Chapter 4

Allocation Problems in Parallel Computers
4.1 Overview

- In the early nineties parallel computing was characterized by the following properties:
 - **Machine dependent programming**
 The programmer had to explicitly consider size, type and architecture of the target machine.
 - **Manual allocation**
 The programmer himself was responsible for the mapping of logical objects to physical objects.
 - **Monoprogramming**
 At any point in time only one parallel program could be executed, occupying the entire machine.
- This characterization corresponds to the situation of sequential programming in the sixties.
- System software should make parallel computing as efficient and comfortable as conventional sequential programming.
Allocation Problem

Barry Linnert, linnert@inf.fu-berlin.de, Cluster Computing SoSe 2018

parallel program
parallel program
parallel program

parallel machine
An allocation problem is described by four components:

1. Machine model M
2. Load model L
3. Allocation relation R
4. Allocation goal G
4.2 Machine model

- A parallel computer system can be described by a graph, with the processors as the vertices and the direct processor links as the edges:

\[(P, E^p)\] with

- \(P\) set of processors as vertices \((|P| = n)\)
- \(E^p\) set of links as edges

Both vertices and edges can have weights:

- \(\mu_i: P \to R\) vertex weight processor speed (e.g. MFlops)
- \(\gamma_i: E^p \to R\) edge weight transmission speed (e.g. Mbit/sec)
4.3 Load model

- Load can be described at two levels:
 - Program level: set of parallel programs
 - Thread level: set of interacting threads of a program

- At thread level a parallel program can be represented (analogously to the machine) as a graph:

 - $L = (T, E^T)$ program graph with
 - T: set of parallel threads (tasks, threads) as vertices ($|T| = m$)
 - E^T: set of interaction relations as edges

- Vertex and edge weights are also possible:
 - $b_i: T \rightarrow R$ vertex weight length of thread (e.g. #instructions)
 - $a_i: E^T \rightarrow R$ edge weight communication intensity (e.g. bits or packets)
Program Graph

- Two types of program graphs
 - task (=thread) interaction graph or
 - task (=thread) precedence graph
Aircraft engineering: Finite-Element-method
Airfoil (Finite-Element Method)
Sieve of Erathostenes (Calculation of primes)
Example TPG

Gaussian Elimination Method (LES)
Example TPG

Application from Molecular Biology
Program Phase Graph (formal)

- Program phase graph
 \[PPG := (S, E^S) \] with
 \[S \] Set of Phases
 \[E^S \] Phase transitions
 \[p_{ij} \] transition probabilities

- Each phase consists of a TIG:
 \[s_i := (T_i, E^{T_i}) \quad \forall \ s_i \in S \]

- To make sure that the phases are connected to each other, we request that two adjacent phases have at least one thread in common.:
 \[(s_i, s_j) \in E^S \Rightarrow \exists \ t: t \in T_i \land t \in T_j \]
Parallelism profile

- If the communication behavior is unknown or irrelevant, the program description is reduced to the (dynamic) number of threads.
- If in turn the threads are distinguished from each other, the number of threads (parallelism degree) is sufficient.
- For a dynamic parallelism degree we obtain the parallelism profile (known from chapter 3).

\[\text{Parallelism degree } p(t) \]

\[p_{\text{max}} \]

\[p_{\text{min}} \]

\[T(\infty) \]
Example: Quicksort on 16 Processors
Example: Fine grain Parallelism

Fig. 7. Parallelism in three consecutive iterations of the VA3D program.
4.4 Allocation

Let be

- \(PCG = (P, EP) \)
 The processor connection graph with \(P \) set of processors, \(|P| = n \)
- \(A := \{A_1, A_2, \ldots, A_q\} \)
 the load consisting of a set of parallel programs
- \(T_i \)
 the set of threads of program \(A_i \)

An allocation can take place on the program level or on the thread level.
Program Allocation

- φ: $A \rightarrow \wp(P)$ mapping of programs to subsets of processors
- $\varphi(A_i)$ is the processor set allocated to program A_i. It is called the **Territory** of A_i.
- φ is called disjoint, if $\forall i \neq k: \varphi(A_i) \cap \varphi(A_k) = \emptyset$
Program Allocation

- A disjoint program allocation is called **partitioning**. (The processors not allocated by ϕ form the so-called **free partition**).
- A territory $\phi(A_i)$ is called **contiguous**, if the subgraph of the PCG defined by the territory is connected.
- A program allocation ϕ is called contiguous, if $\phi(A_i)$ is contiguous for all $i = 1,.., q$.

Sometimes topological aspects are irrelevant:

A **quantitative partitioning** only decides, how many processors each program obtains:

$$\chi : A \rightarrow \{1,\ldots,n\} \text{ with } \sum_{i=1}^{q} \chi(A_i) \leq n$$
Allocation at Thread Level (Mapping)

- Within each program, each thread must be assigned to exactly one processor: \(\pi : T \rightarrow P \)

- If \(\pi \) is injective, the allocation is called **injective** (one-(or zero)-to-one), otherwise **contractive** (many-to-one).
Thread Allocation

- For a contractive allocation there is often an intermediate step which determines which threads are mapped to the same processor (Contraction, Grouping, Clustering).

![Diagram showing thread allocation]

threads T

Contractive allocation

processors P
Allocation Problem

In multiprogramming operation, an allocation problem can consist of four steps that have to be solved one after the other:

1. Quantitative Partitioning:
 - Which program obtains how many processors?

2. Qualitative Partitioning
 - Which program obtains which processors?

3. Clustering (Contraction) within the programs
 - Which threads are grouped together?

4. Injective Allocation
 - Which thread group is mapped to which processor?
4.5 Goals

List of typical objective functions

- response time RT → min
- execution time ET → min
- communication cost CC → min
- utilization UT → max
- Speed-up SU → max
- throughput TP → max
- load unbalance LU → min
-

Since some quantities are contained in others and some are contradictory, it is reasonable to define combinations:

- Arithmetic combination, e.g. weighted sum
- Logical combination using restrictions
 - E.g.. ET → min | LU < 2
4.6 Allocation Algorithms

- An allocation algorithm is described by the problem it is supposed to solve and some additional properties:

 - Optimality:
 - An algorithm is called **optimal**, if the optimality of the solution is guaranteed.
 - Otherwise it is called **suboptimal**.
 - Suboptimal algorithms can be divided into two classes:
 - An algorithm is **approximate**, if it finds an optimal solution only approximately. However, an error bound must be provided.
 - If we are neither able to guarantee optimality nor to specify an error bound, the algorithm is called **heuristic**.

- Structure
 - If there is only one instance that has global information and decides about the global allocation then the algorithm is called **central**.
 - **Decentralized** or **distributed** algorithms can be further subdivided into
 - **hierarchical algorithms**
 - **cooperative algorithms** (peer-to-peer)
4.7 Application Areas

Another aspect is the question, at what time the allocation is taking place.

- **Offline allocation**
 - Optimization problem is formulated explicitly and solved.

- **Allocation at compile time**
 - Compiler knows the communication and data dependency structure of the parallel program.

- **Allocation at start time**
 - At this point of time the current load situation is known and can be taken into account.

- **Allocation at run-time**
 - Data dependent behavior can be collected during program execution (monitoring) resulting in an adaptive dynamic allocation (start new threads, migrate threads).
Further References: