
Performance Aspects

Chapter 3

3.1 Multicomputer and
Multiprocessor Systems

• Using queuing theory, computer systems can be modeled as
stochastic processes.

• A single computer is considered as a service station at which „jobs“
(or customers) arrive, are serviced and leave the system.

• If the processor is occupied, arriving jobs are queued in a FIFO.
• The time between successive arrivals and the service times are

stochastic variables.
• In the most simple case, the times follow an exponential distribution

with parameter λ (arrival rate) or parameter µ (service rate),
respectively. The following must hold: λ < µ.

• The mean time between two arrivals is 1/λ, the mean service time is
1/µ.

3-2Barry Linnert, linnert@inf.fu-berlin.de, Cluster Computing SoSe 2023

µλ

queue processor

arrivals departures

Performance Measures

• The basic model is called „M|M|1“-system, with the first parameter
indicating the type of distribution of the arrivals, the second
parameter characterizing the distribution of the service time and the
third parameter indicating the number of processors. M stands for
„Markov“ and means exponentially distributed.

• For the stationary behavior (steady state) the following can be
derived (see e.g. L. Kleinrock: Queuing Theory, Vol.1)

• Utilization U (Prob that service station is not idle): U = λ/µ
• Throughput TP (Number of jobs serviced per time): TP = λ
• Mean response time R (time between arrival and departure):

R = 1 / (µ − λ)
• Mean number N (Jobs at station): N = λ / (µ − λ)
• Between number, response time and arrival rate there exists a

relation called Little‘s law:
N = λ R

• „Mean number of jobs = arrival rate x mean response time “

Barry Linnert, linnert@inf.fu-berlin.de, Cluster Computing SoSe 2023 3-3

Distributed Systems
(Multicomputer Systems)

• A distributed system can approximately be modeled as a set
of k such M|M|1- service stations.

• All have the same service rate µ and are fed by a job arrival
stream with a joint rate of λ.

• Regarding the complete set, we get :
• Throughput: TP = k λ
• Response time: R1 = 1 / (µ−λ)

3-4Barry Linnert, linnert@inf.fu-berlin.de, Cluster Computing SoSe 2023

µλ

µλ

µλ

k λ

k computers

:

kλ

Multiprocessor System

• A multiprocessor on the opposite provides a shared memory and
therefore a shared single copy of an operating system instance. All
ready threads are kept in a joint ready queue.

• Throughput

• Response time

with as the “idle probability”

3-5Barry Linnert, linnert@inf.fu-berlin.de, Cluster Computing SoSe 2023

()
() 022

1
1!

1 p
k

kR
k

⋅⋅
−

+=
µµλ

µλ
µ

()

1
1

0
0 1!

1
!
1

−
−

=

−

+

= ∑ µλµ

λ
µ
λ

k
k

i
kp

kk

i

i

µ

µ

µ k processors

:

kλ kλ

λ⋅= kTP

Fast Monoprocessor System

• For comparison, we present the monoprocessor system that has the
same peak performance as the parallel one, i.e. a service rate of kµ.

• Throughput TP = k λ

• Response time R3 = 1 / (kµ−kλ)

kλ kλkµ

Barry Linnert, linnert@inf.fu-berlin.de, Cluster Computing SoSe 2023 3-6

Comparison
Response Time

lambda

R1: Multicomputer k=10

R2: Multiprocessor k=10

R3: 10 times faster monoprocessor

Comparison of response times
for 3 different architectures
having the same maximum service rate
Service rate of single processor: µ=1

0.1

1.0

4.0

3.0

2.0

0.2 0.4 0.6 0.8Barry Linnert, linnert@inf.fu-berlin.de, Cluster Computing SoSe 2023 3-7

Explanation:

• Multicomputer and multiprocessor system are close together for light
load (small λ) :
In both cases an arriving job will find an idle processor with high
probability.

• At higher loads the missing load balancing in multicomputers shows
some effect:
Due to the random distribution of jobs to processor nodes it can
happen that at some nodes jobs are queuing up while other nodes
stay idle.
It is therefore the goal of load balancing mechanisms to achieve the
same performance as in multiprocessor systems.

• The k-fold faster monoprocessor can display its speed even when
less than k jobs are present. Each job is executed at a k-fold speed.

