Chapter 1

Introduction
Why High Performance Computing?

Quote:

It is hard to understand an ocean because it is too big. It is hard to understand a molecule because it is too small. It is hard to understand nuclear physics because it is too fast. It is hard to understand the greenhouse effect because it is too slow. Supercomputers break these barriers to understanding. They, in effect, shrink oceans, zoom in on molecules, slow down physics, and fastforward climates. Clearly a scientist who can see natural phenomena at the right size and the right speed learns more than one who is faced with a blur.

Al Gore, 1990
Why High Performance Computing?

- Grand Challenges (Basic Research)
 - Decoding of human genome
 - Kosmogenesis
 - Global Climate Changes
 - Biological Macro molecules
- Product development
 - Fluid mechanics
 - Crash tests
 - Material minimization
 - Drug design
 - Chip design
- IT Infrastructure
 - Search engines
 - Data Mining
- Virtual Reality
 - Rendering
 - Vision
Examples for HPC-Applications: Finite Element Method: Crash-Analysis

Asymmetric frontal impact of a car to a rigid obstacle
Examples for HPC-Applications: Aerodynamics

Slotted Airfoil (8034 elements)

Inertial Method
Examples for HPC-Applications: Molecular dynamics

Simulation of a noble gas (Argon) with a partitioning for 8 processors: 2048 molecules in a cube of 16 nm edge length simulated in time steps of 2×10^{-14} sec.

Barry Linnert, linnert@inf.fu-berlin.de, Cluster Computing SoSe 2020
Examples for HPC-Applications: Nuclear Energy

- 1946 Baker Test
- 23,000 Tons TNT
- Lots of nukes produced during the cold war
- Status today: Largely unknown

Examples for HPC-Applications: Visualization

Rendering (Interior architecture)

Rendering (Movie: Titanic)

Photo realistic presentation using sophisticated illumination modules
Examples for HPC-Applications: Analysis of complex materials

- \(\text{C}_{60}\)-trimer
- \(\text{Si}_{1600}\)
- MoS\(_2\)
- 4H-SiC

Source: Th. Frauenheim, Paderborn
"The performance of a computer increases (roughly) quadratically with the prize"

Consequence:
It is better to buy a computer which is twice as fast than to buy two slower computers.
(The law was valid in the sixties and seventies over a wide range of universal computers.)
Eighties

Availability of powerful Microprocessors

- High Integration density (VLSI)
- Single-Chip-Processors
- Automated production process
- Automated development process
- High volume production

Consequence:
Grosch's Law no longer valid:
1000 cheap microprocessors render (theoretically) more performance in (MFLOPS) than expensive Supercomputer (e.g. Cray)

Idea:
To achieve high performance at low cost use many microprocessors together

⇒ Parallel Processing
Eighties

- Wide spread use of workstations and PCs
 Terminals being replaced by PCs
 Workstations achieve (computational) performance of mainframes at a fraction of the price.

- Availability of local area networks (LAN) (Ethernet)
 Possibility to connect a larger number of autonomous computers using a low cost medium. Access to data of other computers. Usage of programs and other resources of remote computers.

- Network of Workstations as Parallel Computer
 Possibility to exploit unused computational capacity of other computers for computational-intensive calculations (idle time computing).
Nineties

- Parallel computers are built of a large number of microprocessors (Massively Parallel Processors, MPP), e.g. Transputer systems, Connection Machine CM-5, Intel Paragon, Cray T3E
- Alternative Architectures are built (Connection Machine CM-2, MasPar).
- Trend to use cost efficient standard components ("commercial-off-the-shelf, COTS") leads to coupling of standard PCs to a "Cluster" (Beowulf, 1995)
- Exploitation of unused compute power for HPC ("idle time computing")
- Program libraries like Parallel Virtual Machine (PVM) and the Message Passing Interface (MPI) allow for development of portable parallel programs
- Linux as operating system for HPC becomes prevailing
Top 10 of TOP500 List (06/2001)

<table>
<thead>
<tr>
<th>RANK</th>
<th>MANUFACTURER</th>
<th>COMPUTER</th>
<th>R_{MAX} [TF/S]</th>
<th>INSTALLATION SITE</th>
<th>COUNTRY</th>
<th>YEAR</th>
<th>AREA OF INSTALLATION</th>
<th># PROC</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>IBM</td>
<td>ASCI White SP Power3 375 MHz</td>
<td>7.23</td>
<td>Lawrence Livermore National Laboratory</td>
<td>USA</td>
<td>2000</td>
<td>Research Energy</td>
<td>8192</td>
</tr>
<tr>
<td>2</td>
<td>IBM</td>
<td>SP Power3 375 MHz 16 way</td>
<td>2.53</td>
<td>NERSC/LBNL, Berkeley</td>
<td>USA</td>
<td>2001</td>
<td>Research</td>
<td>2528</td>
</tr>
<tr>
<td>3</td>
<td>Intel</td>
<td>ASCI Red</td>
<td>2.38</td>
<td>Sandia National Laboratory, Albuquerque</td>
<td>USA</td>
<td>1999</td>
<td>Research</td>
<td>9632</td>
</tr>
<tr>
<td>4</td>
<td>IBM</td>
<td>ASCI Blue Pacific SST, IBM SP 604E</td>
<td>2.14</td>
<td>Lawrence Livermore National Laboratory</td>
<td>USA</td>
<td>1999</td>
<td>Research Energy</td>
<td>5808</td>
</tr>
<tr>
<td>5</td>
<td>Hitachi</td>
<td>SR8000/MPP</td>
<td>1.71</td>
<td>University of Tokyo</td>
<td>Japan</td>
<td>2001</td>
<td>Academic</td>
<td>1152</td>
</tr>
<tr>
<td>6</td>
<td>SGI</td>
<td>ASCI Blue Mountain</td>
<td>1.61</td>
<td>Los Alamos National Laboratory</td>
<td>USA</td>
<td>1998</td>
<td>Research</td>
<td>6144</td>
</tr>
<tr>
<td>7</td>
<td>IBM</td>
<td>SP Power3 375 MHz</td>
<td>1.42</td>
<td>Naval Oceanographic Office, Bay St. Louis</td>
<td>USA</td>
<td>2000</td>
<td>Research Aerospace</td>
<td>1336</td>
</tr>
<tr>
<td>8</td>
<td>NEC</td>
<td>SX-5/128 M3 3.2 ns</td>
<td>1.19</td>
<td>Osaka University</td>
<td>Japan</td>
<td>2001</td>
<td>Academic</td>
<td>128</td>
</tr>
<tr>
<td>9</td>
<td>IBM</td>
<td>SP Power3 375 MHz</td>
<td>1.18</td>
<td>National Centers for Environmental Prediction</td>
<td>USA</td>
<td>2000</td>
<td>Research Weather</td>
<td>1104</td>
</tr>
<tr>
<td>10</td>
<td>IBM</td>
<td>SP Power3 375 MHz</td>
<td>1.18</td>
<td>National Centers for Environmental Prediction</td>
<td>USA</td>
<td>2001</td>
<td>Research Weather</td>
<td>1104</td>
</tr>
</tbody>
</table>
Top 10 of TOP500 List (06/2002)

