
Chapter 4

Allocation Problems in Parallel Computers

4.1 Overview

• In the early nineties parallel computing was characterized
by the following properties:
• Machine dependent programming

The programmer had to explicitly consider size, type and
architecture of the target machine.

• Manual allocation
The programmer himself was responsible for the mapping
of logical objects to physical objects.

• Monoprogramming
At any point in time only one parallel program could be
executed, occupying the entire machine.

• This characterization corresponds to the situation of
sequential programming in the sixties.

• System software should make parallel computing as efficient
and comfortable as conventional sequential programming.

4-2Barry Linnert, linnert@inf.fu-berlin.de, Cluster Computing SoSe 2023

Allocation Problem

parallel program
parallel program

parallel program parallel machine

Barry Linnert, linnert@inf.fu-berlin.de, Cluster Computing SoSe 2023 4-3

Problem and Problem components

• An allocation problem is described by four
components:

1. Machine model M
2. Load model L
3. Allocation relation R
4. Allocation goal G

4-4Barry Linnert, linnert@inf.fu-berlin.de, Cluster Computing SoSe 2023

Allocation

Goal

Load Machine

performance
behavior

impact

4.2 Machine model

• A parallel computer system can be described by a graph, with
the processors as the vertices and the direct processor links
as the edges:

(P,EP) with
P set of processors as vertices (P=n)
EP set of links as edges

Both vertices and edges can have weights:

µi: P → R vertex weight processor speed (e.g. MFlops)

γi: EP → R edge weight transmission speed (e.g. Mbit/sec)

Barry Linnert, linnert@inf.fu-berlin.de, Cluster Computing SoSe 2023 4-5

4.3 Load model

• Load can be described at two levels:
• Program level set of parallel programs
• Thread level set of interacting threads of a program

• At thread level a parallel program can be represented
(analogously to the machine) as a graph:

• L = (T, ET) program graph with
T set of parallel threads (tasks, threads) as vertices

(T=m)
ET set of interaction relations as edges

• Vertex and edge weights are also possible:
bi: T → R vertex weight length of thread (e.g.

#instructions)
ai: ET → R edge weight communication intensity

(e.g. bits or packets)

Barry Linnert, linnert@inf.fu-berlin.de, Cluster Computing SoSe 2023 4-6

Program Graph

• Two types of program graphs
• task (=thread) interaction graph or
• task (=thread) precedence graph

T0

T1 T2 T3

T6

T4 T5

space

space

TIG TPG

Arrows define
communication flow

time

space
T0

T1 T2 T3

T6

T4 T5

Arrows define
precedence relation

Barry Linnert, linnert@inf.fu-berlin.de, Cluster Computing SoSe 2023 4-7

Example TIG

Aircraft engineering: Finite-Element-method

Barry Linnert, linnert@inf.fu-berlin.de, Cluster Computing SoSe 2023 4-8

Example TIG

Airfoil (Finite-Element Method)

Barry Linnert, linnert@inf.fu-berlin.de, Cluster Computing SoSe 2023 4-9

Example TPG

Sieve of Erathostenes (Calculation of primes)

Barry Linnert, linnert@inf.fu-berlin.de, Cluster Computing SoSe 2023 4-10

Example TPG

Gaussian Elimination Method (LES)

Barry Linnert, linnert@inf.fu-berlin.de, Cluster Computing SoSe 2023 4-11

Example TPG

Application from Molecular Biology

Barry Linnert, linnert@inf.fu-berlin.de, Cluster Computing SoSe 2023 4-12

Program Phase Graph (formal)

• Program phase graph
PPG := (S, ES) with
S Set of Phases
ES Phase transitions
pij transition probabilities

• Each phase consists of a TIG:
si := (Ti, ETi) ∀ si ∈ S

• To make sure that the phases are connected to each
other, we request that two adjacent phases have at
least one thread in common.:

(si, sj) ∈ ES ⇒ ∃ t: t∈Ti ∧ t∈Tj

Barry Linnert, linnert@inf.fu-berlin.de, Cluster Computing SoSe 2023 4-13

Parallelism profile

• If the communication behavior is unknown or irrelevant,
the program description is reduced to the (dynamic)
number of threads.

• If in turn the threads are distinguished from each other,
the number of threads (parallelism degree) is sufficient.

• For a dynamic parallelism degree we obtain the
parallelism profile (known from chapter 3).

4-14Barry Linnert, linnert@inf.fu-berlin.de, Cluster Computing SoSe 2023

Parallelism degree p(t)

Time t

p

T(∞)

pmax

pmin

Example: Quicksort on 16 Processors

Barry Linnert, linnert@inf.fu-berlin.de, Cluster Computing SoSe 2023 4-15

Example: Fine grain Parallelism

Barry Linnert, linnert@inf.fu-berlin.de, Cluster Computing SoSe 2023 4-16

4.4 Allocation

Let be
• PCG = (P, EP) The processor connection graph with

P set of processors,  P = n
• A := {A1, A2,..., Aq} the load consisting of a set of

parallel programs
• Ti the set of threads of program Ai

An allocation can take place on the program level or on the
thread level.

Barry Linnert, linnert@inf.fu-berlin.de, Cluster Computing SoSe 2023 4-17

Program Allocation

• ϕ: A →℘(P) mapping of programs to subsets of processors

• ϕ(Ai) is the processor set allocated to program Ai . It is called the
Territory of Ai .

