
Chapter 5

Basic Algorithms for Allocation Problems

5.1 Heuristic Search

• Most of the allocation problems mentioned in chapter 4
are combinatorial problems.

• Therefore, they belong to the class of discrete
optimization problems:

• In this general form they are NP-hard.
• Thus, for many practical problems optimal solutions

cannot be found in acceptable time.

()

njNxCxwith

xxx

j

n

j
j

n

,,1,;

min,,,

1

21





=∈=

→

∑
=

ϕ

Barry Linnert, linnert@inf.fu-berlin.de, Cluster Computing SoSe 2023 5-2

Heuristic Search

• A heuristic search is a smart exploration of parts of the
solution space.

• Concentration on promising areas

• No guarantee of optimality

• Compromise between effectiveness (how good is the
solution found) and efficiency (how fast do we find the
solution)

Barry Linnert, linnert@inf.fu-berlin.de, Cluster Computing SoSe 2023 5-3

Local Search

Problems:
• What are search steps like?
• What are elementary search steps?
• How can we find at least a local minimum?

1 solution ← initial_solution initialization
2 finished ← false

3 while not finished do main loop
4 new_solution ← modify(solution) search step
5 delta_phi←phi(new_solution)-phi(solution) evaluation
6 if delta_phi < 0 improvements only
7 then solution ← new_solution acceptance
9 finished ← f(?) termination criterion
10 end while

11 end

Barry Linnert, linnert@inf.fu-berlin.de, Cluster Computing SoSe 2023 5-4

Digression: Combinatorics

• Combinatorics is the study of collections of objects.
Specifically, counting objects, arrangement,
derangement, etc. along with their mathematical
properties.

• Counting objects is important in order to analyze
algorithms and to compute discrete probabilities.

• Originally, combinatorics was motivated by
gambling: counting configurations is essential to
elementary probability.
• Example: How many arrangements of a deck of 52 cards

are possible?

Barry Linnert, linnert@inf.fu-berlin.de, Cluster Computing SoSe 2023 5-5

Permutations

• A permutation of a set of distinct objects is an ordered
arrangement of these objects.

• An ordered arrangement of r elements of a set of n elements
is called an r-permutation

• The number of r permutations of a set of n distinct elements is

• It follows that

• In particular P(n,n) = n!

• Note here that the order is important. It is necessary to
distinguish when the order matters and when it does not.

Barry Linnert, linnert@inf.fu-berlin.de, Cluster Computing SoSe 2023 5-6

Permutations: Example

• The first woman can partner with any of the 20 men, the
second with any of the remaining 19, etc.

• How many pairs of dance partners can be
selected from a group of 12 women and 20 men?

– To partner all 12 women, we have
P(20,12) = 20!/8! = 20×19×18×…×10×9

Barry Linnert, linnert@inf.fu-berlin.de, Cluster Computing SoSe 2023 5-7

Combinations

• Whereas permutations consider order, combinations are
used when order does not matter.

• Definition: A k-combination of elements of a set is an
unordered selection of k elements from the set.

• (A combination is simply a subset of cardinality k.)

• The number of k-combinations of a set of cardinality n with
0 ≤ k ≤ n is

It is read ‘n choose k’.

• A useful fact about combinations is that they are symmetric:

Barry Linnert, linnert@inf.fu-berlin.de, Cluster Computing SoSe 2023 5-8

Ball-in-urn experiment

• Given n balls in an urn or bowl. m times a ball is taken
out.

• Question: How many different possibilities exist to take
out a ball m times from n balls?