<table>
<thead>
<tr>
<th>Rank</th>
<th>Manuf.</th>
<th>Computer</th>
<th>R_{max}(GF)</th>
<th>Installation Site</th>
<th>Country</th>
<th>Year</th>
<th># Proc</th>
<th>Peak GF</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>NEC</td>
<td>Earth-Simulator</td>
<td>35860.00</td>
<td>Earth Simulator Center</td>
<td>Japan</td>
<td>2002</td>
<td>5120</td>
<td>40960.00</td>
</tr>
<tr>
<td>2</td>
<td>IBM</td>
<td>ASCI White, SP Power3 375 MHz</td>
<td>7226.00</td>
<td>Lawrence Livermore National Laboratory</td>
<td>USA</td>
<td>2000</td>
<td>8192</td>
<td>12288.00</td>
</tr>
<tr>
<td>3</td>
<td>Hewlett-Packard</td>
<td>AlphaServer SC ES45/1 GHz</td>
<td>4463.00</td>
<td>Pittsburgh Supercomputing Center</td>
<td>USA</td>
<td>2001</td>
<td>3016</td>
<td>6032.00</td>
</tr>
<tr>
<td>4</td>
<td>Hewlett-Packard</td>
<td>AlphaServer SC ES45/1 GHz</td>
<td>3980.00</td>
<td>Commissariat a l'Energie Atomique (CEA)</td>
<td>France</td>
<td>2001</td>
<td>2560</td>
<td>5120.00</td>
</tr>
<tr>
<td>5</td>
<td>IBM</td>
<td>SP Power3 375 MHz 16 way</td>
<td>3052.00</td>
<td>NERSC/LBNL</td>
<td>USA</td>
<td>2001</td>
<td>3328</td>
<td>4992.00</td>
</tr>
<tr>
<td>6</td>
<td>Hewlett-Packard</td>
<td>AlphaServer SC ES45/1 GHz</td>
<td>2916.00</td>
<td>Los Alamos National Laboratory</td>
<td>USA</td>
<td>2002</td>
<td>2048</td>
<td>4096.00</td>
</tr>
<tr>
<td>7</td>
<td>Intel</td>
<td>ASCI Red</td>
<td>2379.00</td>
<td>Sandia National Laboratories</td>
<td>USA</td>
<td>1999</td>
<td>9632</td>
<td>3207.00</td>
</tr>
<tr>
<td>8</td>
<td>IBM</td>
<td>pSeries 690 Turbo 1.3GHz</td>
<td>2310.00</td>
<td>Oak Ridge National Laboratory</td>
<td>USA</td>
<td>2002</td>
<td>864</td>
<td>4493.00</td>
</tr>
<tr>
<td>9</td>
<td>IBM</td>
<td>ASCI Blue-Pacific SST, IBM SP 604e</td>
<td>2144.00</td>
<td>Lawrence Livermore National Laboratory</td>
<td>USA</td>
<td>1999</td>
<td>5808</td>
<td>3868.00</td>
</tr>
<tr>
<td>10</td>
<td>IBM</td>
<td>pSeries 690 Turbo 1.3GHz</td>
<td>2002.00</td>
<td>IBM/US Army Research Laboratory (ARL)</td>
<td>USA</td>
<td>2002</td>
<td>768</td>
<td>3994.00</td>
</tr>
</tbody>
</table>
Earth Simulator (Rank 1, 2002-2004)

The Earth Simulator Center

Barry Linnert, linnert@inf.fu-berlin.de, Cluster Computing SoSe 2020
Earth Simulator

- 640 Nodes
- 8 vector processors (each 8 GFLOPS) and 16 GB per node
- 5120 CPUs
- 10 TB main memory
- 40 TFLOPS peak performance
- 65m x 50m physical dimension

