i)) store values of objective 
function

10 end while

11 i ← minimum(phi_s) index of minimum along path

12 new_solution ← step[i] gradient descent
11 delta_phi←phi(new_solution)-phi(solution) evaluation
12 if delta_phi < 0

13 then solution ← new_solution descent (improvement)
14 else finished ← true local minimum
15 end while



5.6 Simulated Annealing (SA)

• Idea 1: Accept steps „uphill“ with some probability.
• Idea 2: At the beginning search in large areas and then 

gradually restrict the scope of the search.

• Approach: Prob(accept deterioration by ∆ϕ ) = exp(-∆ϕ/T)

• T controls the “acceptance of deterioration“ and is reduced 
stepwise e.g.:
• logarithmic decrement: T(i) := T0 / log(i),  i = 1,2,...
• geometric decrement: T(i) := T0 / qi (q>1), i = 1,2,...
• linear decrement: T(i) := T0 (1- i/m), i = 0,1,2,...,m

• Remark: Idea goes back to computer simulation of cooling down procedures 
(annealing) of specific material (spin glasses), that are fluid at high temperature 
(high mobility of molecules) and by careful annealing achieve a homogeneous 
grid structure at minimum energy.
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Simulated Annealing (Variant)

Also here it is rewarding to save the best solution found so far
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1 solution ← random initial solution

2 T ← T0 initialize threshold
3 best_solution ← solution

4 for i ← 0 to m do m=number of stages
5 for j ← 1 to n do n =number of steps per stage
6 new_solution ← modify(solution)

7 delta_phi←phi(new_solution)-phi(solution)

8 if phi(new_solution) < phi(best_solution)

9 then best_solution ← new_solution save new best solution
10 if delta_phi < 0

11 then solution ← new_solution improvement
12 else with prob exp(-delta_phi/T) deterioration
13 solution ← new_solution

14 end for

15 T ← decrement(T) decrement threshold
16 end for



Threshold Accepting

• Experimental insight: acceptance can be controlled  
deterministically without loss of solution quality:

Accept, if  ∆ϕ < T

• Results in a variant of Simulated Annealing.

p = exp(-∆ϕ /T)

∆ϕ

p 1 for ∆ϕ < T)
0 otherwisep={
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Threshold Accepting

1 solution ← random initial solution

2 T ← T0 initialize threshold
3 best_solution ← solution

4 for i ← 0 to m do m=number of stages
5 for j ← 1 to n do n =number of steps per stage
6 new_solution ← modify(solution)

7 delta_phi←phi(new_solution)-
phi(solution)

8 if phi(new_solution)< phi(best_solution)

9 then best_solution ← new_solution save best solution
10 if delta_phi < T

11 then solution ← new_solution acceptance
12 end for

13 T ← decrement(T) decrement threshold
14 end for
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Deluge Algorithm

Further variant: Instead of relative comparing with previous solution, 
compare with best solution
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1 solution ← random initial solution

2 T ← T0 initialize threshold
3 best_solution ← solution

4 for i ← 0 to m do m=number of stages
5 for j ← 1 to n do n =number of steps per stage
6 new_solution ← modify(solution)

7 delta_phi←phi(new_solution)-phi(solution)

8 if phi(new_solution)< phi(best_solution)

9 then best_solution ← new_solution save best solution
10 if phi(new_solution)<phi(best_solution)+T maximally by T worse than

best solution
11 then solution ← new_solution acceptance
12 else solution ← best_solution variant: backtracking
13 end for

14 T ← decrement(T) reduce threshold
15 end for



5.7 Iteration

• The solution found by a heuristic search algorithm 
depends on the initial solution.

• Starting with another initial value we may find another, 
better final solution.

• Thus: Iteration across different initial solutions.
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1 best_solution ← initial solution initialization
2 for i ← 1 to n do iteration
3 solution ← new_initial solution new initialization
4 {heuristic Search} delivers loc. minimum 

(solution)
5 if phi(best_solution) > phi(solution)

6 then best_solution ← solution improvement
7 end for

8 end



5.8  Parallelism

• Since the particular iterations are independent of each other, 
they can be executed in parallel.

• Two variants:
• Variant A

• Disjoint partitioning of solution space
• Heuristic search in each partition (subspace) in parallel
• Calculating minimum after termination of all search activities

• Variant B
• No partitioning
• All „minimum searcher“ search in the whole area
• Calculating minimum after termination of all search activities
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5.9 Combination of solutions

• Evolutionary algorithms:
• Idea: If we proceed with many solutions simultaneously, 

why not combine their „beneficial“ features.
• Reverting to Darwin's evolution strategy: crossover, 

mutation, „survival of the fittest“
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1 solution_set ← initial solution_set initialization
2 finished ← false

3 while not finished do main loop
4 combination_set ← select(solution_set) survival of the fittest
5 new_solution_set←

recombine(combination_set)
cross over, mutation

15 calculate phi(new_solution_set) evaluation
7 finished ← f(?) termination criterion ?
8 end



Genetic Algorithms (GA)

• Problem: How to find suitable operations?
• How many solutions should be involved?  