5-9Barry Linnert, linnert@inf.fu-berlin.de, Cluster Computing SoSe 2023

1 2
6 54

3

Differentiation:

1. Is the ball put back each time
or not?

2. Does it make a difference in
which order the balls are
removed from the bowl or not?

Combinatorics: Example 2 out of 4

With repetition Without repetition

Order matters

Order does not

matter

(1,1),(1,2),(1,3),(1,4)
(2,1),(2,2),(2,3),(2,4)
(3,1),(3,2),(3,3),(3,4)
(4,1),(4,2),(4,3),(4,4)

(1,1),(1,2),(1,3),(1,4)
(2,2),(2,3),(2,4)

(3,3),(3,4)
(4,4)

(1,2),(1,3),(1,4)
(2,1), (2,3),(2,4)
(3,1),(3,2), (3,4)
(4,1),(4,2),(4,3)

(1,2),(1,3),(1,4)
(2,3),(2,4)

(3,4)

Barry Linnert, linnert@inf.fu-berlin.de, Cluster Computing SoSe 2023 5-10

Combinatorics: Formulae

With repetition Without repetition

With
considering
order

Without
considering
order

kn

() () !k!kn
!n

k
nk,nC

−
=








=

() ()!kn
!n!k

k
nk,nP

−
=⋅








=

()

()
()!n!k

!kn
n

knn,knC

1
1

1
111

−
−+

=









−

−+
=−−+

"k-Sample" "k-Permutation"

"k-Combination""k-Selection"

Barry Linnert, linnert@inf.fu-berlin.de, Cluster Computing SoSe 2023 5-11

5.2 Representation

• For the general discussion of search problems, we
represent a solution as a finite string from a finite alphabet.

Example: Traveling Salesman Problem

• Goal: Minimal round trip
• Coding: string of length n from the alphabet

{1,...,n} without repetition (permutation)
xi = k : city k is visited at i-th place.

• Size of solution space (permutation): n!

n cities

Barry Linnert, linnert@inf.fu-berlin.de, Cluster Computing SoSe 2023 5-12

Quantitative Partitioning

• Goal: Partitioning of p processors into M programs
so that the accumulated running time is minimized

• Coding: String of size M of alphabet {0,1,...,p} with
sum of digits = p
xi = k : program i is given k processors

• Size of solution space:








−

−+
=







 −+
1

11
M

Mp
p
Mp

M Programs

Processors

Barry Linnert, linnert@inf.fu-berlin.de, Cluster Computing SoSe 2023 5-13

Qualitative Partitioning

• Goal: Assignment of M programs to processor sets
with minimal fragmentation and minimal
interprocessor communication.

• Coding: string of size p of alphabet
{0,1,...,M} with repetition
xi = k : processor i is occupied by program k

• Size of solution space: (M +1)p

p Processors

A1

A2

M Programs

Barry Linnert, linnert@inf.fu-berlin.de, Cluster Computing SoSe 2023 5-14

Contractive Allocation

• Goal: Mapping of threads to processors with minimal
interprocessor communication and balanced load.

• Coding: String of size m of alphabet
{1,...,p} with repetition
xi = k : thread i is assigned to processor k

• Size of solution space: pm

p processorsm threads

Barry Linnert, linnert@inf.fu-berlin.de, Cluster Computing SoSe 2023 5-15

Injective Allocation

• Goal: Injective mapping of m threads to p processors
with minimal communication cost.

• Coding: String of size p of alphabet
{0,1,...,m} without repetition
xi = k : processor i executes thread k

• Size of solution space:

p processorsm threads

!m
m
p










Barry Linnert, linnert@inf.fu-berlin.de, Cluster Computing SoSe 2023 5-16

Load balancing

• Goal: Balanced distribution of m threads across p processors
• Coding: String of size p of alphabet

{0,1,...,m} with sum of digits of m
xi = k : processor i receives a load of k threads

• Size of solution space:
(same problem as slide 13)

5-17Barry Linnert, linnert@inf.fu-berlin.de, Cluster Computing SoSe 2023

m threads

p processors








 −+
=








−

−+
p
pm

m
pm 1

1
1

Intermediate result

• A solution is represented by a string of size n.
• The set of feasible solutions spans the solution

space.
• Solutions are points in an n-dimensional solution

space.
• Associated with each solution x is the value Φ (x) of

the objective function to be optimized.
• Search algorithms scan the solutions space and try

to find a solution with a very high (or small) value Φ.