Source: H. Simon, NERSC
<table>
<thead>
<tr>
<th>Rank</th>
<th>Site</th>
<th>Country/Year</th>
<th>Computer / Processors</th>
<th>Manufacturer</th>
<th>(R_{\text{max}})</th>
<th>(R_{\text{peak}})</th>
</tr>
</thead>
</table>
| 1 | IBM/DOE | United States/2004 | \textit{BlueGene/L beta-System}
\textit{BlueGene/L DD2 beta-System (0.7 GHz PowerPC 440)} / 32768
IBM | | 70720 | 91750 |
| 2 | NASA/Ames Research Center/NAS | United States/2004 | \textit{Columbia}
SGI Altix 1.5 GHz, Voltaire Infiniband / 10160
SGI | | 51870 | 60960 |
| 3 | The Earth Simulator Center | Japan/2002 | \textit{Earth-Simulator} / 5120
NEC | | 35860 | 40960 |
| 4 | Barcelona Supercomputer Center | Spain/2004 | \textit{MareNostrum}
eServer BladeCenter JS20 (PowerPC970 2.2 GHz), Myrinet / 3564
IBM | | 20530 | 31363 |
| 5 | Lawrence Livermore National Laboratory | United States/2004 | \textit{Thunder}
\textit{Intel Itanium2 Tiger4 1.4GHz - Quadrics} / 4096
California Digital Corporation | | 19940 | 22938 |
| 6 | Los Alamos National Laboratory | United States/2002 | \textit{ASCI Q}
\textit{ASCI Q - AlphaServer SC45, 1.25 GHz} / 8192
HP | | 13880 | 20480 |
| 7 | Virginia Tech | United States/2004 | \textit{System X}
\textit{1100 Dual 2.3 GHz Apple XServe/Mellanox Infiniband 4X/Cisco GigE} / 2200
Self-made | | 12250 | 20240 |
| 8 | IBM - Rochester | United States/2004 | \textit{BlueGene/L DD1 Prototype (0.5GHz PowerPC 440 w/Custom)} / 8192
IBM/ LLNL | | 11680 | 16384 |
| 9 | Naval Oceanographic Office | United States/2004 | \textit{eServer pSeries 655 (1.7 GHz Power4+)} / 2944
IBM | | 10310 | 20019.2 |
| 10 | NCSA | United States/2003 | \textit{Tungsten}
\textit{PowerEdge 1750, P4 Xeon 3.06 GHz, Myrinet} / 2500
Dell | | 9819 | 15300 |
<table>
<thead>
<tr>
<th>Rank</th>
<th>Site</th>
<th>Computer</th>
<th>Processors</th>
<th>Year</th>
<th>(R_{\text{max}})</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>DOE/NNSA/LLNL United States</td>
<td>BlueGene/L - eServer Blue Gene Solution IBM</td>
<td>131072</td>
<td>2005</td>
<td>280600</td>
</tr>
<tr>
<td>2</td>
<td>IBM Thomas J. Watson Research Center</td>
<td>BGW - eServer Blue Gene Solution IBM</td>
<td>40960</td>
<td>2005</td>
<td>91290</td>
</tr>
<tr>
<td>3</td>
<td>DOE/NNSA/LLNL United States</td>
<td>ASC Purple - eServer pSeries p5 575 1.9 GHz IBM</td>
<td>10240</td>
<td>2005</td>
<td>63390</td>
</tr>
<tr>
<td>4</td>
<td>NASA/Ames Research Center/NAS United States</td>
<td>Columbia - SGI Altix 1.5 GHz, Voltaire Infiniband SGI</td>
<td>10160</td>
<td>2004</td>
<td>51870</td>
</tr>
<tr>
<td>5</td>
<td>Sandia National Laboratories United States</td>
<td>Thunderbird - PowerEdge 1850, 3.6 GHz, Infiniband Dell</td>
<td>8000</td>
<td>2005</td>
<td>38270</td>
</tr>
<tr>
<td>6</td>
<td>Sandia National Laboratories United States</td>
<td>Red Storm Cray XT3, 2.0 GHz Cray Inc.</td>
<td>10880</td>
<td>2005</td>
<td>36190</td>
</tr>
<tr>
<td>7</td>
<td>The Earth Simulator Center Japan</td>
<td>Earth-Simulator NEC</td>
<td>5120</td>
<td>2002</td>
<td>35860</td>
</tr>
<tr>
<td>8</td>
<td>Barcelona Supercomputer Center Spain</td>
<td>MareNostrum - JS20 Cluster, PPC 970, 2.2 GHz, Myrinet IBM</td>
<td>4800</td>
<td>2005</td>
<td>27910</td>
</tr>
<tr>
<td>9</td>
<td>ASTRON/University Groningen Netherlands</td>
<td>Stella - eServer Blue Gene Solution IBM</td>
<td>12288</td>
<td>2005</td>
<td>27450</td>
</tr>
<tr>
<td>10</td>
<td>Oak Ridge National Laboratory United States</td>
<td>Jaguar - Cray XT3, 2.4 GHz Cray Inc.</td>
<td>5200</td>
<td>2005</td>
<td>20527</td>
</tr>
</tbody>
</table>
IBM Blue Gene
IBM Blue Gene
TOP 10 / Nov. 2006

<table>
<thead>
<tr>
<th>Rank</th>
<th>Site</th>
<th>Manufacturer</th>
<th>Computer</th>
<th>Country</th>
<th>Processors</th>
<th>RMax</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>DOE/NNSA/LLNL</td>
<td>IBM</td>
<td>eServer Blue Gene Solution</td>
<td>United States</td>
<td>131072</td>
<td>280600</td>
</tr>
<tr>
<td>2</td>
<td>NNSA/Sandia National Laboratories</td>
<td>Cray Inc.</td>
<td>Sandia/ Cray Red Storm, Opteron 2.4 GHz dual core</td>
<td>United States</td>
<td>26544</td>
<td>101400</td>
</tr>
<tr>
<td>3</td>
<td>IBM Thomas J. Watson Research Center</td>
<td>IBM</td>
<td>eServer Blue Gene Solution</td>
<td>United States</td>
<td>40960</td>
<td>91290</td>
</tr>
<tr>
<td>4</td>
<td>DOE/NNSA/LLNL</td>
<td>IBM</td>
<td>eServer pSeries p5 575 1.9 GHz</td>
<td>United States</td>
<td>12208</td>
<td>75760</td>
</tr>
<tr>
<td>5</td>
<td>Barcelona Supercomputing Center</td>
<td>IBM</td>
<td>BladeCenter JS21 Cluster, PPC 970, 2.3 GHz, Myrinet</td>
<td>Spain</td>
<td>10240</td>
<td>62630</td>
</tr>
<tr>
<td>6</td>
<td>NNSA/Sandia National Laboratories</td>
<td>Dell</td>
<td>PowerEdge 1850, 3.6 GHz, Infiniband</td>
<td>United States</td>
<td>9024</td>
<td>53000</td>
</tr>
<tr>
<td>7</td>
<td>Commissariat a l'Energie Atomique (CEA)</td>
<td>Bull SA</td>
<td>NovaScale 5160, Itanium2 1.6 GHz, Quadrics</td>
<td>France</td>
<td>9968</td>
<td>52840</td>
</tr>
<tr>
<td>8</td>
<td>NASA/Ames Research Center/NAS</td>
<td>SGI</td>
<td>SGI Altix 1.5 GHz, Voltaire Infiniband</td>
<td>United States</td>
<td>10160</td>
<td>51870</td>
</tr>
<tr>
<td>9</td>
<td>GSIC Center, Tokyo Institute of Technology</td>
<td>NEC/Sun</td>
<td>Sun Fire x4600 Cluster, Opteron 2.4/2.6 GHz, Infiniband</td>
<td>Japan</td>
<td>11088</td>
<td>47380</td>
</tr>
<tr>
<td>10</td>
<td>Oak Ridge National Laboratory</td>
<td>Cray Inc.</td>
<td>Cray XT3, 2.6 GHz dual Core</td>
<td>United States</td>
<td>10424</td>
<td>43480</td>
</tr>
</tbody>
</table>
Top 500 Nov 2008