Conclusion:
• A k-fold faster monoprocessor is better than a parallel system with

the same peak service rate with regard to the mean response time.

3-8Barry Linnert, linnert@inf.fu-berlin.de, Cluster Computing SoSe 2023

3.2 Parallel Programs

• Let be
T(1) the execution time on one processor
T(p) the execution time on a p processor system

• The gain by parallel computing is expressed by

S(p) := T(1) / T(p) Speed-up

• Normalizing the Speed-up by dividing by the number p of processors
is defined as the efficiency:

E(p) := S(p) / p Efficiency

Barry Linnert, linnert@inf.fu-berlin.de, Cluster Computing SoSe 2023 3-9

Amdahl‘s Law

• Parallel programs also contain sequential parts.
• Splitting the execution time into a sequential and a parallelizable part

yields:
T(1) = Ts + Tp

• Let f := Ts/ (Ts + Tp) , (0 ≤ f ≤ 1) be the sequential fraction of the
program. Then we get for the execution time:

(Amdahl‘s Law)

3-10Barry Linnert, linnert@inf.fu-berlin.de, Cluster Computing SoSe 2023

p
T

T
p
TfTfpT p

s +=
−

+=
)1()1()1()(

1 1

2

3

4

nu
m

be
r o

f p
ro

ce
ss

or
s

nu
m

be
r o

f p
ro

ce
ss

or
s

timeT (1) T (4) time00

Tp = (1-f) T (1) Ts = f T (1)

Tp = (1-f) T (1)

Ts = f T (1)

Amdahl‘s Law

• Using Amdahl‘s approach we get for the speed-up

• and for the efficiency

• We also get:

p
fffpf

p
pT

TpS
−

+
=

−+
== 1

1
)1()(

)1()(

fpfp
pSpE

−+
==

1
1)()(

sp
TTfpTT ===∞

∞→
)1()(lim:)(

fpSS
p

/1)(lim:)(==∞
∞→

0)(lim:)(==∞
∞→

pEE
p

Barry Linnert, linnert@inf.fu-berlin.de, Cluster Computing SoSe 2023 3-11

for T(1)=30 and f = 0.05.

1.0

E(p)

T(p), S(p)

5 10 15 20 25

5

10

15

20

actual Speed-up S(p)

ideal Speed-up S(p) = p

Efficiency E(p)

Execution time T(p)

number of processors p

Barry Linnert, linnert@inf.fu-berlin.de, Cluster Computing SoSe 2023 3-12

Behavior of different Quantities using
Amdahl‘s Model

for f = 0.02

200 400 600 800 1000

10

20

30

40

50

Speed-up S

0.2

0.4

0.6

0.8

1

Efficiency E

S(p)

E(p)

p
0

0
0

1/f

Barry Linnert, linnert@inf.fu-berlin.de, Cluster Computing SoSe 2023 3-13

Speed-up S and Efficiency E as
Functions of the number of processors

for p = 1024.

0.01 0.02 0.03 0.04 0.05

200

400

600

800

1000
Speed-up

f

Barry Linnert, linnert@inf.fu-berlin.de, Cluster Computing SoSe 2023 3-14

Speed-up as a Function of the
sequential fraction f

Scale-up

Speed-up:

How much faster can a given
problem be solved with p
processors?

Ts Tp

Ts Tp / p

1 p

serial execution

parallel execution

Execution time = Ts+Tp =1

Execution time = Ts+Tp /p

Scale-up (scaled Speed-up):

How much larger can a problem
be and still be solved in the same
time by p processors ?

Ts

Ts

1 p

serial execution

parallel execution

p Tp'

Tp'

Execution time = Ts+Tp'=1

Execution time = Ts+ p Tp'

Barry Linnert, linnert@inf.fu-berlin.de, Cluster Computing SoSe 2023 3-15

We assume for the scale-up an execution time that is normalized to 1:
T(p) = f + (1 – f) = 1

Using only 1 processor, the parallel fraction must be executed
sequentially and we obtain T(1) = f + (1 – f) p
Thus, we get a scale-up (or scaled speed-up) Sp(p) :

Sp(p) = T(1)/T(p) = f + (1 – f) p = p – (p –1) f

Sp as function of p at f = 0,02 Sp as function of sequential fraction f at p = 1024
200 400 600 800 1000