5-18Barry Linnert, linnert@inf.fu-berlin.de, Cluster Computing SoSe 2023

Elementary search steps

• A search step is a (feasible) modification of the string representing a
solution.

• Elementary search steps (examples):

• Local value change

• Exchange

• Increment shift

• Problem: Between the positions and between the characters
distances have to be defined.

5-19Barry Linnert, linnert@inf.fu-berlin.de, Cluster Computing SoSe 2023

x1, x2, x3,..., xi±∆,...., xn-1, xn

x1, x2, x3,..., xi,..., xk,...., xn-1, xn

x1, x2, x3,..., xi,..., xk,...., xn-1, xn

-1 +1

Neighborhood

• Depending on the problem and the algorithm used,
elementary steps may be defined differently.

• The neighborhood of a point (a solution) denotes all points
that can be reached with one elementary step.

• neighbors(x) := {x‘∃ elementary step x →x‘}
• Usually, we have symmetry:

x∈neighbors(y) ⇔ y∈neighbors(x)

• Symmetry implies that search steps are reversible.

Barry Linnert, linnert@inf.fu-berlin.de, Cluster Computing SoSe 2023 5-20

Example: Contractive allocation of m
threads on a 8x8-mesh

5-21Barry Linnert, linnert@inf.fu-berlin.de, Cluster Computing SoSe 2023

62 63 64

i

1 2 3 4
e.g. xi = 44:

thread i is allocated to processor
44

Elementary step:

local:

move to adjacent processor

neighbors(x) = 4⋅m

global:

move to any place

neighbors(x) = 63⋅m

Example

• A program consisting of
4 threads has to be
assigned to a ring of 4
processors contractively.

• Objective function is the
total execution time.

• Each solution is a 4-tuple
(x1, x2, x3, x4) with xi=k :
thread i is assigned to
processor k.

0
2. 5

5
7. 5
10

0
2. 5

5
7. 5
10

1111

4411

1144

4444

1 2

3 4

1 2

3 4

1 2 2

1

1

22

1

machine program

Total execution
time

Barry Linnert, linnert@inf.fu-berlin.de, Cluster Computing SoSe 2023 5-22

5.3 Gradient descent

• The gradient descent is an improved variant of the local
search.

• Instead of performing an arbitrary elementary step, all
possible elementary steps are evaluated (objective function)
and that step with the largest gain is selected.

• We therefore proceed in the direction of the steepest slope
(direction of gradient).

Barry Linnert, linnert@inf.fu-berlin.de, Cluster Computing SoSe 2023 5-23

Gradient descent

5-24Barry Linnert, linnert@inf.fu-berlin.de, Cluster Computing SoSe 2023

1 solution ← initial solution initialization
2 finished ← false

3 while not finished do main loop
4 for all neighbors(solution) do

5 calculate phi(neighbor) test steps
6 end for

7 new_solution←neighbor with min.

phi(neighbor)

gradient descent

8 delta_phi←phi(new_solution)-

phi(solution)

evaluation

9 if delta_phi < 0

10 then solution ← new_solution descent (improvement)
11 else finished ← true local minimum
12 end while

13 end

Local Minimum

• Local search algorithms exhibit the fundamental problem
that they do find a local minimum but cannot escape it.

• Many heuristic approaches can be distinguished by the
way they are able to leave local minima.

5-25Barry Linnert, linnert@inf.fu-berlin.de, Cluster Computing SoSe 2023

local minimum

global minimum

5.4 Taboo search

• Taboo search is another improved variant of local
search.