• one: mutation
• two: crossover
• n: n-fold crossover

• How do we combine or modify?
• Permutation of strings
• Exchange of substrings
• Blend of substrings

• Genetic Algorithms are a subclass of Evolutionary 
Algorithms.

• They require a representation of  solutions as binary strings of 
fixed length.

• They use two operators only :
• binary mutation: flipping individual bits in solution string
• binary crossover: combination of solution strings
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Genetic Algorithms

• To explain the way GA work we need some auxiliary 
functions:
• random_select(set):

selects an element of a n-element set with equal 
probability (p=1/n).

• p_select(p, set):
selects an element of a n-element set according to a given 
discrete probability density function pi (i =1,..,n).

• head(x,j) and tail(x,j)
x1, x2, x3,..., xj, xj+1,....., xn

head(x,j)                   tail(x,j)

• mutation(x,j)
Bit j in bit string x is inverted.
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Comparison of the two selection 
procedures

• The two selection procedures can be regarded as turning 
the roulette wheel with the elements as sectors. 

• With random_select all sectors are of the same size, 
with p_select the probabilities are proportional to the 
sector angles. 
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random_select(M) p_select(p,M)



Genetic Algorithms: Example
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1 solution_set ← choose initial solution_set of size n initialization (maximization
problem)

2 while not finished do main loop (generations)

3 for i ←1 to n do all solution

4 sp[i] ←φ[i]/Σφ[i] selection probability sp

5 mating ← ∅

6 for i ←1 to n do

7 s ←p_select(sp,solution_set) random selection according to sp

8 mating_pool ←
mating_pool ∪{s}

9 end for

10 mating_pairs ← ∅

11 While mating_pool ≠ ∅ do random  mating

12 s ← random_select[mating_pool]

13 mating_pool ← mating_pool -{s}

14 t ← random_select [mating_pool ]

15 mating_pool ← mating_pool-{t}

16 mating_pairs ←mating_pairs ∪{(s,t)}

17 end while



Genetic Algorithms: Example 
(continued)
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18 new_solution_set ← ∅

19 for all (x,y) ∈ mating_pairs do crossover

20 j ← random_select({1,2,..,k}) substring selection

21 new_solution1 ← head(x,j)+tail(y,j) build generation of offsprings by

22 new_solution2 ← head(y,j)+tail(x,j) crosswise exchange of substrings

23 new_solution_set ← new_solution_set ∪ 
{new_solution1,new_solution2}

parents are replaced by
offsprings

24 end for

25 for all s ∈ new_solution_set do

26 with probability mp do modification probability mp

27 j ← random_select({1,2,..,k}) random feature selection

28 modify(s,j) feature j is modified

29 end with

30 end for

31 solution_set ← new_solution_set

32 end while

33 end GA



Example

ϕ(n) = n2 → max ;    n ∈ {0,1,2,...,31}

Representation as a GA problem:

{ }1,02
4

0
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off
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off

ϕ(x)

Barry Linnert, linnert@inf.fu-berlin.de, Cluster Computing  SoSe 2023 5-44



Example (continued)

No. Solution set x ϕ(x) Selection
probabili-
ty

Sele
ction

Mating pool
after 
selection

No of
mate
(rand.)

Substring
selection
(random)

New
solution
set

x ϕ(x)

1. 0 1 1 0 1 13 169 0.15 1 0 1 | 1 0 1 2 2 0 1 0 0 0 8 64

2. 1 1 0 0 0 24 576 0.51 2 1 1 | 0 0 0 1 2 1 1 1 0 1 29 841

3. 0 0 1 0 0 4 16 0.02 0 1 1 0 0 | 0 4 4 1 1 0 0 1 25 625

4. 1 0 0 1 1 19 361 0.32 1 1 0 0 1 | 1 3 4 1 0 0 1 0 18 324

S 1122 1854

Max 576 841

1. Iteration
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Example (continued)

1. 0 1 0 0 0 8 64 0.03 0 1 1 1 | 0 1 3 3 1 1 1 0 1 29 841

2. 1 1 1 0 1 29 841 0.45 2 1 1 | 1 0 1 4 2 1 1 0 1 0 26 676

3. 1 1 0 0 1 25 625 0.34 1 1 1 0 | 0 1 1 3 1 1 0 0 1 25 625

4. 1 0 0 1 0 18 324 0.18 1 1 0 | 0 1 0 2 2 1 0 1 0 1 21 441

S 1854 2583

Max 841 841

2. Iteration

No. Solution set x ϕ(x) Selection
probabili-
ty

Sele
ction

Mating pool
after 
selection

No of
mate
(rand.)