<table>
<thead>
<tr>
<th>Rank</th>
<th>Computer</th>
<th>Country</th>
<th>Year</th>
<th>Cores</th>
<th>RMax</th>
<th>Processor Family</th>
<th>System Family</th>
<th>Interconnect</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>BladeCenter QS22/LS21 Cluster, PowerXCell 8i 3.2 Ghz / Opteron DC 1.8 GHz, Voltaire Infiniband</td>
<td>United States</td>
<td>2008</td>
<td>129600</td>
<td>1105000</td>
<td>Power</td>
<td>IBM</td>
<td>Cluster</td>
</tr>
<tr>
<td>2</td>
<td>Cray XT5 QC 2.3 GHz</td>
<td>United States</td>
<td>2008</td>
<td>150152</td>
<td>1059000</td>
<td>AMD x86_64</td>
<td>Cray XT</td>
<td>Proprietary</td>
</tr>
<tr>
<td>3</td>
<td>SGI Altix ICE 8200EX, Xeon QC 3.0/2.66 GHz</td>
<td>United States</td>
<td>2008</td>
<td>51200</td>
<td>487005</td>
<td>Intel EM64T</td>
<td>SGI Altix</td>
<td>Infiniband</td>
</tr>
<tr>
<td>4</td>
<td>eServer Blue Gene Solution</td>
<td>United States</td>
<td>2007</td>
<td>212992</td>
<td>478200</td>
<td>Power</td>
<td>IBM</td>
<td>BlueGene</td>
</tr>
<tr>
<td>5</td>
<td>Blue Gene/P Solution</td>
<td>United States</td>
<td>2007</td>
<td>163840</td>
<td>450300</td>
<td>Power</td>
<td>IBM</td>
<td>BlueGene</td>
</tr>
<tr>
<td>6</td>
<td>SunBlade x6420, Opteron QC 2.3 Ghz, Infiniband</td>
<td>United States</td>
<td>2008</td>
<td>62976</td>
<td>433200</td>
<td>AMD x86_64</td>
<td>Sun Blade</td>
<td>Infiniband</td>
</tr>
<tr>
<td>7</td>
<td>Cray XT4 QuadCore 2.3 GHz</td>
<td>United States</td>
<td>2008</td>
<td>38642</td>
<td>266300</td>
<td>AMD x86_64</td>
<td>Cray XT</td>
<td>Proprietary</td>
</tr>
<tr>
<td>8</td>
<td>Cray XT4 QuadCore 2.1 GHz</td>
<td>United States</td>
<td>2008</td>
<td>30976</td>
<td>205000</td>
<td>AMD x86_64</td>
<td>Cray XT</td>
<td>Proprietary</td>
</tr>
<tr>
<td>9</td>
<td>Sandia/Cray Red Storm, XT3/4, 2.4/2.2 GHz dual/quad core, Dawning 5000A, QC Opteron 1.9 Ghz, Infiniband,</td>
<td>United States</td>
<td>2008</td>
<td>38208</td>
<td>204200</td>
<td>AMD x86_64</td>
<td>Cray Interconnect Dawning</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>Windows HPC 2008</td>
<td>China</td>
<td>2008</td>
<td>30720</td>
<td>180600</td>
<td>AMD x86_64</td>
<td>Cluster</td>
<td>Infiniband</td>
</tr>
</tbody>
</table>
Top 500 Nov 2008

<table>
<thead>
<tr>
<th>Rank</th>
<th>Computer</th>
<th>Country</th>
<th>Year</th>
<th>Cores</th>
<th>RMax</th>
<th>Processor Family</th>
<th>System Family</th>
<th>Interconnect</th>
</tr>
</thead>
<tbody>
<tr>
<td>11</td>
<td>Blue Gene/P Solution</td>
<td>Germany</td>
<td>2007</td>
<td>65536</td>
<td>180000</td>
<td>Power</td>
<td>IBM</td>
<td>BlueGene Proprietary</td>
</tr>
<tr>
<td>12</td>
<td>SGI Altix ICE 8200, Xeon quad core 3.0 GHz</td>
<td>United States</td>
<td>2007</td>
<td>14336</td>
<td>133200</td>
<td>Intel EM64T</td>
<td>SGI Altix HP Cluster Platform</td>
<td>Infiniband</td>
</tr>
<tr>
<td></td>
<td>Cluster Platform 3000 BL460c, Xeon 53xx 3GHz, Infiniband</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Intel EM64T</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>SGI Altix ICE 8200EX, Xeon quad core 3.0 GHz</td>
<td>India</td>
<td>2008</td>
<td>14384</td>
<td>132800</td>
<td>Intel EM64T</td>
<td>SGI Altix HP Cluster Platform</td>
<td>Infiniband</td>
</tr>
<tr>
<td></td>
<td>Cluster Platform 3000 BL460c, Xeon 53xx 2.66GHz, Infiniband</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Intel x86_64</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>SGI Altix ICE 8200EX, Xeon quad core 3.0 GHz</td>
<td>France</td>
<td>2008</td>
<td>12288</td>
<td>128400</td>
<td>Intel EM64T AMD</td>
<td>Cray XT Proprietary</td>
<td>IBM</td>
</tr>
<tr>
<td></td>
<td>Cluster Platform 3000 BL460c, Xeon 53xx 2.66GHz, Infiniband</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>x86_64</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>Cray XT4 QuadCore 2.3 GHz</td>
<td>United States</td>
<td>2008</td>
<td>17956</td>
<td>125128</td>
<td>Intel EM64T</td>
<td>Cray XT Proprietary</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>Blue Gene/P Solution</td>
<td>France</td>
<td>2008</td>
<td>40960</td>
<td>112500</td>
<td>Power</td>
<td>IBM</td>
<td>BlueGene Proprietary</td>
</tr>
<tr>
<td>17</td>
<td>SGI Altix ICE 8200EX, Xeon quad core 3.0 GHz</td>
<td>France</td>
<td>2008</td>
<td>10240</td>
<td>106100</td>
<td>Intel EM64T</td>
<td>SGI Altix HP Cluster Platform</td>
<td>Infiniband</td>
</tr>
<tr>
<td></td>
<td>Cluster Platform 3000 BL460c, Xeon 53xx 2.66GHz, Infiniband</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Intel x86_64</td>
<td></td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>DeepComp 7000, HS21/x3950 Cluster, Xeon QC HT</td>
<td>Sweden</td>
<td>2007</td>
<td>13728</td>
<td>102800</td>
<td>Intel EM64T</td>
<td>Lenovo Cluster Proprietary</td>
<td>Infiniband</td>
</tr>
<tr>
<td>19</td>
<td>3 GHz/2.93 GHz, Infiniband</td>
<td>China</td>
<td>2008</td>
<td>12216</td>
<td>102800</td>
<td>Intel EM64T</td>
<td>Lenovo Cluster Proprietary</td>
<td></td>
</tr>
<tr>
<td>Rank</td>
<td>Site</td>
<td>Computer/Year Vendor</td>
<td>Cores</td>
<td>R_{max}</td>
<td>R_{peak}</td>
<td>Power</td>
<td></td>
<td></td>
</tr>
<tr>
<td>------</td>
<td>--</td>
<td>--</td>
<td>-------</td>
<td>-----------------</td>
<td>-----------------</td>
<td>------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Oak Ridge National Laboratory</td>
<td>Jaguar - Cray XT5-HE Opteron Six Core 2.6 GHz / 2009 Cray Inc.</td>
<td>224162</td>
<td>1759.00</td>
<td>2331.00</td>
<td>6950.60</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>DOE/NNSA/LANL</td>
<td>Roadrunner - BladeCenter QS22/LS21 Cluster, PowerXCell 8i 3.2 Ghz / Opteron DC 1.8 GHz, Voltaire Infiniband / 2009 IBM</td>
<td>122400</td>
<td>1042.00</td>
<td>1375.78</td>
<td>2345.50</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>National Institute for Computational Sciences/University of Tennessee</td>
<td>Kraken XT5 - Cray XT5-HE Opteron Six Core 2.6 GHz / 2009 Cray Inc.</td>
<td>98928</td>
<td>831.70</td>
<td>1028.85</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Forschungszentrum Juelich (FZJ) Germany</td>
<td>JUGENE - Blue Gene/P Solution / 2009 / IBM</td>
<td>294912</td>
<td>825.50</td>
<td>1002.70</td>
<td>2268.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>NASA/Ames Research Center/NAS</td>
<td>Pleiades - SGI Altix ICE 8200EX, Xeon QC 3.0 GHz/Nehalem EP 2.93 Ghz / 2009 / SGI</td>
<td>56320</td>
<td>544.30</td>
<td>673.26</td>
<td>2348.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>DOE/NNSA/LLNL</td>
<td>BlueGene/L - eServer Blue Gene Solution / 2007 / IBM</td>
<td>212992</td>
<td>478.20</td>
<td>596.38</td>
<td>2329.60</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Argonne National Laboratory</td>
<td>Blue Gene/P Solution / 2007 / IBM</td>
<td>163840</td>
<td>458.61</td>
<td>557.06</td>
<td>1260.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>Texas Advanced Computing Center/Univ. of Texas</td>
<td>Ranger - SunBlade x6420, Opteron QC 2.3 Ghz, Infiniband / 2008 / Sun Microsystems</td>
<td>62976</td>
<td>433.20</td>
<td>579.38</td>
<td>2000.00</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Top 500 Nov 2011