• Occasionally also deteriorations are accepted.
• In contrast to the gradient descent it has a “memory”:

• Best solution found so far
• List of forbidden steps (taboo), e.g. to avoid cycles

5-26Barry Linnert, linnert@inf.fu-berlin.de, Cluster Computing SoSe 2023

Taboo search (simplified)

5-27Barry Linnert, linnert@inf.fu-berlin.de, Cluster Computing SoSe 2023

1 solution ← initial solution initialization
2 best_solution ← solution

3 taboo_list ← {solution}

4 finished ← false

5 while not finished do main loop
6 for all neighbors(solution) do

7 calculate phi(neighbor) test steps
8 end for

9 solution←neighbor with min.

phi(neighbor) and neighbor ∉ tabulist

calculate new solution

10 tabulist ← tabulist ∪ {solution} update
11 if phi(solution) < phi(best_solution)

12 then best_solution ← solution store best solution
13 finished ← f(?) termination criterion
14 end while

15 end

5.5 Probing paths

• Another idea to escape from local minima is to run a
complete path (e.g. along some dimension) and only then
accept the minimum of the path as the next solution.

Barry Linnert, linnert@inf.fu-berlin.de, Cluster Computing SoSe 2023 5-28

Probing paths

Barry Linnert, linnert@inf.fu-berlin.de, Cluster Computing SoSe 2023 5-29

• Starting at the minimum found we can then proceed with a
new probing path along a new dimension.

Probing paths

5-30Barry Linnert, linnert@inf.fu-berlin.de, Cluster Computing SoSe 2023

1 solution ← initial solution initialization
2 finished ← false

3 while not finished do main loop
4 select probing_path

5 i ← 0

6 step[0] ← solution

7 while not (end_of_path) do test steps
8 step[i] ← next(step[i-1])

9 phi_s[i] ← phi(step(i)) store values of objective
function

10 end while

11 i ← minimum(phi_s) index of minimum along path

12 new_solution ← step[i] gradient descent
11 delta_phi←phi(new_solution)-phi(solution) evaluation
12 if delta_phi < 0

13 then solution ← new_solution descent (improvement)
14 else finished ← true local minimum
15 end while

5.6 Simulated Annealing (SA)

• Idea 1: Accept steps „uphill“ with some probability.
• Idea 2: At the beginning search in large areas and then

gradually restrict the scope of the search.

• Approach: Prob(accept deterioration by ∆ϕ) = exp(-∆ϕ/T)

• T controls the “acceptance of deterioration“ and is reduced
stepwise e.g.:
• logarithmic decrement: T(i) := T0 / log(i), i = 1,2,...
• geometric decrement: T(i) := T0 / qi (q>1), i = 1,2,...
• linear decrement: T(i) := T0 (1- i/m), i = 0,1,2,...,m

• Remark: Idea goes back to computer simulation of cooling down procedures
(annealing) of specific material (spin glasses), that are fluid at high temperature
(high mobility of molecules) and by careful annealing achieve a homogeneous
grid structure at minimum energy.

Barry Linnert, linnert@inf.fu-berlin.de, Cluster Computing SoSe 2023 5-31

Simulated Annealing (Variant)

Also here it is rewarding to save the best solution found so far

5-32Barry Linnert, linnert@inf.fu-berlin.de, Cluster Computing SoSe 2023

1 solution ← random initial solution

2 T ← T0 initialize threshold
3 best_solution ← solution

4 for i ← 0 to m do m=number of stages
5 for j ← 1 to n do n =number of steps per stage
6 new_solution ← modify(solution)

7 delta_phi←phi(new_solution)-phi(solution)

8 if phi(new_solution) < phi(best_solution)

9 then best_solution ← new_solution save new best solution
10 if delta_phi < 0

11 then solution ← new_solution improvement
12 else with prob exp(-delta_phi/T) deterioration
13 solution ← new_solution

14 end for

15 T ← decrement(T) decrement threshold
16 end for

Threshold Accepting

• Experimental insight: acceptance can be controlled
deterministically without loss of solution quality:

Accept, if ∆ϕ < T

• Results in a variant of Simulated Annealing.