Substring
selection
(random)

New
solution
set

x ϕ(x)
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Example (continued)

No. Solution set x ϕ(x) Selection
probabili-
ty

Sele
ction

Mating pool
after 
selection

No of
mate
(rand.)

Substring
selection
(random)

New
solution
set

x ϕ(x)

1. 1 1 1 0 1 29 841 0.33 2 1 | 1 1 0 1 4 1 1 1 1 0 1 29 841

2. 1 1 0 1 0 26 676 0.26 1 1 1 0 | 1 0 3 3 1 1 0 0 1 25 625

3. 1 1 0 0 1 25 625 0.24 1 1 1 0 | 0 1 2 3 1 1 0 1 0 26 676

4. 1 0 1 0 1 21 441 0.17 0 1 | 1 1 0 1 1 1 1 1 1 0 1 29 841

S 2583 2983

Max 841 841

3. Iteration
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Example (continued)

1. 1 1 1 0 1 29 841 0.28 2 1 | 1 1 0 1 2 1 1 1 1 0 1 29 841

2. 1 1 0 0 1 25 625 0.21 0 1 | 1 1 0 1 1 1 1 1 1 0 1 29 841

3. 1 1 0 1 0 26 676 0.23 1 1 1 0 | 1 0 3 3 1 1 0 0 1 25 625

4. 1 1 1 0 1 29 841 0.28 1 1 1 1 | 0 1 4 3 1 1 1 1 0 30 900

S 2983 3207

Max 841 900

4. Iteration

No. Solution set x ϕ(x) Selection
probabili-
ty

Sele
ction

Mating pool
after 
selection

No of
mate
(rand.)

Substring
selection
(random)

New
solution
set

x ϕ(x)
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Example (continued)

No. Solution set x ϕ(x) Selection
probabili-
ty

Sele
ction

Mating pool
after 
selection

No of
mate
(rand.)

Substring
selection
(random)

New
solution
set

x ϕ(x)

1. 1 1 1 0 1 29 841 0.26 1 1 1 1 0 | 1 3 4 1 1 1 0 0 28 784

2. 1 1 1 0 1 29 841 0.26 1 1 1 1 | 0 1 4 3 1 1 1 1 0 30 900

3. 1 1 0 0 1 25 625 0.20 0 1 1 1 1 | 0 1 4 1 1 1 1 1 31 961

4. 1 1 1 1 0 30 900 0.28 2 1 1 1 | 1 0 2 3 1 1 1 0 1 29 841

S 3207 3486

Max 900 961

5. Iteration
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Example (continued)

No. Solution set x ϕ(x) Selection
probabili-
ty

Sele
ction

Mating pool
after 
selection

No of
mate
(rand.)

Substring
selection
(random)

New
solution
set

x ϕ(x)

1. 1 1 1 0 0 28 784 0.22 0 1 1 | 1 1 1 3 2 1 1 1 1 1 31 961

2. 1 1 1 1 0 30 900 0.26 1 1 1 1 1 | 0 4 4 1 1 1 1 1 31 961

3. 1 1 1 1 1 31 961 0.28 2 1 1 | 1 1 1 1 2 1 1 1 1 1 31 961

4. 1 1 1 0 1 29 841 0.24 1 1 1 1 0 | 1 2 4 1 1 1 0 0 28 784

S 3486 3667

Max 961 961

6. Iteration
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Summary of Techniques

• Proceeding along the most promising direction (gradient 
descent)

• Memory, e.g., prevention of cycles (Taboo search)
• Evaluation of sequence of steps instead of single steps 

(probing paths)
• Acceptance of deterioration (Simulated Annealing)
• Backtracking
• Iteration with new initial solution
• Search in parallel
• Combination of solutions (Genetic Algorithms)
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Further references

• Dueck,G.; Scheuer,T.; Wallmeier,H.-M.: Toleranzschwelle und 
Sintflut: neue Ideen zur Optimierung. Spektrum der
Wissenschaft (März 1993) S.42-51 (in German)

• Goldberg,D.E.: Genetic Algorithms. Addison Wesley (1989)

• Kirkpatrick,S.; Swendsen,R.H.: Statistical Mechanics and 
Disordered Systems. CACM 28 (1985), S. 363-373

• Rayward-Smith, V. J. (Editor): Modern Heuristic Search 
Methods, John Wiley, 1996

• Pham, D.; Karaboga, D.; Intelligent Optimisation Techniques: 
Genetic Algorithms, Tabu Search, Simulated Annealing and 
Neural Networks, Springer, Berlin, 2000

• Michiels,W.; Aarts, E.; Korst,J.: Theoretical Aspects of Local 
Search, Springer, 2006 
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