
Performance Aspects

Chapter 3



3.1  Multicomputer and 
Multiprocessor Systems

• Using queuing theory, computer systems can be modeled as 
stochastic processes. 

• A single computer is considered as a service station at which „jobs“ 
(or customers) arrive, are serviced and leave the system. 

• If the processor is occupied, arriving jobs are queued in a FIFO.
• The time between successive arrivals and the service times are 

stochastic  variables.
• In the most simple case, the times follow an exponential distribution 

with parameter λ (arrival rate) or parameter µ (service rate), 
respectively. The following must hold: λ < µ.

• The mean time between two arrivals is 1/λ, the mean service time is 
1/µ.
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Performance Measures

• The basic model is called „M|M|1“-system, with the first parameter 
indicating the type of distribution of the arrivals, the second 
parameter characterizing the distribution of the service time and the 
third parameter indicating the number of processors. M stands for 
„Markov“ and means exponentially distributed.

• For the stationary behavior (steady state) the following can be 
derived (see e.g. L. Kleinrock: Queuing Theory, Vol.1)

• Utilization U (Prob that service station is not idle): U = λ/µ
• Throughput TP (Number of jobs serviced per time): TP = λ
• Mean response time R (time between arrival and departure ):

R = 1 / (µ − λ)
• Mean number N (Jobs at station): N = λ / (µ − λ)
• Between number, response time and arrival rate there exists a 

relation called Little‘s law:
N = λ R

• „Mean number of jobs = arrival rate x mean response time “
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Distributed Systems 
(Multicomputer Systems)

• A distributed system can approximately be modeled as a set 
of k such M|M|1- service stations.

• All have the same service rate µ and are fed by a job arrival 
stream with a joint rate of λ.

• Regarding the complete set, we get :
• Throughput: TP = k λ
• Response time: R1 = 1 / (µ−λ)
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Multiprocessor System

• A multiprocessor on the opposite provides a shared memory and 
therefore a shared single copy of an operating system instance. All 
ready threads are kept in a joint ready queue. 

• Throughput

• Response time

with as the “idle probability”

3-5Barry Linnert, linnert@inf.fu-berlin.de, Cluster Computing  SoSe 2023

( )
( ) 022

1
1!

1 p
k

kR
k

⋅⋅
−

+=
µµλ

µλ
µ

( )

1
1

0
0 1!

1
!
1

−
−

= 













−








+








= ∑ µλµ

λ
µ
λ

k
k

i
kp

kk

i

i

µ

µ

µ k processors

:

kλ kλ

λ⋅= kTP



Fast Monoprocessor System

• For comparison, we present the monoprocessor system that has the 
same peak performance as the parallel one, i.e. a service rate of kµ.

• Throughput TP = k λ

• Response time R3 = 1 / (kµ−kλ)

kλ kλkµ
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Comparison
Response Time

lambda

R1: Multicomputer k=10

R2:  Multiprocessor k=10

R3: 10 times faster monoprocessor

Comparison of response times
for 3 different architectures
having the same maximum service rate
Service rate of single processor: µ=1
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Explanation:

• Multicomputer and multiprocessor system are close together for light 
load (small λ) :
In both cases an arriving job will find an idle processor with high 
probability.

• At higher loads the missing load balancing in multicomputers shows 
some effect: 
Due to the random distribution of jobs to processor nodes it can 
happen that at some nodes jobs are queuing up while other nodes 
stay idle. 
It is therefore the goal of load balancing mechanisms to achieve the 
same performance as in multiprocessor systems. 

• The k-fold faster monoprocessor can display its speed even when 
less than k jobs are present. Each job is executed at a k-fold speed. 