200

400

600

800

Scale-up

p

Sp

0.2 0.4 0.6 0.8 1

200

400

600

800

1000

Scale-up

f

Sp

Barry Linnert, linnert@inf.fu-berlin.de, Cluster Computing SoSe 2023 3-16

Scale-up

Size of the problem

• When executing a program we solve a problem of some size.
• The problem size w can be regarded as the total number of

instructions to be executed (function of size of input data n).
• Let be tc the time needed to execute one instruction. Then we

get: w tc = T(1)
• Let T(p) be the running time of a program on p processors for

a problem size w.
• For the execution of a program applied to a problem of size w

on p processors a total work of p T(p) is being done.
• Only a fraction of this work is useful work, the rest is

„overhead“ To.
To(p) = p T(p) - T(1) or
T(p) = (T(1) + To(p)) / p, respectively

Barry Linnert, linnert@inf.fu-berlin.de, Cluster Computing SoSe 2023 3-17

Problem size

• The speed-up is then

• The efficiency:

• The efficiency depends on the ratio of parallel overhead to the
sequential execution time.

• It is decreasing for an increasing number of processors and
increasing with the problem size.

)1(
)(1

1
)()1(

)1()()(

T
pTpTT

T
p
pSpE

oo +
=

+
==

)()1(
)1(

)(
)1()(

pTT
pT

pT
TpS

o+
==

Barry Linnert, linnert@inf.fu-berlin.de, Cluster Computing SoSe 2023 3-18

Also known as Gustafson's law.

Scalability

• Scalability means the performance capability for a growing
number processors

• Intuitively, we can call a system scalable, if its performance
increases with a simultaneous increase of problem size and
number of processors.

• Speed-up and scale-up try to measure the scalability of a
specific parallel program on a specific parallel machine.

• The discussion of the scale-up has shown that we can increase
the efficiency of the system by increasing the problem size.

• The speed-up curve characterizes the scalability of a program
at a particular input.

• Usually the speed-up curve flattens out, but the limit grows
with the problem size.

Barry Linnert, linnert@inf.fu-berlin.de, Cluster Computing SoSe 2023 3-19

Example

Parallel summation of n=64, 192, 320, 512 numbers in a hypercube with
p=1, 4, 8, 16, 32 processors

0
5

10
15
20
25
30
35

0 10 20 30 40
number of processors

Sp
ee

d-
up

64
192
320
512
linear

Barry Linnert, linnert@inf.fu-berlin.de, Cluster Computing SoSe 2023 3-20

Example

How much bigger must the problem become so that a specific efficiency
(e.g. 0.8) is maintained?

points of same efficiency

0

0,2

0,4

0,6

0,8

1

1,2

0 10 20 30 40
number of processors

Ef
fic

ie
nc

y 64
192
320
512
linear

Barry Linnert, linnert@inf.fu-berlin.de, Cluster Computing SoSe 2023 3-21

• Plugging T(1) = w tc into the
Equation from slide 18 yields

• Solving for w results in

• Defining KE = E / (tc (1- E)) as a constant depending on a specific
efficiency level, we obtain:

w = KE To(p)

• This establishes a functional relation between problem size w and
number of processors p.

• The function is called Isoefficiency and indicates how much the
problem size has to grow in order to maintain a given efficiency
level for an increasing number of processors.

c

oo

tw
pT

T
pTpE)(1

1

)1(
)(1

1)(
+

=
+

=

()
() ()pT
pE

pE
t

w o
c

−

=
1

1

Barry Linnert, linnert@inf.fu-berlin.de, Cluster Computing SoSe 2023 3-22

Isoefficiency

Properties of Isoefficiency

• If e.g. w(p) = Θ(p log p) holds and we want to increase the
number of processors from p to p‘, we have to increase the
problem size w by a factor (p' log p') / (p log p) to achieve the
same efficiency.

• The smaller the asymptotic complexity of the isoefficiency
function, the better the scalability, e.g.:
• linear growth good scalability
• exponential growth very poor scalability

• Examples:
Algorithm Isoefficiency Architecture
Factorization of scarce matrices Θ(p log2 p) Clique
All-pairs-shortest Path (Dijkstra) O(p log p) 3/2 Hypercube
All-pairs-shortest Path (Dijkstra) O(p 9/5) Grid

Barry Linnert, linnert@inf.fu-berlin.de, Cluster Computing SoSe 2023 3-23

Limitation of degree of parallelism

• Programs can usually not be parallelized arbitrarily.