p = exp(-∆ϕ /T)

∆ϕ

p 1 for ∆ϕ < T)
0 otherwisep={

Barry Linnert, linnert@inf.fu-berlin.de, Cluster Computing SoSe 2023 5-33

Threshold Accepting

1 solution ← random initial solution

2 T ← T0 initialize threshold
3 best_solution ← solution

4 for i ← 0 to m do m=number of stages
5 for j ← 1 to n do n =number of steps per stage
6 new_solution ← modify(solution)

7 delta_phi←phi(new_solution)-
phi(solution)

8 if phi(new_solution)< phi(best_solution)

9 then best_solution ← new_solution save best solution
10 if delta_phi < T

11 then solution ← new_solution acceptance
12 end for

13 T ← decrement(T) decrement threshold
14 end for

Barry Linnert, linnert@inf.fu-berlin.de, Cluster Computing SoSe 2023 5-34

Deluge Algorithm

Further variant: Instead of relative comparing with previous solution,
compare with best solution

5-35Barry Linnert, linnert@inf.fu-berlin.de, Cluster Computing SoSe 2023

1 solution ← random initial solution

2 T ← T0 initialize threshold
3 best_solution ← solution

4 for i ← 0 to m do m=number of stages
5 for j ← 1 to n do n =number of steps per stage
6 new_solution ← modify(solution)

7 delta_phi←phi(new_solution)-phi(solution)

8 if phi(new_solution)< phi(best_solution)

9 then best_solution ← new_solution save best solution
10 if phi(new_solution)<phi(best_solution)+T maximally by T worse than

best solution
11 then solution ← new_solution acceptance
12 else solution ← best_solution variant: backtracking
13 end for

14 T ← decrement(T) reduce threshold
15 end for

5.7 Iteration

• The solution found by a heuristic search algorithm
depends on the initial solution.

• Starting with another initial value we may find another,
better final solution.

• Thus: Iteration across different initial solutions.

5-36Barry Linnert, linnert@inf.fu-berlin.de, Cluster Computing SoSe 2023

1 best_solution ← initial solution initialization
2 for i ← 1 to n do iteration
3 solution ← new_initial solution new initialization
4 {heuristic Search} delivers loc. minimum

(solution)
5 if phi(best_solution) > phi(solution)

6 then best_solution ← solution improvement
7 end for

8 end

5.8 Parallelism

• Since the particular iterations are independent of each other,
they can be executed in parallel.

• Two variants:
• Variant A

• Disjoint partitioning of solution space
• Heuristic search in each partition (subspace) in parallel
• Calculating minimum after termination of all search activities

• Variant B
• No partitioning
• All „minimum searcher“ search in the whole area
• Calculating minimum after termination of all search activities

Barry Linnert, linnert@inf.fu-berlin.de, Cluster Computing SoSe 2023 5-37

5.9 Combination of solutions

• Evolutionary algorithms:
• Idea: If we proceed with many solutions simultaneously,

why not combine their „beneficial“ features.
• Reverting to Darwin's evolution strategy: crossover,

mutation, „survival of the fittest“

5-38Barry Linnert, linnert@inf.fu-berlin.de, Cluster Computing SoSe 2023

1 solution_set ← initial solution_set initialization
2 finished ← false

3 while not finished do main loop
4 combination_set ← select(solution_set) survival of the fittest
5 new_solution_set←

recombine(combination_set)
cross over, mutation

15 calculate phi(new_solution_set) evaluation
7 finished ← f(?) termination criterion ?
8 end

Genetic Algorithms (GA)

• Problem: How to find suitable operations?
• How many solutions should be involved?

• one: mutation
• two: crossover
• n: n-fold crossover

• How do we combine or modify?
• Permutation of strings
• Exchange of substrings
• Blend of substrings

• Genetic Algorithms are a subclass of Evolutionary
Algorithms.

• They require a representation of solutions as binary strings of
fixed length.