Conclusion: 
• A  k-fold faster monoprocessor is better than a parallel system with 

the same peak service rate with regard to the mean response time. 
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3.2 Parallel Programs

• Let be
T(1) the execution time on one processor 
T(p) the execution time on a p processor system

• The gain by parallel computing is expressed by

S(p) := T(1) / T(p) Speed-up

• Normalizing the Speed-up by dividing by the number p of processors 
is defined as the efficiency: 

E(p) := S(p) / p Efficiency
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Amdahl‘s Law

• Parallel programs also contain sequential parts.
• Splitting the execution time into a sequential and a parallelizable part 

yields:
T(1) = Ts + Tp

• Let  f := Ts/ (Ts + Tp) , (0 ≤ f ≤ 1)  be the sequential fraction of the 
program. Then we get for the execution time:

(Amdahl‘s Law)
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Amdahl‘s Law

• Using Amdahl‘s approach we get for the speed-up

• and for the efficiency

• We also get:
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for T(1)=30 and f = 0.05.
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Behavior of different Quantities using 
Amdahl‘s Model 



for f = 0.02
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Speed-up S and Efficiency E as 
Functions of the number of processors



for p = 1024.
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Speed-up as a Function of the 
sequential fraction f



Scale-up

Speed-up:

How much faster can a given 
problem be solved with p
processors?

Ts Tp

Ts Tp / p

1 p

serial execution

parallel execution

Execution time = Ts+Tp =1

Execution time = Ts+Tp /p

Scale-up (scaled Speed-up):

How much larger can a problem 
be and still be solved in the same 
time by p processors ?

Ts

Ts

1 p

serial execution

parallel execution

p Tp'  

Tp'

Execution time = Ts+Tp'=1

Execution time = Ts+ p Tp' 
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We assume for the scale-up an execution time that is normalized to 1: 
T(p) = f + (1 – f ) = 1

Using only 1 processor, the parallel fraction must be executed 
sequentially and we obtain  T(1) = f + (1 – f ) p
Thus, we get a scale-up (or scaled speed-up) Sp(p) :

Sp(p) = T(1)/T(p) = f + (1 – f ) p = p – (p –1) f

Sp as function of p at f = 0,02 Sp as function of  sequential fraction f at p = 1024
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Scale-up



Size of the problem

• When executing a program we solve a problem of some size.
• The problem size w can be regarded as the total number of 

instructions to be executed (function of size of input data n).
• Let be tc the time needed to execute one instruction. Then we 

get: w tc = T(1)
• Let T(p) be the running time of a program on p processors for 

a problem size w.
• For the execution of a program applied to a problem of size  w

on p processors a total work of p T(p) is being done.
• Only a fraction of this work is useful work, the rest is 

„overhead“ To.
To(p) = p T(p) - T(1) or
T(p) = (T(1) + To(p) ) / p, respectively
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Problem size

• The speed-up is then 

• The efficiency:

• The efficiency depends on the ratio of parallel overhead to the 
sequential execution time.

• It is decreasing for an increasing number of processors and 
increasing with the problem size.
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Also known as Gustafson's law.



Scalability

• Scalability means the performance capability for a growing 
number processors

• Intuitively, we can call a system scalable, if its performance 
increases with a simultaneous increase of problem size and 
number of processors.

• Speed-up and scale-up try to measure the scalability of a 
specific parallel program on a specific parallel machine.

• The discussion of the scale-up has shown that we can increase 
the efficiency of the system by increasing the problem size.

• The speed-up curve characterizes the scalability of a program 
at a particular input.

• Usually the speed-up curve flattens out, but the limit grows 
with the problem size.
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Example

Parallel summation of n=64, 192, 320, 512 numbers in a hypercube with 
p=1, 4, 8, 16, 32 processors
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Example

How much bigger must the problem become so that a specific efficiency 
(e.g. 0.8) is maintained?
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• Plugging T(1) = w tc into the 
Equation from slide 18 yields

• Solving for w results in

• Defining KE = E / (tc ( 1- E)) as a constant depending on a specific 
efficiency level, we obtain:

w = KE To(p)

• This establishes a functional relation between problem size w and 
number of processors p.

• The  function is called Isoefficiency and indicates how much the 
problem size has to grow in order to maintain a given efficiency 
level for an increasing number of processors. 
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Isoefficiency



Properties of  Isoefficiency

• If e.g. w(p) = Θ(p log p) holds and we want to increase the 
number of processors from p to p‘, we have to increase the 
problem size w by a factor (p' log p') / (p log p) to achieve the 
same efficiency.

• The smaller the asymptotic complexity of the isoefficiency 
function, the better the scalability, e.g.:
• linear growth good scalability
• exponential growth very poor scalability

• Examples:
Algorithm Isoefficiency Architecture
Factorization of scarce matrices Θ(p log2 p) Clique
All-pairs-shortest Path (Dijkstra) O(p log p) 3/2 Hypercube
All-pairs-shortest Path (Dijkstra) O(p 9/5) Grid
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Limitation of degree of parallelism 

• Programs can usually not be parallelized arbitrarily.  