• For each program there is a maximum degree of
parallelism/parallelization:

• In this case we get

() ()() p
sp max

T
T lim T p T

p→∞
∞ = = +

Barry Linnert, linnert@inf.fu-berlin.de, Cluster Computing SoSe 2023 3-24

Parallelism profile of a
parallel program

• Plotting the parallelism degree over the time we obtain the
parallelism profile:

• p(t) can be interpreted as the number of processors that are
active during the execution of the program – under the
assumption that arbitrarily many processors are available.

parallelism degree p

Time t

p

T(∞)

pmax

pmin

Barry Linnert, linnert@inf.fu-berlin.de, Cluster Computing SoSe 2023 3-25

• We get

i.e. the area under p(t) indicates the amount of computation needed
and corresponds to the execution time in the monoprocessor case.

• The average degree of parallelism can be defined as

• Thus we obtain:

i.e. the asymptotic speed-up is equal to the average parallelism
degree.

• Since S(p) is increasing monotonically, using Amdahl‘s law we can
also write :

()
()

()
0

1
T

p t dt T
∞

=∫

() ()
()

0

1 T
p p t dt

T

∞

=
∞ ∫

()
() () ()1

p

Tp S lim S p
T →∞

= = ∞ =
∞

() ()
1

1
S p min p ,

f f / p

≤ + −

Barry Linnert, linnert@inf.fu-berlin.de, Cluster Computing SoSe 2023 3-26

Parallelism profile

• Threads as parts of a parallel program need to interact.
• The temporal overhead TC(p) (index „C“ for „communication“) for

such interactions is a strictly monotonically increasing function of p.
• Using this, we obtain a new, extended approach for the overall

execution time:

with and

as pure execution time of the program (index „x“ for „execution“).

• Tx is a monotonically decreasing function which is bounded below.

• Is TC strictly monotonically increasing and not bounded above, then
T(p) necessarily increases beyond some p.

() () ()X CT p T p T p= +

1 0CT () = ()
+ <=

+ ≥

 for
 for

s p max
x

s p max max

T T / p p p
T p

T T / p p p

Barry Linnert, linnert@inf.fu-berlin.de, Cluster Computing SoSe 2023 3-27

Overhead due to thread interaction

5 10 15 20 25

2

4

6

8

10

Total execution time

p

Total execution time T(p) is composed of pure execution time TX(p) and
interaction overhead TC(p) .

TC(p) TX(p)

S(p)

T(p)

Barry Linnert, linnert@inf.fu-berlin.de, Cluster Computing SoSe 2023 3-28

Effect of process interaction

• Let a parallel program consist of m threads, each of which needs R
time units of computation time.

• The m threads are distributed onto p processors :

where mi denotes the number of threads assigned to processor i.
• Each thread communicates with each other thread taking C time

units in total.
• If the two communicating threads are assigned to the same

processor the communication costs can be neglected (C=~0).
• Assuming random distribution of the m threads, we obtain a total

computation time Tx(p) of

and a total communication time of

mm
p

i
i =∑

=1

−=−= ∑∑

==

p

i
i

p

i
iiC mmCCmmmpT

1

22

1 2
)(

2
1)(

Barry Linnert, linnert@inf.fu-berlin.de, Cluster Computing SoSe 2023 3-29

3.3 Impact of the
Communication Overhead

• Both parts together yield a total execution time

• If we distribute the threads evenly across the processors (mi =m/p),
the expression simplifies to

• The question now is:
Does parallel computing pay off, i.e. is T(p) < T(1) ?

−+=+= ∑

=

p

i
iiicx mmCmRpTpTpT

1

22

2
)(max)()()(

)11(
2

)(2

p
mC

p
mRpT −+=

C
Rm

p
mR

p
mC

mR
p

mC
p
mR

TpT

<

−<−

<−+

<

2

)11()11(
2

)11(
2

)1()(

2

2

Barry Linnert, linnert@inf.fu-berlin.de, Cluster Computing SoSe 2023 3-30

Communication Overhead

• A distribution and thus real parallelism only pays off if the ratio of
computation time R to communication time C is greater than m/2.