• They use two operators only :
• binary mutation: flipping individual bits in solution string
• binary crossover: combination of solution strings

5-39Barry Linnert, linnert@inf.fu-berlin.de, Cluster Computing SoSe 2023

Genetic Algorithms

• To explain the way GA work we need some auxiliary
functions:
• random_select(set):

selects an element of a n-element set with equal
probability (p=1/n).

• p_select(p, set):
selects an element of a n-element set according to a given
discrete probability density function pi (i =1,..,n).

• head(x,j) and tail(x,j)
x1, x2, x3,..., xj, xj+1,....., xn

head(x,j) tail(x,j)

• mutation(x,j)
Bit j in bit string x is inverted.

Barry Linnert, linnert@inf.fu-berlin.de, Cluster Computing SoSe 2023 5-40

Comparison of the two selection
procedures

• The two selection procedures can be regarded as turning
the roulette wheel with the elements as sectors.

• With random_select all sectors are of the same size,
with p_select the probabilities are proportional to the
sector angles.

5-41Barry Linnert, linnert@inf.fu-berlin.de, Cluster Computing SoSe 2023

random_select(M) p_select(p,M)

Genetic Algorithms: Example

5-42Barry Linnert, linnert@inf.fu-berlin.de, Cluster Computing SoSe 2023

1 solution_set ← choose initial solution_set of size n initialization (maximization
problem)

2 while not finished do main loop (generations)

3 for i ←1 to n do all solution

4 sp[i] ←φ[i]/Σφ[i] selection probability sp

5 mating ← ∅

6 for i ←1 to n do

7 s ←p_select(sp,solution_set) random selection according to sp

8 mating_pool ←
mating_pool ∪{s}

9 end for

10 mating_pairs ← ∅

11 While mating_pool ≠ ∅ do random mating

12 s ← random_select[mating_pool]

13 mating_pool ← mating_pool -{s}

14 t ← random_select [mating_pool]

15 mating_pool ← mating_pool-{t}

16 mating_pairs ←mating_pairs ∪{(s,t)}

17 end while

Genetic Algorithms: Example
(continued)

5-43Barry Linnert, linnert@inf.fu-berlin.de, Cluster Computing SoSe 2023

18 new_solution_set ← ∅

19 for all (x,y) ∈ mating_pairs do crossover

20 j ← random_select({1,2,..,k}) substring selection

21 new_solution1 ← head(x,j)+tail(y,j) build generation of offsprings by

22 new_solution2 ← head(y,j)+tail(x,j) crosswise exchange of substrings

23 new_solution_set ← new_solution_set ∪
{new_solution1,new_solution2}

parents are replaced by
offsprings

24 end for

25 for all s ∈ new_solution_set do

26 with probability mp do modification probability mp

27 j ← random_select({1,2,..,k}) random feature selection

28 modify(s,j) feature j is modified

29 end with

30 end for

31 solution_set ← new_solution_set

32 end while

33 end GA

Example

ϕ(n) = n2 → max ; n ∈ {0,1,2,...,31}

Representation as a GA problem:

{ }1,02
4

0
∈= ∑

=
i

i

i
i xxn

on

off

on

off

on

off

on

off

on

off

ϕ(x)

Barry Linnert, linnert@inf.fu-berlin.de, Cluster Computing SoSe 2023 5-44

Example (continued)

No. Solution set x ϕ(x) Selection
probabili-
ty

Sele
ction

Mating pool
after
selection

No of
mate
(rand.)

Substring
selection
(random)

New
solution
set

x ϕ(x)

1. 0 1 1 0 1 13 169 0.15 1 0 1 | 1 0 1 2 2 0 1 0 0 0 8 64

2. 1 1 0 0 0 24 576 0.51 2 1 1 | 0 0 0 1 2 1 1 1 0 1 29 841

3. 0 0 1 0 0 4 16 0.02 0 1 1 0 0 | 0 4 4 1 1 0 0 1 25 625

4. 1 0 0 1 1 19 361 0.32 1 1 0 0 1 | 1 3 4 1 0 0 1 0 18 324

S 1122 1854

Max 576 841

1. Iteration

Barry Linnert, linnert@inf.fu-berlin.de, Cluster Computing SoSe 2023 5-45

Example (continued)

1. 0 1 0 0 0 8 64 0.03 0 1 1 1 | 0 1 3 3 1 1 1 0 1 29 841

2. 1 1 1 0 1 29 841 0.45 2 1 1 | 1 0 1 4 2 1 1 0 1 0 26 676

3. 1 1 0 0 1 25 625 0.34 1 1 1 0 | 0 1 1 3 1 1 0 0 1 25 625

4. 1 0 0 1 0 18 324 0.18 1 1 0 | 0 1 0 2 2 1 0 1 0 1 21 441

S 1854 2583

Max 841 841

2. Iteration

No. Solution set x ϕ(x) Selection
probabili-
ty

Sele
ction

Mating pool
after
selection

No of
mate
(rand.)

Substring
selection
(random)

New
solution
set

x ϕ(x)

Barry Linnert, linnert@inf.fu-berlin.de, Cluster Computing SoSe 2023 5-46

Example (continued)

No. Solution set x ϕ(x) Selection
probabili-
ty

Sele
ction

Mating pool
after
selection

No of
mate
(rand.)

Substring
selection
(random)

New
solution
set

x ϕ(x)

1. 1 1 1 0 1 29 841 0.33 2 1 | 1 1 0 1 4 1 1 1 1 0 1 29 841

2. 1 1 0 1 0 26 676 0.26 1 1 1 0 | 1 0 3 3 1 1 0 0 1 25 625

3. 1 1 0 0 1 25 625 0.24 1 1 1 0 | 0 1 2 3 1 1 0 1 0 26 676

4. 1 0 1 0 1 21 441 0.17 0 1 | 1 1 0 1 1 1 1 1 1 0 1 29 841

S 2583 2983

Max 841 841

3. Iteration

Barry Linnert, linnert@inf.fu-berlin.de, Cluster Computing SoSe 2023 5-47

Example (continued)

1. 1 1 1 0 1 29 841 0.28 2 1 | 1 1 0 1 2 1 1 1 1 0 1 29 841

2. 1 1 0 0 1 25 625 0.21 0 1 | 1 1 0 1 1 1 1 1 1 0 1 29 841

3. 1 1 0 1 0 26 676 0.23 1 1 1 0 | 1 0 3 3 1 1 0 0 1 25 625

4. 1 1 1 0 1 29 841 0.28 1 1 1 1 | 0 1 4 3 1 1 1 1 0 30 900

S 2983 3207

Max 841 900

4. Iteration

No. Solution set x ϕ(x) Selection
probabili-
ty

Sele
ction

Mating pool
after
selection

No of
mate
(rand.)

Substring
selection
(random)

New
solution
set

x ϕ(x)

Barry Linnert, linnert@inf.fu-berlin.de, Cluster Computing SoSe 2023 5-48

Example (continued)

No. Solution set x ϕ(x) Selection
probabili-
ty

Sele
ction

Mating pool
after
selection

No of
mate
(rand.)

Substring
selection
(random)

New
solution
set

x ϕ(x)

1. 1 1 1 0 1 29 841 0.26 1 1 1 1 0 | 1 3 4 1 1 1 0 0 28 784

2. 1 1 1 0 1 29 841 0.26 1 1 1 1 | 0 1 4 3 1 1 1 1 0 30 900

3. 1 1 0 0 1 25 625 0.20 0 1 1 1 1 | 0 1 4 1 1 1 1 1 31 961

4. 1 1 1 1 0 30 900 0.28 2 1 1 1 | 1 0 2 3 1 1 1 0 1 29 841

S 3207 3486

Max 900 961

5. Iteration

Barry Linnert, linnert@inf.fu-berlin.de, Cluster Computing SoSe 2023 5-49

Example (continued)

No. Solution set x ϕ(x) Selection
probabili-
ty

Sele
ction

Mating pool
after
selection

No of
mate
(rand.)