• ϕ is called disjoint, if ∀ i ≠ k : ϕ(Ai) ∩ ϕ(Ak) = ∅

4-18Barry Linnert, linnert@inf.fu-berlin.de, Cluster Computing SoSe 2023

processors

A1

A2

programs

Program Allocation

• A disjoint program allocation is called partitioning.
(The processors not allocated by ϕ form the so-called free
partition).

• A territory ϕ(Ai) is called contiguous, if the subgraph of the
PCG defined by the territory is connected.

• A program allocation ϕ is called contiguous, if ϕ(Ai) is
contiguous for all i = 1,.., q .

Sometimes topological aspects are irrelevant:
A quantitative partitioning only decides, how many
processors each program obtains:

{ } ()
1

1
q

i
i

: A ,...,n with A nχ χ
=

→ ≤∑

Barry Linnert, linnert@inf.fu-berlin.de, Cluster Computing SoSe 2023 4-19

Allocation at Thread Level (Mapping)

• Within each program, each thread must be assigned to
exactly one processor: π : T → P

• If π is injective, the allocation is called injective (one-
(or zero)-to-one), otherwise contractive (many-to-
one).

4-20Barry Linnert, linnert@inf.fu-berlin.de, Cluster Computing SoSe 2023

threads T processors P

Thread Allocation

• For a contractive allocation there is often an
intermediate step which determines which threads are
mapped to the same processor (Contraction, Grouping,
Clustering).

4-21Barry Linnert, linnert@inf.fu-berlin.de, Cluster Computing SoSe 2023

threads T
Contractive allocation

processors P

Allocation Problem

In multiprogramming operation, an allocation problem can
consist of four steps that have to be solved one after the
other:
1. Quantitative Partitioning

• Which program obtains how many processors?
2. Qualitative Partitioning

• Which program obtains which processors?
3. Clustering (Contraction) within the Programs

• Which threads are grouped together?
4. Injective Allocation

• Which thread group is mapped to which processor?

Barry Linnert, linnert@inf.fu-berlin.de, Cluster Computing SoSe 2023 4-22

4.5 Goals

List of typical objective functions
• response time RT → min
• execution time ET → min
• communication cost CC → min
• utilization UT → max
• Speed-up SU → max
• throughput TP → max
• load unbalance LU → min
•

Since some quantities are contained in others and some are
contradictory, it is reasonable to define combinations :

• Arithmetic combination, e.g. weighted sum
• Logical combination using restrictions

• E.g.. ET → min  LU < 2

Barry Linnert, linnert@inf.fu-berlin.de, Cluster Computing SoSe 2023 4-23

4.6 Allocation Algorithms

• An allocation algorithm is described by the problem it is supposed to
solve and some additional properties:

• Optimality:
• An algorithm is called optimal, if the optimality of the solution is

guaranteed.
• Otherwise it is called suboptimal.
• Suboptimal algorithms can be divided into two classes:

• An algorithm is approximate, if it finds an optimal solution only
approximately. However, an error bound must be provided.

• If we are neither able to guarantee optimality nor to specify an error
bound, the algorithm is called heuristic.

• Structure
• If there is only one instance that has global information and

decides about the global allocation then the algorithm is called
central.

• Decentralized or distributed algorithms can be further
subdivided into

• hierarchical algorithms
• cooperative algorithms (peer-to-peer)

4-24Barry Linnert, linnert@inf.fu-berlin.de, Cluster Computing SoSe 2023

4.7 Application Areas

Another aspect is the question, at what time the allocation is
taking place.
• Offline allocation

• Optimization problem is formulated explicitly and solved.
• Allocation at compile time

• Compiler knows the communication and data dependency
structure of the parallel program.

• Allocation at start time
• At this point of time the current load situation is known and

can be taken into account.
• Allocation at run-time

• Data dependent behavior can be collected during program
execution (monitoring) resulting in an adaptive dynamic
allocation (start new threads, migrate threads).

Barry Linnert, linnert@inf.fu-berlin.de, Cluster Computing SoSe 2023 4-25

Further References

• Heiss, H.-U.: Processor Allocation in Parallel Computers (in
German) Prozessorzuteilung in Parallelrechnern, Bibliographic
Institute, Mannheim, 1994

• T.L. Casavant and J.G. Kuhl, A Taxonomy of Scheduling in
General-Purpose Distributed Computing Systems, IEEE
Transactions on Software Engineering, Vol. SE-14, No. 2,
February 1988, pp. 141-154.

Barry Linnert, linnert@inf.fu-berlin.de, Cluster Computing SoSe 2023 4-26

http://www.eng.uiowa.edu/%7Etomc/papers/taxo.ps.gz

	Slide Number 1
	4.1 Overview
	Allocation Problem
	Problem and Problem components
	4.2 Machine model
	4.3 Load model
	Program Graph
	Example TIG
	Example TIG
	Example TPG
	Example TPG
	Example TPG
	Program Phase Graph (formal)
	Parallelism profile
	Example: Quicksort on 16 Processors
	Example: Fine grain Parallelism
	4.4 Allocation
	Program Allocation
	Program Allocation
	Allocation at Thread Level (Mapping)
	Thread Allocation
	Allocation Problem
	4.5 Goals
	4.6 Allocation Algorithms
	4.7 Application Areas
	Further References

