
Chapter 4

Allocation Problems in Parallel Computers



4.1 Overview

• In the early nineties parallel computing was characterized 
by the following properties:
• Machine dependent programming

The programmer had to explicitly consider  size, type and 
architecture of the target machine.

• Manual allocation
The programmer himself was responsible  for the mapping 
of logical objects to physical objects. 

• Monoprogramming
At any point in time only one parallel program could be 
executed, occupying the entire machine.

• This characterization corresponds to the situation of  
sequential programming in the sixties. 

• System software should make parallel computing as efficient 
and comfortable  as conventional sequential programming.
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Allocation Problem
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Problem and Problem components

• An allocation problem is described by four 
components:

1. Machine model  M
2. Load model L
3. Allocation relation R
4. Allocation goal G
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4.2 Machine model

• A parallel computer system can be described by a graph, with 
the processors as the vertices and the direct processor links 
as the edges:

(P,EP) with
P set of  processors as vertices (P=n)
EP set of links as edges

Both vertices and edges can have weights:

µi: P → R vertex weight processor speed  (e.g. MFlops)

γi: EP → R edge weight transmission speed (e.g. Mbit/sec)

Barry Linnert, linnert@inf.fu-berlin.de, Cluster Computing  SoSe 2023 4-5



4.3 Load model

• Load can be described at two levels:
• Program level set of parallel programs
• Thread level set of  interacting threads of a program

• At thread level a parallel program can be represented 
(analogously to the machine) as a graph:

• L = (T, ET) program graph with 
T set of parallel threads (tasks, threads) as vertices

(T=m)
ET set of interaction relations as edges

• Vertex and edge weights are also possible:
bi: T → R vertex weight length of thread (e.g. 

#instructions)
ai: ET → R edge weight communication intensity 

(e.g. bits or packets)
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Program Graph

• Two types of program graphs
• task (=thread) interaction graph or 
• task (=thread) precedence graph
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Example TIG

Aircraft engineering: Finite-Element-method
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Example TIG

Airfoil  (Finite-Element Method)
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Example TPG

Sieve of Erathostenes (Calculation of primes)
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Example TPG

Gaussian Elimination Method (LES)
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Example TPG

Application from Molecular Biology
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Program Phase Graph (formal)

• Program phase graph
PPG := (S, ES) with
S Set of Phases
ES Phase transitions
pij transition probabilities

• Each phase consists of a TIG:
si := (Ti, ETi)  ∀ si ∈ S

• To make sure that the phases are connected to each 
other, we request that two adjacent phases have at 
least one thread in common.:

(si, sj) ∈ ES ⇒ ∃ t: t∈Ti ∧ t∈Tj
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Parallelism profile

• If the communication behavior is unknown or irrelevant, 
the program description is reduced to the (dynamic) 
number of threads.

• If in turn the threads are distinguished from each other, 
the number of threads (parallelism degree) is sufficient.

• For  a dynamic parallelism degree we obtain the 
parallelism profile (known from chapter 3).

4-14Barry Linnert, linnert@inf.fu-berlin.de, Cluster Computing  SoSe 2023

Parallelism degree p(t)

Time t

p

T(∞)

pmax

pmin



Example: Quicksort on 16 Processors
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Example: Fine grain Parallelism
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4.4 Allocation

Let be
• PCG = (P, EP) The processor connection graph with

P set of processors,  P = n
• A := {A1, A2,..., Aq} the load consisting of a set of

parallel programs
• Ti the set of  threads of program Ai

An allocation can take place on the program level or on the 
thread level.
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Program Allocation

• ϕ:  A →℘(P) mapping of programs to subsets of processors

• ϕ(Ai) is the processor set allocated to program Ai . It is called the 
Territory of Ai .

• ϕ is called disjoint, if  ∀ i ≠ k : ϕ(Ai) ∩ ϕ(Ak) = ∅
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Program Allocation

• A disjoint program allocation is called partitioning.
(The processors not allocated by ϕ form the so-called free 
partition).

• A territory ϕ(Ai) is called contiguous, if the subgraph of the 
PCG defined by the territory is connected.

• A program allocation ϕ is called  contiguous, if ϕ(Ai) is 
contiguous for all i = 1,.., q .

Sometimes topological  aspects are irrelevant:
A quantitative partitioning only decides, how many
processors each program obtains:
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Allocation at Thread Level (Mapping)

• Within each program, each thread must be assigned to 
exactly one processor: π :  T → P

• If π is injective, the allocation is called injective (one-
(or zero)-to-one), otherwise contractive (many-to-
one).

4-20Barry Linnert, linnert@inf.fu-berlin.de, Cluster Computing  SoSe 2023

threads T processors P



Thread Allocation

• For a contractive allocation there is often an 
intermediate step which determines which threads are 
mapped to the same processor (Contraction, Grouping, 
Clustering).
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Allocation Problem

In multiprogramming operation, an allocation problem can 
consist of four steps that have to be solved one after the 
other:
1. Quantitative Partitioning

• Which program obtains how many processors?
2. Qualitative Partitioning

• Which program obtains which processors?
3. Clustering (Contraction) within the Programs

• Which threads are grouped together?
4. Injective Allocation

• Which thread group is mapped to which processor?
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4.5 Goals

List of typical objective functions 
• response time RT  → min
• execution time  ET → min
• communication cost CC → min
• utilization UT → max
• Speed-up SU → max
• throughput TP → max
• load unbalance LU → min
• .....

Since some quantities are contained in others and some are 
contradictory, it is reasonable to define combinations :

• Arithmetic combination, e.g. weighted sum
• Logical combination using restrictions

• E.g.. ET → min  LU < 2
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4.6 Allocation Algorithms

• An allocation algorithm is described by the problem it is supposed to 
solve and some additional properties:

• Optimality: 
• An algorithm is called optimal, if the optimality of the solution is 

guaranteed.
• Otherwise it is called suboptimal.
• Suboptimal algorithms can be divided into two classes:

• An algorithm is approximate, if it finds an optimal solution only 
approximately. However, an error bound must be provided. 

• If we are neither able to guarantee optimality nor to specify an error 
bound, the algorithm is called heuristic.

• Structure
• If there is only one instance that has global information and 

decides about the global allocation then the algorithm is called 
central.

• Decentralized or distributed algorithms can be further 
subdivided into

• hierarchical algorithms
• cooperative algorithms (peer-to-peer)
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4.7 Application Areas

Another aspect is the question, at what time the allocation is 
taking place.
• Offline allocation

• Optimization problem is formulated explicitly and solved.
• Allocation at compile time

• Compiler knows the communication and data dependency 
structure of the parallel program.

• Allocation at start time
• At this point of time the current load situation is known and 

can be taken into account. 
• Allocation at run-time

• Data dependent behavior can be collected during program 
execution (monitoring) resulting in an adaptive dynamic 
allocation (start new threads, migrate threads).
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