<table>
<thead>
<tr>
<th>Rank</th>
<th>Computer</th>
<th>Site</th>
<th>Country</th>
<th>Total</th>
<th>Rmax</th>
<th>Rpeak</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>K computer, SPARC64 VIIIfx 2.0GHz, Tofu interconnect</td>
<td>RIKEN Advanced Institute for Computational Science (AICS)</td>
<td>Japan</td>
<td>705024</td>
<td>10510000</td>
<td>11280384</td>
</tr>
<tr>
<td>2</td>
<td>NUDT YH MPP, Xeon X5670 6C 2.93 GHz, NVIDIA 2050</td>
<td>National Supercomputing Center in Tianjin</td>
<td>China</td>
<td>186368</td>
<td>2566000</td>
<td>4701000</td>
</tr>
<tr>
<td>3</td>
<td>Cray XT5-HE Opteron 6-core 2.6 GHz</td>
<td>DOE/SC/Oak Ridge National Laboratory</td>
<td>United States</td>
<td>224162</td>
<td>1759000</td>
<td>2331000</td>
</tr>
<tr>
<td>4</td>
<td>Dawning TC3600 Blade System, Xeon X5650 6C 2.66GHz, Infiniband QDR, NVIDIA 2050</td>
<td>National Supercomputing Centre in Shenzhen (NSCS)</td>
<td>China</td>
<td>120640</td>
<td>1271000</td>
<td>2984300</td>
</tr>
<tr>
<td>5</td>
<td>HP ProLiant SL390s G7 Xeon 6C X5670, Nvidia GPU, Linux/Windows</td>
<td>GSIC Center, Tokyo Institute of Technology</td>
<td>Japan</td>
<td>73278</td>
<td>1192000</td>
<td>2287630</td>
</tr>
<tr>
<td>6</td>
<td>Cray XE6, Opteron 6136 8C 2.40GHz, Custom</td>
<td>DOE/NNSA/LANL/SNL</td>
<td>United States</td>
<td>142272</td>
<td>1110000</td>
<td>1365811</td>
</tr>
<tr>
<td>7</td>
<td>SGI Altix ICE 8200EX/8400EX, Xeon HT QC 3.0/Xeon 5570/5670 2.93 Gzh, Infiniband</td>
<td>NASA/Ames Research Center/NAS</td>
<td>United States</td>
<td>111104</td>
<td>1088000</td>
<td>1315328</td>
</tr>
<tr>
<td>8</td>
<td>Cray XE6, Opteron 6172 12C 2.10GHz, Custom</td>
<td>DOE/SC/LBNL/NERSC</td>
<td>United States</td>
<td>153408</td>
<td>1054000</td>
<td>1288627</td>
</tr>
<tr>
<td>9</td>
<td>Bull bullx super-node S6010/S6030</td>
<td>Commissariat a l'Energie Atomique (CEA)</td>
<td>France</td>
<td>138368</td>
<td>1050000</td>
<td>1254550</td>
</tr>
<tr>
<td>10</td>
<td>BladeCenter QS22/LS21 Cluster, PowerXCell 8i 3.2 Ghz / Opteron DC 1.8 GHz, Voltaire Infiniband</td>
<td>DOE/NNSA/LANL</td>
<td>United States</td>
<td>122400</td>
<td>1042000</td>
<td>1375776</td>
</tr>
</tbody>
</table>
K-computer (AICS), Rank 1