• For each program there is a maximum degree of 
parallelism/parallelization:  

• In this case we get

( ) ( )( ) p
sp max

T
T lim T p T

p→∞
∞ = = +
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Parallelism profile of a 
parallel program

• Plotting the parallelism degree over the time we obtain the 
parallelism profile:

• p(t) can be interpreted as the number of processors that are 
active during the execution of the program – under the 
assumption that arbitrarily many processors are available. 

parallelism degree p

Time t

p

T(∞)

pmax

pmin
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• We  get

i.e. the area under p(t) indicates the amount of computation needed 
and corresponds to the execution time in the monoprocessor case.

• The average degree of parallelism can be defined as

• Thus we obtain:

i.e. the asymptotic speed-up is equal to the average parallelism 
degree.

• Since S(p) is increasing monotonically, using Amdahl‘s law we can 
also write :
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Parallelism profile



• Threads as parts of a parallel program need to interact.
• The temporal overhead TC(p) (index „C“ for „communication“) for 

such interactions is a strictly monotonically increasing function of p.
• Using this, we obtain a new, extended approach for the overall 

execution time:

with                  and

as pure execution time of the program (index „x“ for „execution“). 

• Tx is a monotonically decreasing function which is bounded below.

• Is TC strictly monotonically increasing and not bounded above, then 
T(p) necessarily increases beyond some p.
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Overhead due to thread interaction
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Total execution time T(p) is composed of pure execution time TX(p) and 
interaction overhead TC(p) .
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Effect of process interaction



• Let a parallel program consist of m threads, each of which needs R
time units of computation time.

• The m threads are distributed onto p processors :

where mi denotes the number of threads assigned to  processor i. 
• Each thread communicates with each other thread taking C time 

units in total. 
• If the two communicating threads are assigned to the same 

processor the communication costs can be neglected (C=~0). 
• Assuming random distribution of the m threads, we obtain a total 

computation time Tx(p) of

and a total communication time of
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3.3  Impact of the 
Communication Overhead



• Both parts together yield a total execution time

• If we distribute the threads evenly across the processors (mi =m/p), 
the expression simplifies to

• The question now is: 
Does parallel computing pay off, i.e. is T(p) < T(1) ?
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Communication Overhead



• A distribution and thus real parallelism only pays off if the ratio of 
computation time R to communication time C is greater than m/2. 

• The ration R/C represents a critical quantity and indicates the 
granularity of parallel processing.

• Example (p =2 processors, m =100 threads, C= 1 (communication 
time))
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m1

Execution time as a function of the distribution for R=20 
(i.e. R/C = 20) Distribution does not pay off!

Computation timeTx

Communication time Tc

Execution time T=Tx+Tc
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Communication Overhead



Communication Overhead

Execution time as a function of the distribution for R=100 
(i.e. R/C = 100) Distribution does pay off! (each processor 
takes 50 threads).
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Given a set of parallel programs. Parallelism can be
(a)  external, i.e. between the programs (Interprogram parallelism)

and/or
(b) internal, i.e. within a program  (Intraprogram parallelism)

Therefore we get four combinations, with the ESIS variant irrelevant 
for parallel machines due to lacking parallelism

internal sequential
(Process level)

internal parallel
(Process level)

external sequential
(Program level) ESIS ESIP

extern parallel
(Program level) EPIS EPIP
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3.4  Multiprogramming in 
Parallel Computing



• EPIS: Parallel execution of sequential programs
(interprogram parallelism only)

• ESIP: Sequential execution of  parallel programs 
(intraprogram parallelism only)

number of processors

time

A

B

C

D

number of processors

time

A B C D
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Multiprogramming



Program A Program B

Program C Program D

#processors#processors

#processors #processors

time

time

time

time
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External and Internal Parallelism



EPIP: External and internal parallelism: possible separation in time and space

ESIP: Prolongation of total execution time due to insufficient parallelism in the 
programs

#processors

#processors

time

time
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External and Internal Parallelism
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Parallel Addition



Further References
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