• The ration R/C represents a critical quantity and indicates the
granularity of parallel processing.

• Example (p =2 processors, m =100 threads, C= 1 (communication
time))

20 40 60 80 100

500

1000

1500

2000

2500

3000

3500

m1

Execution time as a function of the distribution for R=20
(i.e. R/C = 20) Distribution does not pay off!

Computation timeTx

Communication time Tc

Execution time T=Tx+Tc

Barry Linnert, linnert@inf.fu-berlin.de, Cluster Computing SoSe 2023 3-31

Communication Overhead

Communication Overhead

Execution time as a function of the distribution for R=100
(i.e. R/C = 100) Distribution does pay off! (each processor
takes 50 threads).

20 40 60 80 100

2000

4000

6000

8000

10000

m1

time

Computation time Tx

Communication time Tc

Total execution time T=Tx+Tc

Barry Linnert, linnert@inf.fu-berlin.de, Cluster Computing SoSe 2023 3-32

Given a set of parallel programs. Parallelism can be
(a) external, i.e. between the programs (Interprogram parallelism)

and/or
(b) internal, i.e. within a program (Intraprogram parallelism)

Therefore we get four combinations, with the ESIS variant irrelevant
for parallel machines due to lacking parallelism

internal sequential
(Process level)

internal parallel
(Process level)

external sequential
(Program level) ESIS ESIP

extern parallel
(Program level) EPIS EPIP

Barry Linnert, linnert@inf.fu-berlin.de, Cluster Computing SoSe 2023 3-33

3.4 Multiprogramming in
Parallel Computing

• EPIS: Parallel execution of sequential programs
(interprogram parallelism only)

• ESIP: Sequential execution of parallel programs
(intraprogram parallelism only)

number of processors

time

A

B

C

D

number of processors

time

A B C D

Barry Linnert, linnert@inf.fu-berlin.de, Cluster Computing SoSe 2023 3-34

Multiprogramming

Program A Program B

Program C Program D

#processors#processors

#processors #processors

time

time

time

time

Barry Linnert, linnert@inf.fu-berlin.de, Cluster Computing SoSe 2023 3-35

External and Internal Parallelism

EPIP: External and internal parallelism: possible separation in time and space

ESIP: Prolongation of total execution time due to insufficient parallelism in the
programs

#processors

#processors

time

time

Barry Linnert, linnert@inf.fu-berlin.de, Cluster Computing SoSe 2023 3-36

External and Internal Parallelism

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Barry Linnert, linnert@inf.fu-berlin.de, Cluster Computing SoSe 2023 3-37

Parallel Addition

Further References

• Grama, A.; Gupta, A.; Karypis, G.: Introduction to Parallel
Computing, Addison Wesley, 2003

• Quinn, M.J.: Parallel Programming in C with MPI and OpenMP.
McGraw-Hill Education, 2003

• Chandra, R. et al.: Parallel Programming in OpenMP. Morgan
Kaufmann Publishers, 2000

Barry Linnert, linnert@inf.fu-berlin.de, Cluster Computing SoSe 2023 3-38

	Slide Number 1
	3.1 Multicomputer and Multiprocessor Systems
	Performance Measures
	Distributed Systems �(Multicomputer Systems)
	Multiprocessor System
	Fast Monoprocessor System
	Comparison
	Explanation:
	3.2 Parallel Programs
	Amdahl‘s Law
	Amdahl‘s Law
	Behavior of different Quantities using Amdahl‘s Model
	Speed-up S and Efficiency E as �Functions of the number of processors
	Speed-up as a Function of the sequential fraction f
	Scale-up
	Scale-up
	Size of the problem
	Problem size
	Scalability
	Example
	Example
	Isoefficiency
	Properties of Isoefficiency
	Limitation of degree of parallelism
	Parallelism profile of a �parallel program
	Parallelism profile
	Overhead due to thread interaction
	Effect of process interaction
	3.3 Impact of the �Communication Overhead
	Communication Overhead
	Communication Overhead
	Communication Overhead
	3.4 Multiprogramming in �Parallel Computing
	Multiprogramming
	External and Internal Parallelism
	External and Internal Parallelism
	Parallel Addition
	Further References