- 800 racks with 88,128 SPARC64 CPUs / 705,024 cores
- 200,000 cables with total length over 1,000km
 - third floor (50m x 60m) free of structural pillars.
- New problem: floor load capacity of 1t/m² (avg.)
 - Each rack has up to 1.5t
 - High-tech construction required
- first floor with global file system has just three pillars
- Own power station (300m²)
The K-Computer

2013: Human Brain Simulation (Coop: Forschungszentrum Jülich)
Simulating 1 second of the activity of 1% of a Brain took 40 Minutes.
Simulation of a whole Brain possible with Exa-scale Computers?
Jugene (Forschungszentrum Jülich), Rank 13
<table>
<thead>
<tr>
<th>Rank</th>
<th>Name</th>
<th>Computer</th>
<th>Site</th>
<th>Country</th>
<th>Total Cores</th>
<th>Rmax</th>
<th>Rpeak</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Titan</td>
<td>Cray XK7, Opteron 6274 16C 2.200GHz, Cray Gemini interconnect, NVIDIA K20x</td>
<td>DOE/SC/Oak Ridge National Laboratory</td>
<td>United States</td>
<td>560640</td>
<td>17590000</td>
<td>27112550</td>
</tr>
<tr>
<td>2</td>
<td>Sequoia</td>
<td>BlueGene/Q, Power BQC 16C 1.60GHz, Custom</td>
<td>DOE/NNSA/LLNL</td>
<td>United States</td>
<td>1572864</td>
<td>16324751</td>
<td>20132659</td>
</tr>
<tr>
<td>3</td>
<td>K computer</td>
<td>K computer, SPARC64 VIIIfx 2.0GHz, Tofu interconnect</td>
<td>RIKEN Advanced Institute for Computational Science (AICS)</td>
<td>Japan</td>
<td>705024</td>
<td>10510000</td>
<td>11280384</td>
</tr>
<tr>
<td>4</td>
<td>Mira</td>
<td>BlueGene/Q, Power BQC 16C 1.60GHz, Custom</td>
<td>DOE/SC/Argonne National Laboratory</td>
<td>United States</td>
<td>786432</td>
<td>8162376</td>
<td>10066330</td>
</tr>
<tr>
<td>5</td>
<td>JUQUEEN</td>
<td>BlueGene/Q, Power BQC 16C 1.600GHz, Custom Interconnect</td>
<td>Forschungszentrum Juwelich (FZJ)</td>
<td>Germany</td>
<td>393216</td>
<td>4141180</td>
<td>5033165</td>
</tr>
<tr>
<td>6</td>
<td>SuperMUC</td>
<td>iDataPlex DX360M4, Xeon E5-2680 8C 2.70GHz, Infiniband FDR</td>
<td>Leibniz Rechenzentrum</td>
<td>Germany</td>
<td>147456</td>
<td>2897000</td>
<td>3185050</td>
</tr>
<tr>
<td>7</td>
<td>Stampede</td>
<td>PowerEdge C8220, Xeon E5-2680 8C 2.700GHz, Infiniband FDR, Intel Xeon Phi</td>
<td>Texas Advanced Computing Center/Univ. of Texas</td>
<td>United States</td>
<td>204900</td>
<td>2660290</td>
<td>3958965</td>
</tr>
<tr>
<td>8</td>
<td>Tianhe-1A</td>
<td>NUDT YH MPP, Xeon X5670 6C 2.93 GHz, NVIDIA 2050</td>
<td>National Supercomputing Center in Tianjin</td>
<td>China</td>
<td>186368</td>
<td>2566000</td>
<td>4701000</td>
</tr>
<tr>
<td>9</td>
<td>Fermi</td>
<td>BlueGene/Q, Power BQC 16C 1.60GHz, Custom</td>
<td>CINECA</td>
<td>Italy</td>
<td>163840</td>
<td>1725492</td>
<td>2097152</td>
</tr>
<tr>
<td>10</td>
<td>DARPA Trial Subset</td>
<td>Power 775, POWER7 8C 3.836GHz, Custom Interconnect</td>
<td>IBM Development Engineering</td>
<td>United States</td>
<td>63360</td>
<td>1515000</td>
<td>1944391,68</td>
</tr>
</tbody>
</table>
Top 500 Nov 2013

<table>
<thead>
<tr>
<th>Rank</th>
<th>Name</th>
<th>Computer</th>
<th>Site</th>
<th>Country</th>
<th>Total Cores</th>
<th>Rmax</th>
<th>Rpeak</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Tianhe-2</td>
<td>TH-IVB-FEP Cluster, Intel Xeon E5-2692 12C 2.200GHz, TH Express-2, Intel Xeon Phi 31S1P</td>
<td>National Super Computer Center in Guangzhou</td>
<td>China</td>
<td>3120000</td>
<td>33862700</td>
<td>54902400</td>
</tr>
<tr>
<td>2</td>
<td>Titan</td>
<td>Cray XK7, Opteron 6274 16C 2.200GHz, Cray Gemini interconnect, NVIDIA K20x</td>
<td>DOE/SC/Oak Ridge National Laboratory</td>
<td>United States</td>
<td>560640</td>
<td>17590000</td>
<td>27112550</td>
</tr>
<tr>
<td>3</td>
<td>Sequoia</td>
<td>BlueGene/Q, Power BQC 16C 1.60 GHz, Custom</td>
<td>DOE/NNSA/LLNL</td>
<td>United States</td>
<td>1572864</td>
<td>17173224</td>
<td>20132659,2</td>
</tr>
<tr>
<td>4</td>
<td>K computer</td>
<td>K computer, SPARC64 VIIIfx 2.0GHz, Tofu interconnect</td>
<td>RIKEN Advanced Institute for Computational Science (AICS)</td>
<td>Japan</td>
<td>705024</td>
<td>10510000</td>
<td>11280384</td>
</tr>
<tr>
<td>5</td>
<td>Mira</td>
<td>BlueGene/Q, Power BQC 16C 1.60GHz, Custom</td>
<td>DOE/SC/Argonne National Laboratory</td>
<td>United States</td>
<td>786432</td>
<td>8586612</td>
<td>10066330</td>
</tr>
<tr>
<td>6</td>
<td>Piz Daint</td>
<td>Cray XC30, Xeon E5-2670 8C 2.600GHz, Aries interconnect, NVIDIA K20x</td>
<td>Swiss National Supercomputing Centre (CSCS)</td>
<td>Switzerland</td>
<td>115984</td>
<td>6271000</td>
<td>7788852,8</td>
</tr>
<tr>
<td>7</td>
<td>Stampede</td>
<td>PowerEdge C8220, Xeon E5-2680 8C 2.700GHz, Infiniband FDR, Intel Xeon Phi SE10P</td>
<td>Texas Advanced Computing Center/Univ. of Texas</td>
<td>United States</td>
<td>462462</td>
<td>5168110</td>
<td>8520111,6</td>
</tr>
<tr>
<td>8</td>
<td>JUQUEEN</td>
<td>BlueGene/Q, Power BQC 16C 1.600GHz, Custom Interconnect</td>
<td>Forschungszentrum Juelich (FZJ)</td>
<td>Germany</td>
<td>458752</td>
<td>5008857</td>
<td>5872025,6</td>
</tr>
<tr>
<td>9</td>
<td>Vulcan</td>
<td>BlueGene/Q, Power BQC 16C 1.600GHz, Custom Interconnect</td>
<td>DOE/NNSA/LLNL</td>
<td>United States</td>
<td>393216</td>
<td>4293306</td>
<td>5033165</td>
</tr>
<tr>
<td>10</td>
<td>SuperMUC</td>
<td>iDataPlex DX360M4, Xeon E5-2680 8C 2.700GHz, Infiniband FDR</td>
<td>Leibniz Rechenzentrum</td>
<td>Germany</td>
<td>147456</td>
<td>2897000</td>
<td>3185050</td>
</tr>
</tbody>
</table>
Tianhe-2 (MilkyWay-2), National Super Computer Center in Guangzhou, Rank 1