Substring
selection
(random)

New
solution
set

x ϕ(x)

1. 1 1 1 0 0 28 784 0.22 0 1 1 | 1 1 1 3 2 1 1 1 1 1 31 961

2. 1 1 1 1 0 30 900 0.26 1 1 1 1 1 | 0 4 4 1 1 1 1 1 31 961

3. 1 1 1 1 1 31 961 0.28 2 1 1 | 1 1 1 1 2 1 1 1 1 1 31 961

4. 1 1 1 0 1 29 841 0.24 1 1 1 1 0 | 1 2 4 1 1 1 0 0 28 784

S 3486 3667

Max 961 961

6. Iteration

Barry Linnert, linnert@inf.fu-berlin.de, Cluster Computing SoSe 2023 5-50

Summary of Techniques

• Proceeding along the most promising direction (gradient
descent)

• Memory, e.g., prevention of cycles (Taboo search)
• Evaluation of sequence of steps instead of single steps

(probing paths)
• Acceptance of deterioration (Simulated Annealing)
• Backtracking
• Iteration with new initial solution
• Search in parallel
• Combination of solutions (Genetic Algorithms)

Barry Linnert, linnert@inf.fu-berlin.de, Cluster Computing SoSe 2023 5-52

Further references

• Dueck,G.; Scheuer,T.; Wallmeier,H.-M.: Toleranzschwelle und
Sintflut: neue Ideen zur Optimierung. Spektrum der
Wissenschaft (März 1993) S.42-51 (in German)

• Goldberg,D.E.: Genetic Algorithms. Addison Wesley (1989)

• Kirkpatrick,S.; Swendsen,R.H.: Statistical Mechanics and
Disordered Systems. CACM 28 (1985), S. 363-373

• Rayward-Smith, V. J. (Editor): Modern Heuristic Search
Methods, John Wiley, 1996

• Pham, D.; Karaboga, D.; Intelligent Optimisation Techniques:
Genetic Algorithms, Tabu Search, Simulated Annealing and
Neural Networks, Springer, Berlin, 2000

• Michiels,W.; Aarts, E.; Korst,J.: Theoretical Aspects of Local
Search, Springer, 2006

Barry Linnert, linnert@inf.fu-berlin.de, Cluster Computing SoSe 2023 5-53

	Slide Number 1
	5.1 Heuristic Search
	Heuristic Search
	Local Search
	Digression: Combinatorics
	Permutations
	Permutations: Example
	Combinations
	Ball-in-urn experiment
	Combinatorics: Example 2 out of 4
	Combinatorics: Formulae
	5.2 Representation
	Quantitative Partitioning
	Qualitative Partitioning
	Contractive Allocation
	Injective Allocation
	Load balancing
	Intermediate result
	Elementary search steps
	Neighborhood
	Example: Contractive allocation of m threads on a 8x8-mesh
	Example
	5.3 Gradient descent
	Gradient descent
	Local Minimum
	5.4 Taboo search
	Taboo search (simplified)
	5.5 Probing paths
	Probing paths
	Probing paths
	5.6 Simulated Annealing (SA)
	Simulated Annealing (Variant)
	Threshold Accepting
	Threshold Accepting
	Deluge Algorithm
	5.7 Iteration
	5.8 Parallelism
	5.9 Combination of solutions
	Genetic Algorithms (GA)
	Genetic Algorithms
	Comparison of the two selection procedures
	Genetic Algorithms: Example
	Genetic Algorithms: Example (continued)
	Example
	Example (continued)
	Example (continued)
	Example (continued)
	Example (continued)
	Example (continued)
	Example (continued)
	Summary of Techniques
	Further references