- Intel Xeon systems with Xeon Phi accelerators
 - 32000 Xeon E5-2692 (12 Core, 2.2 Ghz)
 - 48000 Xeon Phi 31S1P (57 Cores, 1.1 GHz)
 - Organization: 16000 Nodes, each
 - 2 Xeon E5-2692
 - 3 Xeon Phi 31S1P
- 1408 TB Memory
 - 1024 TB CPUs (64 GB per node)
 - 384 TB Xeon Phi (3x8 GB per node)
- Power 17.6 MW (24 MW with cooling)
Cray XK7

- 18,688 nodes with 299,008 cores, 710 TB (598 TB CPU and 112 TB GPU)
 - AMD Opteron 6274 16-core CPU
 - Nvidia Tesla K20X GPU
 - Memory: 32GB (CPU) + 6 GB (GPU)
- Cray Linux Environment
- Power 8.2 MW
JUQUEEN (Forschungszentrum Jülich), Rank 8 (2012: Rank 5)

- 28 racks (7 rows à 4 racks)
- 28,672 nodes (458,752 cores)
- Rack: 2 midplanes à 16 nodeboards (16,384 cores)
- Nodeboard: 32 compute nodes
- Node: 16 cores
 IBM PowerPC A2, 1.6 GHz

- Main memory: 448 TB (16 GB per node)

- Network: 5D Torus — 40 GBps; 2.5 μsec latency (worst case)

- Overall peak performance: 5.9 Petaflops
- Linpack: > 4.141 Petaflops
HERMIT (HLRS Stuttgart), Rank 39 (2012: Rank 27)

- Cray XE6
- 3,552 Nodes
- 113,664 Cores
- 126TB RAM

Barry Linnert, linnert@inf.fu-berlin.de, Cluster Computing SoSe 2020
Top 500 Nov 2014

<table>
<thead>
<tr>
<th>R</th>
<th>Site</th>
<th>System</th>
<th>Cores</th>
<th>Rmax (TF/s)</th>
<th>Rpeak (TF/s)</th>
<th>Power (kW)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>China</td>
<td>Tianhe-2 (MilkyWay-2)</td>
<td>3,120,000</td>
<td>33,862.7</td>
<td>54,902.4</td>
<td>17,808</td>
</tr>
<tr>
<td>2</td>
<td>United States</td>
<td>Titan</td>
<td>560,640</td>
<td>17,590.0</td>
<td>27,112.5</td>
<td>8,209</td>
</tr>
<tr>
<td>3</td>
<td>United States</td>
<td>Sequoia</td>
<td>1,572,864</td>
<td>17,173.2</td>
<td>20,132.7</td>
<td>7,890</td>
</tr>
<tr>
<td>4</td>
<td>Japan</td>
<td>K computer</td>
<td>705,024</td>
<td>10,510.0</td>
<td>11,280.4</td>
<td>12,660</td>
</tr>
<tr>
<td>5</td>
<td>United States</td>
<td>Mira</td>
<td>786,432</td>
<td>8,586.6</td>
<td>10,066.3</td>
<td>3,945</td>
</tr>
<tr>
<td>6</td>
<td>Switzerland</td>
<td>Piz Daint</td>
<td>115,984</td>
<td>6,271.0</td>
<td>7,788.9</td>
<td>2,325</td>
</tr>
<tr>
<td>7</td>
<td>United States</td>
<td>Stampede</td>
<td>462,462</td>
<td>5,168.1</td>
<td>8,520.1</td>
<td>4,510</td>
</tr>
<tr>
<td>8</td>
<td>Germany</td>
<td>JUQUEEN</td>
<td>458,752</td>
<td>5,008.9</td>
<td>5,872.0</td>
<td>2,301</td>
</tr>
<tr>
<td>9</td>
<td>United States</td>
<td>Vulcan</td>
<td>393,216</td>
<td>4,293.3</td>
<td>5,033.2</td>
<td>1,972</td>
</tr>
<tr>
<td>10</td>
<td>United States</td>
<td>Cray CS-Storm</td>
<td>72,800</td>
<td>3,577.0</td>
<td>6,131.8</td>
<td>1,499</td>
</tr>
</tbody>
</table>
Green 500 Top entries Nov. 2014

<table>
<thead>
<tr>
<th>Green500 Rank</th>
<th>MFLOPS/W</th>
<th>Site*</th>
<th>Computer*</th>
<th>Total Power (kW)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>5,271.81</td>
<td>GSI Helmholtz Center</td>
<td>L-CSC - ASUS ESC4000 FDR/G2S, Intel Xeon E5-2690v2 10C 3GHz, Infiniband FDR, AMD FirePro S9150 Level 1 measurement data available</td>
<td>57.15</td>
</tr>
<tr>
<td>2</td>
<td>4,945.63</td>
<td>High Energy Accelerator Research Organization /KEK</td>
<td>Suiren - ExaScaler 32U256SC Cluster, Intel Xeon E5-2660v2 10C 2.2GHz, Infiniband FDR, PEZY-SC</td>
<td>37.83</td>
</tr>
<tr>
<td>3</td>
<td>4,447.58</td>
<td>GSIC Center, Tokyo Institute of Technology</td>
<td>TSUBAME-KFC - LX 1U-4GPU/104Re-1G Cluster, Intel Xeon E5-2620v2 8C 2.100GHz, Infiniband FDR, NVIDIA K20x</td>
<td>35.39</td>
</tr>
<tr>
<td>4</td>
<td>3,962.73</td>
<td>Cray Inc.</td>
<td>Storm1 - Cray CS-Storm, Intel Xeon E5-2660v2 10C 2.2GHz, Infiniband FDR, Nvidia K40m Level 3 measurement data available</td>
<td>44.54</td>
</tr>
<tr>
<td>5</td>
<td>3,631.70</td>
<td>Cambridge University</td>
<td>Wilkes - Dell T620 Cluster, Intel Xeon E5-2630v2 6C 2.600GHz, Infiniband FDR, NVIDIA K20</td>
<td>52.62</td>
</tr>
<tr>
<td>6</td>
<td>3,543.32</td>
<td>Financial Institution</td>
<td>iDataPlex DX360M4, Intel Xeon E5-2680v2 10C 2.800GHz, Infiniband, NVIDIA K20x</td>
<td>54.60</td>
</tr>
<tr>
<td>7</td>
<td>3,517.84</td>
<td>Center for Computational Sciences, University of Tsukuba</td>
<td>HA-PACS TCA - Cray CS300 Cluster, Intel Xeon E5-2680v2 10C 2.800GHz, Infiniband QDR, NVIDIA K20</td>
<td>78.77</td>
</tr>
<tr>
<td>8</td>
<td>3,459.46</td>
<td>SURFsara</td>
<td>Cartesius Accelerator Island - Bullx B515 cluster, Intel Xeon E5-2450v2 8C 2.5GHz, InfiniBand 4x FDR, Nvidia K40m</td>
<td>44.40</td>
</tr>
<tr>
<td>9</td>
<td>3,185.91</td>
<td>Swiss National Supercomputing Centre (CSCS)</td>
<td>Piz Daint - Cray XC30, Xeon E5-2670 8C 2.600GHz, Aries interconnect, NVIDIA K20x Level 3 measurement data available</td>
<td>1,753.66</td>
</tr>
<tr>
<td>10</td>
<td>3,131.06</td>
<td>ROMEO HPC Center - Champagne-Ardenne</td>
<td>romeo - Bull R421-E3 Cluster, Intel Xeon E5-2650v2 8C 2.600GHz, Infiniband FDR, NVIDIA K20x</td>
<td>81.41</td>
</tr>
</tbody>
</table>
Top 500 vs. Green 500

<table>
<thead>
<tr>
<th>Top 500</th>
<th>System</th>
<th>Rmax (TF/s)</th>
<th>Rpeak (TF/s)</th>
<th>Power (kW)</th>
<th>Green 500</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Tianhe-2 (MilkyWay-2)</td>
<td>33,862.7</td>
<td>54,902.4</td>
<td>17,808</td>
<td>57</td>
</tr>
<tr>
<td>2</td>
<td>Titan</td>
<td>17,590.0</td>
<td>27,112.5</td>
<td>8,209</td>
<td>53</td>
</tr>
<tr>
<td>3</td>
<td>Sequoia</td>
<td>17,173.2</td>
<td>20,132.7</td>
<td>7,890</td>
<td>48</td>
</tr>
<tr>
<td>4</td>
<td>K computer</td>
<td>10,510.0</td>
<td>11,280.4</td>
<td>12,660</td>
<td>156</td>
</tr>
<tr>
<td>5</td>
<td>Mira</td>
<td>8,586.6</td>
<td>10,066.3</td>
<td>3,945</td>
<td>47</td>
</tr>
<tr>
<td>6</td>
<td>Piz Daint</td>
<td>6,271.0</td>
<td>7,788.9</td>
<td>2,325</td>
<td>9</td>
</tr>
<tr>
<td>7</td>
<td>Stampede</td>
<td>5,168.1</td>
<td>8,520.1</td>
<td>4,510</td>
<td>91</td>
</tr>
<tr>
<td>8</td>
<td>JUQUEEN</td>
<td>5,008.9</td>
<td>5,872.0</td>
<td>2,301</td>
<td>40</td>
</tr>
<tr>
<td>9</td>
<td>Vulcan</td>
<td>4,293.3</td>
<td>5,033.2</td>
<td>1,972</td>
<td>38</td>
</tr>
<tr>
<td>10</td>
<td>Cray CS-Storm</td>
<td>3,577.0</td>
<td>6,131.8</td>
<td>1,499</td>
<td>4</td>
</tr>
</tbody>
</table>
HLRN (Hannover + Berlin), Rank 120 + 121
Volunteer Computing

Great Internet Mersenne Prime Search (GIMPS)
Finding World Record Primes Since 1996

SETI@HOME

Folding@home
Grid’5000

Grid’5000 architecture

10 Gbps lambda activated for Grid’5000
Cloud Computing (XaaS)

- Usage of remote physical and logical resources

- Infrastructure as a service
- Platform as a service
- Software as a service
Supercomputer in the Cloud: Rank 64

- Amazon EC2 C3 Instance
- Intel Xeon E5-2680v2 10C 2.800GHz
- 10G Ethernet
- 26496 Cores (according to TOP500 list)
- Rmax: 484179 GFLOPS
- Rpeak: 593510,4 GFLOPS
Support for parallel programs

Parallel Application

Program libraries (e.g. communication, synchronization,..)

Middleware (e.g. administration, scheduling,..)

Distributed operating system

Connection network

node 1 node 2 node 3 node 4 node 5 node n
Tasks

User’s point of view (programming comfort, short response times)
- Efficient Interaction (Information exchange)
 - Message passing
 - Shared memory
- Synchronization
- Automatic distribution and allocation of code and data
- Load balancing
- Debugging support
- Security
- Machine independence

Operator’s point of view (High utilization, high throughput)
- Multiprogramming / Partitioning
 - Time sharing
 - Space sharing
- Load distribution / Load balancing
- Stability
- Security